
International Journal of Computer Information Systems and Industrial Management Applications.
ISSN 2150-7988 Volume 15(2023) pp. 1-12
© MIR Labs, www.mirlabs.net/ijcisim/index.html

Submitted: 8 Feb, 2023; Accepted: 3 Apr, 2023; Publish: 9 June, 2023

Data Virtualization Enabling Distributed Data
Architectures: Data Fabric and Data Mesh

Montasser AKERMI1, Mohamed Ali HADJ TAIEB1, and Mohamed BEN AOUICHA1

1Data Engineering and Semantics Research Unit, Faculty of Sciences of Sfax,
University of Sfax, Sfax, Tunisia

montaccep@gmail.com,
{mohamedali.hajtaieb, mohamed.benaouicha}@fss.usf.tn

Abstract: Organizations are facing increasing challenges in ef-
fectively managing and utilizing data as a strategic asset within
the rapidly evolving data landscape. Traditional monolithic
data architectures are struggling to keep pace with the hetero-
geneous nature and high velocity of generated data, making it
necessary to explore alternative paradigms. This article inves-
tigates the potential of data virtualization as a data integration
pattern, discussing its core capabilities and features, as well as
its role in enabling distributed data architectures such as data
fabric and data mesh. Furthermore, the article provides a com-
parison of common data integration patterns and highlights the
advantages of data virtualization especially in the distributed
data architecture.
Keywords: Data Virtualization, Data Integration, Data Architec-
ture, Data Fabric, Data Mesh

I. Introduction

This article extends upon the findings presented in the con-
ference paper (Akermi et al., 2023) to provide a comprehen-
sive overview of data virtualization and its role in enabling
distributed data architectures.
Data virtualization has emerged as a modern approach to
data integration that provides a unified solution to manag-
ing and utilizing all the data within an organization (Van
der Lans, 2012). With an increasing number of structured,
semi-structured, and unstructured data sources being gener-
ated and used, data integration has become a major challenge
for organizations. Traditional data integration patterns, such
as Extract, Transform, Load (ETL) and Enterprise Service
Bus (ESB), are limited in their ability to provide real-time ac-
cess to diverse data sources, often resulting in delayed data
delivery and decreased data accuracy (Naeem et al., 2022).
Data virtualization, on the other hand, provides a real-time
solution through the use of a virtual data layer. This layer
acts as an abstraction between the data consumers and the
underlying data sources, providing a unified view of the data
(Muniswamaiah et al., 2019b).
Data virtualization offers several advantages over traditional
data integration patterns. First, it eliminates the need for data
movement, reducing the complexity and cost associated with

data integration. Instead of copying data from source systems
to a central repository, data virtualization enables real-time
access to data sources, providing an up-to-date view of the
data. Secondly, it offers increased flexibility and scalability,
allowing organizations to easily add new data sources and
remove existing ones, without affecting existing data con-
sumers. Finally, data virtualization enables organizations to
leverage the power of their data, providing faster and more
accurate data delivery, which can lead to increased efficiency
and competitiveness.
Moreover, data virtualization is key to enabling distributed
data architectures, such as data fabric (Li et al., 2022). These
architectures aim to facilitate access and sharing of disparate
data sources, leading to more streamlined data management
and increased efficiency (Machado et al., 2022). Data vir-
tualization provides real-time access to data across disparate
systems, without having to move the source data to a new
repository, making it an ideal solution for organizations seek-
ing to implement a distributed data architecture.
The article aims to provide a better understanding of data
virtualization and its potential to enhance data management
capability and enable distributed data architectures. Section
2 compares common data integration patterns, while Section
3 focuses on data virtualization and its key capabilities and
features. In Section 4, the potential of data virtualization in
enabling distributed data architectures, such as data fabric
and data mesh, is discussed. The article concludes with a
summary of its findings and suggestions for future work in
this field.

II. Comparison of Common Data Integration
Patterns

Data integration (DI) can be classified into physical integra-
tion and virtual integration (Doan et al., 2012). Physical data
integration involves combining data from multiple sources
into a single, unified location or repository, typically through
the use of extract, transform, load processes or similar meth-
ods. This approach often requires the data to be physically
moved or copied from its original location to the new reposi-
tory, resulting in the creation of multiple replicas of the same
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data. Virtual data integration, on the other hand, uses tech-
niques such as data virtualization to provide a unified view
of data from multiple sources without the need for physical
replication. This approach allows users to access and query
data in real-time, regardless of where it is physically stored,
providing a more efficient and cost-effective solution for data
integration.
When evaluating data integration patterns, several factors
should be considered in order to determine their suitability.
These include ease of use, maintainability, performance, er-
ror handling capabilities, reusability, and extensibility. Ease
of use can be measured by the simplicity of setup, configura-
tion, and management for both information technology (IT)
teams and business users. Maintainability refers to the ease
of updating, scaling, and modifying the integration method
to align with changing business requirements. Performance
is determined by the speed and efficiency of data process-
ing and integration. Error handling capabilities refer to the
effectiveness of detecting and correcting errors in the data.
Reusability pertains to the ability to apply the integration
method to multiple scenarios or use cases. Extensibility is
the capability of accommodating new data sources, formats
or integration scenarios.
It is important to note that this comparison is based on a gen-
eral overview and may vary depending on the specific imple-
mentation and vendor of each data integration pattern.
Table 1 shows a comparison of six common data integration
patterns; ETL, ESB, Change Data Capture (CDC), Data as a
Service (DaaS), Streaming Data Integration (SDI), and Data
Virtualization (DV). The rating ranges between 1 to 5 stars.
Fig. 1 illustrates this comparison in terms of overall score and
agility. The overall score, represented on the x-axis, is calcu-
lated based on the aggregate of the previously discussed six
criteria. The agility score, represented on the y-axis, reflects
the ability of each data integration pattern to handle changes
easily, and quickly adapt to new use cases, data sources, and
changing business requirements.

Figure. 1: A comparison between common data integration
patterns

When evaluating a DI pattern for agility, it is important to
consider the following factors:

• Modularity: The ability to add, remove, or modify data
sources, data formats, or integration scenarios without

disrupting existing integration processes.

• Scalability: The ability to handle an increasing volume
and velocity of data without a significant impact on per-
formance.

• Automation: The ability to automate data integration
processes to improve efficiency and reduce the cost of
integration.

• Self-service capabilities: The ability for business users
to integrate data without IT teams involvement, which
can help speed up the integration process.

• Flexibility in data mapping: The ability to map data be-
tween different structures and formats easily, which can
help adapt to changing data structures.

A. Extract, Transform, Load

The extract, transform, load process; first coined in the
1970s; is a widely-used data integration pattern that involves
extracting data from a source, transforming it into a format
required by the final data repository, and then loading it into
that repository. This process is commonly used in data ware-
houses (Muniswamaiah et al., 2019a) and has been the main
method of integrating data for decades. However, with the
advent of big data and the need for real-time data integra-
tion, organizations have begun to explore alternative meth-
ods, such as ELT (extract, load, transform), which loads data
before making any transformations, and data virtualization,
which allows for real-time access to data without the need
for replication. Despite its widespread use, ETL has its lim-
itations, such as the need for up-front transformation and the
complexity of maintaining multiple ETL processes. As a
result, organizations are increasingly looking for more effi-
cient and effective data integration patterns that can handle
the high volume and variety of data in today’s digital land-
scape.
In terms of ease of use and maintainability criteria, the pro-
cess of extraction, transformation, and loading of data can be
complex, and may require specialized technical knowledge
to set up and maintain. It may be more complex for business
users or those with less technical expertise. ETL can han-
dle large volumes of data, but it can have performance issues
when dealing with high-velocity data streams. In term of er-
ror handling, ETL typically include built-in error handling
capabilities, but the level of error handling can vary depend-
ing on the specific implementation and vendor. As for the
reusability and extensibility, ETL may be relatively reusable
and extensible, as it can be configured to handle different data
sources and integration scenarios, but the level of reusability
and extensibility can vary depending on the specific imple-
mentation and vendor.

B. Enterprise Service Bus

Enterprise Service Bus was originally coined by analysts
from Gartner in 2002, as organizations began to adopt
service-oriented architecture (SOA) and web services as a
means of integrating their systems (Menge, 2007). ESB does
not involve moving the data, instead, it uses a message bus to
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Table 1: Comparison of the various data integration patterns
Ease of use Maintainability Performance Error handling Reusability Extensibility

ETL ⋆⋆ ⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆
ESB ⋆⋆ ⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆
CDC ⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆
DaaS ⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆
SDI ⋆⋆ ⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆
DV ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆

facilitate the interactions of applications and services. Appli-
cations are connected to the message bus. This allows them
to communicate and exchange messages in real-time. Ap-
plications in ESB are decoupled, therefore, no need for one
application to know about, or depend on other applications
(Menge, 2007).
Data integration challenges such as those faced by ETL and
ESB patterns can be addressed by integrating a data virtual-
ization layer. While ETL processes are suited for operational
scenarios, they are not well-suited for analytical use cases
due to their batch-oriented nature and difficulty in mainte-
nance over time. Similarly with ESB, while it is effective
in moving away from point-to-point integration and offering
real-time interaction between applications, it is not capable
of integrating application data for analytical use cases. Data
virtualization can provide an effective solution for integrating
data from various sources in real-time and delivering analyt-
ical use cases.
ESBs can be relatively easy to use for IT teams with the ap-
propriate technical expertise. However, they may be more
complex for business users or those with less technical ex-
pertise. They can also be complex to maintain, especially
if the ESB process is customized and the data sources are
diverse. ESB processes may require frequent updates and
maintenance to handle changes in data sources and integra-
tion scenarios. ESBs can handle large volumes of data, but
they can have performance issues when dealing with high-
velocity data streams. However, the performance can be im-
proved through the use of different techniques such as paral-
lel processing and optimized data structures. Same as ETL,
ESBs may include built-in error handling capabilities. They
can handle errors during the data integration process, but they
may require manual intervention. As for reusability and ex-
tensibility, they are almost the same as with ETL, ESBs can
be relatively reusable and extensible.

C. Change Data Capture

Change Data Capture refers to the process of identifying and
capturing changes made to a specific data source and propa-
gating these changes to other systems in real-time. This en-
ables real-time data integration and ensures consistency and
accuracy of data across different systems. CDC emerged
in the early days of database management systems, when
the primary means of capturing changes to a database was
through database triggers. It is used in several applications
such as, database replication, live data monitoring, real-time
data warehousing, and for event-driven architectures (Eccles
et al., 2010).
CDC is typically implemented using log-based or timestamp-
based methods. This process eliminates the need for full re-
freshes of data, and allows the target system to be updated as

soon as a change occurs in the source system. This is partic-
ularly useful in scenarios where data is rapidly changing and
consistency is crucial (Schmidt et al., 2015).
However, implementing CDC also poses some challenges,
such as the complexity of setting up and maintaining CDC
processes, and the potential for increased data duplication
and data inconsistency if not implemented properly.
CDC can be relatively easy to use for IT teams. However, it
may be more complex for business users or those with less
technical expertise. CDC solutions are typically less com-
plex to maintain than ETL and ESB solutions, they may re-
quire less frequent updates and maintenance. CDC integra-
tion pattern is typically faster and more efficient than ETL
and ESB, as they only process changes in the data rather than
the entire dataset. It can handle high-velocity data streams,
but may have performance issues when dealing with very
large volumes of data. CDC method has been shown to be
more efficient than traditional ETL or ESB methods. This is
due to the fact that CDC only captures and records changes
in specific sets of data, rather than the entire dataset. As a re-
sult, the scope of potential errors is reduced, and the process
of identifying and resolving errors is typically faster. Addi-
tionally, CDC solutions often include built-in error handling
capabilities, which further streamlines the process of dealing
with errors. CDC solutions can be relatively reusable and
extensible, as they can be configured to handle different data
sources and integration scenarios. They can be adapted to
different contexts and use cases. As a result, CDC solutions
can be expanded and customized to meet the evolving needs
of an organization.

D. Data as a Service

Data as a Service is a method of delivering data as a service
to different users, applications, and systems. It is a form of
real-time data integration that allows organizations to access
and use data from various sources, such as databases, cloud
storage, or data lakes, as a service, through a set of APIs or
web services (Jiang et al., 2012). DaaS emerged in the early
days of cloud computing and Software as a Service in the
2000s, when organizations began to offer a variety of soft-
ware applications as a service over the internet (Wang et al.,
2010).
DaaS offers several advantages to organizations when it
comes to data integration. It provides a simplified and uni-
fied way of accessing data, eliminating the need for data
replication and movement. DaaS also allows for flexibil-
ity in data usage, as organizations can access more data and
more sources as their needs grow, without the need to move
or replicate data. However, implementing DaaS also poses
certain challenges such as ensuring data security, data gover-
nance and data quality, as well as dealing with data latency,
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data availability, and data integrity issues.
DaaS can be relatively easy to use for business users or IT
teams. DaaS solutions are less complex to maintain than on-
premise solutions, as the vendor is responsible for maintain-
ing the service. DaaS solutions may require less frequent
updates and maintenance. They can handle large volumes
of data, but they can have performance issues when deal-
ing with high-velocity data streams. DaaS solutions are of-
ten built on cloud infrastructure, which can provide scalabil-
ity and performance benefits. However, the performance of
DaaS solutions can be affected by the quality of the internet
connection. DaaS platforms may include built-in error han-
dling capabilities, but the level of error handling may be lim-
ited. DaaS solutions can be relatively reusable and extensi-
ble, as they can be configured to handle different data sources
and integration scenarios. However, the level of reusability
and extensibility can vary depending on the vendor.

E. Streaming Data Integration

SDI is a real-time data integration pattern that involves the
continuous and concurrent collection, processing, and analy-
sis of data as it is generated from various sources (Tatbul,
2010). This method enables organizations to process and
analyze data in near real-time, allowing for real-time deci-
sion making. It is particularly useful in scenarios where data
is rapidly changing and time-sensitive, such as fraud detec-
tion (Carcillo et al., 2018), anomaly detection (Zhang et al.,
2020), and real-time analytics (Bou et al., 2021). The history
of streaming data integration can be traced back to the early
days of data integration, when data integration was typically
done in batches and on a scheduled basis.
The use of streaming data integration allows organizations
to process and analyze data as it is generated, rather than
waiting for batches of data to be collected and processed,
leading to improved efficiency and better decision-making.
Additionally, it enables organizations to scale their data pro-
cessing and analysis capabilities as the volume and velocity
of streaming data can grow rapidly.
However, it is important to note that streaming data inte-
gration also poses certain challenges such as ensuring data
quality, data security, and data governance, dealing with data
latency, data availability and data integrity issues. It also re-
quires specialized skills and expertise, and it can be complex
to set up and maintain. Therefore, organizations must care-
fully consider these challenges and have appropriate mea-
sures in place to mitigate them in order to effectively imple-
ment streaming data integration.
Streaming data integration can be relatively easy to use for
IT teams with the appropriate technical expertise. However,
it may be more complex for business users. It may be dif-
ficult to maintain, especially when dealing with customized
integration process and diverse data sources. Streaming data
integration process may require frequent updates and mainte-
nance to handle changes in data sources. Streaming data in-
tegration solutions are designed to handle high-velocity data
streams in real-time, they can handle large volumes of data
and provide low-latency data processing. They can handle
errors during the data integration process, as they typically
include built-in error handling capabilities. Streaming data
integration solutions can be reusable, but not as flexible as

DaaS or CDC. As for extensibility, they can be relatively ex-
tensible, as they can be configured to handle different data
sources and integration scenarios.

F. Data Virtualization

Data virtualization is a data integration pattern that allows
for the creation of a virtualized data layer that integrates data
from a wide variety of structured, semi-structured, and un-
structured sources in real-time, without the need for physical
replication of data. This virtualized data layer provides a sin-
gle, unified, and integrated view of data that can be accessed
on-demand by various data consumers, such as applications,
processes, data scientists, and business users. The data virtu-
alization layer contains only the metadata required to access
each of the connected data sources, as well as any gover-
nance policies and security rules that may be applied. The
use of data virtualization enables faster access to data, re-
duces data duplication, decreases costs and increases agility
in data management.
In terms of ease of use and maintainability, data virtualiza-
tion has been demonstrated to be relatively easy to use and
maintain, as it abstracts the complexity of the underlying
data sources, makes it easy for applications to access and
query data, and reduces the need for manual intervention. As
for performance, data virtualization can provide high perfor-
mance, as it allows multiple data sources to be queried in
parallel and can also cache data for faster access. However,
in terms of error handling, data virtualization can handle er-
rors during the data integration process, but it may require
manual intervention to resolve errors. For reusability and ex-
tensibility, data virtualization can be relatively reusable and
extensible, as it can be configured to handle different data
sources and integration scenarios.

G. Data Integration from an Architecture Perspective

When examining data integration from an architectural per-
spective, it is common to encounter three primary mod-
els: point-to-point interaction, hub-and-spoke, and publish-
subscribe, as illustrated in Fig. 2. These models represent
architectural patterns for designing and implementing data
integration systems.
The point-to-point interaction model is a relatively simple
approach that involves connecting each system with every
other system with which it needs to exchange data (See
Fig. 2a). While this model is relatively straightforward to
implement, it can become increasingly complex and difficult
to maintain as the number of systems increases.
The hub-and-spoke model, on the other hand, centralizes
data integration through the use of a central hub that acts as
an intermediary between all connected systems (See Fig. 2b).
This model allows for greater control and management over
data integration processes, but it can also become a bottle-
neck if not properly implemented and scaled.
The publish-subscribe model is a more advanced approach
that allows systems to subscribe to specific data events (See
Fig. 2c). This enables more flexible and scalable data integra-
tion, but it can also be challenging to implement and requires
specialized infrastructure.
It is important to consider that each model has its own set
of advantages and disadvantages and the choice of architec-
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(a) Point-to-point interactions (b) Hub-and-spoke interactions (c) Publish-subscribe interactions

Figure. 2: Architectural patterns for designing data integration systems

ture will depend on the specific requirements and constraints
of the organization. Furthermore, best practices and pat-
terns such as data quality, data security, and data governance
should be taken into account in order to ensure that the inte-
grated data is accurate, consistent and secure.

H. Disadvantages of Traditional Approaches to Data Inte-
gration

Traditional approaches to data integration, such as ETL and
ELT methods, have several limitations that can impede their
effectiveness in certain use cases.
One of the challenges associated with traditional approaches
to data integration is the significant time investment required
for data transformation and data mapping. This is due to the
lack of reuse of existing transformation specifications, lead-
ing to the need to repeatedly implement such specifications.
This can impede the development process and ultimately re-
sult in a prolonged time to market.
Another limitation of traditional approaches to data integra-
tion is the difficulty in maintaining consistency of reports.
The synchronization of various implementations of transfor-
mation specifications can be challenging, as changes to a
specification may not always be reflected consistently across
all implementations. This lack of consistency in transforma-
tion specifications can lead to inconsistencies in the final re-
ports, which can undermine the integrity of the data and the
overall usefulness of the data-driven insights. Additionally,
ensuring that all implementations are updated in a timely and
consistent manner is a complex task.
The presence of multiple copies of the same data, also known
as data duplication, is a prevalent issue in traditional data in-
tegration approaches. The duplication of data occurs when
data is copied from source systems to data stores. Addition-
ally, data may also be duplicated within each data repository
for reasons such as performance optimization. This can re-
sult in a large number of copies of the same data being stored
across different data architectures, potentially numbering in
the tens or even hundreds. This can lead to issues such as
data inconsistency, increased storage costs, and difficulties
in maintaining data quality and integrity.
Data quality is a critical consideration when implementing
data integration solutions. Traditional approaches, such as
ETL and ELT methods, can introduce potential data qual-
ity issues due to the replication and transformation of data.
The more data is copied or transformed, the higher the risk
of low data quality. Factors such as data redundancy, incon-
sistencies, and errors can negatively impact the integrity and
accuracy of the integrated data. As a result, it is important to
implement measures and best practices to ensure data quality
throughout the data integration process.

The adoption of traditional approaches to data integration
may result in increased costs associated with development.
This can be attributed to the implementation of various tech-
nologies, the duplication of data storage and computing re-
sources, and the need for additional maintenance. The lack of
sharing or reuse of implementations can contribute to these
increased costs, as they may lead to unnecessary duplication
of effort.
The complexity of implementing and maintaining tradi-
tional data integration approaches can present a significant
challenge, particularly as the number and diversity of data
sources, as well as integration requirements, increases. This
can impede the ability to effectively manage and integrate
data, resulting in inefficiency and limitations in scalability.
Traditional data integration approaches, such as ETL and
ELT, often rely on physically moving and replicating data,
which can result in delays in the availability of integrated
data. These approaches can be resource-intensive and may
not be optimized for large-scale data integration, leading to
inefficiencies in terms of cost and performance. They may
face limitations in terms of scalability, and may not be able
to effectively accommodate the growth of an organization.
Traditional approaches may not provide adequate controls
for data quality, security, and governance, which can lead
to inaccurate or inconsistent data. These limitations in gov-
ernance can have a negative impact on the integrity and reli-
ability of integrated data.
In the next section, we explore the concept of data virtualiza-
tion as a modern data integration pattern that addresses these
challenges.

III. Data Virtualization

Data virtualization is a modern approach to data integration
that aims to provide unified access to a diverse range of struc-
tured, semi-structured, and unstructured data sources. It uti-
lizes an abstraction layer, referred to as a virtual data layer, to
deliver real-time data services (Mousa & Shiratuddin, 2015)
to a variety of data consumers, such as applications, pro-
cesses, and users as illustrated in Fig. 3. Unlike traditional
data integration patterns, data virtualization does not copy
data but instead creates a view of the integrated data, keep-
ing the source data in its original location (Satio et al., 2016),
resulting in reduced costs, minimized data replication, and
minimal data latency. It has the ability to replace traditional
data integration patterns by reducing the need for replicated
data marts and warehouses (Mousa et al., 2014), while also
being highly complementary to other data integration pat-
terns such as ETL and ESB. Data consumers query the virtual
data layer, which retrieves data from various sources, hiding



Data Virtualization Enabling Distributed Data Architectures: Data Fabric and Data Mesh 6

the location and implementation of the physical data, as well
as the complexity of accessing it (Bogdanov et al., 2020a).
The virtual data layer functions as a single data repository
and contains only the metadata of each data source, as well
as any global instructions such as data governance policies
and data security rules.

Figure. 3: Data virtualization integrates data from multiple
sources and delivers it to different data consumers (Akermi
et al., 2023)

In the following sections, we explore how data virtualiza-
tion complements ESB and ETL processes. Additionally, an
overview of data virtualization’s core capabilities and fea-
tures will be provided.

A. Data Virtualization Complements ETL and ESB pro-
cesses

In the context of data integration, the ETL process has
been widely adopted for moving data to other repositories,
such as data warehouses. However, ETL can present chal-
lenges when attempting to integrate data from cloud-based
sources (Miller, 2018). In order to overcome these chal-
lenges, data virtualization can be utilized as a complement to
ETL processes. By integrating a data virtualization layer, it
is possible to enable real-time data integration from multiple
sources, connect on-premise and cloud-based data sources
without the need to move all data to a single repository, unify
data across data warehouses and new on-premise or cloud-
based data stores, and access data faster than with traditional
ETL processes (Guo et al., 2015). Similarly, data virtualiza-
tion can also assist in the integration of disparate and com-
plex data sources into ESB systems (Miller, 2018).
As shown in Table 2, data integration patterns can be applied
to different use cases, and data virtualization may not always
be the best approach for a specific problem. Shraideh et al.
(Shraideh et al., 2019) developed a structured and system-
atic decision support system that considers 15 critical suc-
cess factors to determine whether ETL, data virtualization,
or a hybrid solution of both patterns is the most suitable data
integration approach.

B. Faster Data Access and Delivery

Traditional data integration patterns, such as ETL, involve
physically transferring data from multiple sources to mul-
tiple locations, such as data stores, databases, data ware-
houses, data lakes, data lakehouses, and cloud-based reposi-
tories. This manual process often results in multiple replica-

tions across the network, making the data architecture slower,
more complex, and more costly (Gottlieb et al., 2019).
By incorporating a layer of data virtualization, organizations
can achieve fast, efficient, and agile data integration solu-
tions (Van der Lans, 2014), helping them to become data-
driven. In the context of self-service business intelligence
(Lennerholt et al., 2018), this eliminates the need to phys-
ically move and aggregate data locally. Instead, business
users can connect multiple data sources to the data virtual-
ization layer through pre-built data connectors, also known
as adapters.
The data virtualization layer serves as a unified and rapidly
accessible source of data for business intelligence reporting
and analysis, addressing the high latency commonly associ-
ated with traditional data architectures. Moreover, the de-
velopment of data services is faster, as the unified data layer
eliminates the need for developers to connect to each indi-
vidual data source in different formats and repositories.

C. Self-Service Analytics

Self-service analytics empowers business users to indepen-
dently perform data analysis, freeing the data engineering
team to focus on other critical aspects of data architecture.
However, the realization of self-service analytics is often hin-
dered by several challenges including widespread distribu-
tion of data across databases, data warehouses, cloud, and
big data architectures, low data integrity resulting from a lack
of a single authoritative source, high latency in accessing the
data, and a lack of data lineage, which negatively impacts
data quality and raises concerns about its credibility.
Data virtualization can overcome these challenges and makes
self-service available to business users (Alagiannis et al.,
2012; Chatziantoniou & Kantere, 2021). By this, cost and
complexity are reduced, and replications are created only
when it is necessary.

D. Data Virtualization Core Capabilities

An effective data virtualization layer should have; at least;
the following core principles (Bogdanov et al., 2020c,
2020b):

• Pre-built connectors, which facilitate quick and efficient
connection, exploration, and extraction of data from a
variety of on-premise or cloud-based sources and data
types.

• Self-service data services that provide a user-friendly
interface, thereby hiding the underlying complexity
from data consumers. By decoupling data sources and
consumers, data services can be easily created with-
out the need for involvement from the data engineering
team.

• The establishment of a single logical data model, which
is maintained through the automatic processing of data
catalogs containing metadata, data classes, data clus-
ters, and more.

• A unified approach to data governance, which includes
a single entry point for data, metadata management, au-
dit logging, security, and monitoring, as well as integra-
tion with external data management tools.
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Table 2: Data integration use cases and different patterns
Use case Patterns

Data virtualization ETL ESB CDC DaaS SDI
Moving data between data repositories X X X X
Data unification X
Real-time reports and insights X X X X
Migrating data to the cloud X X X X
Self-service analytics X X
360 customer view X
Data warehouses and data marts X X
Logical data warehouses and virtual data marts X
Data warehouse offloading X X
Logical data lakes X
Application synchronization X X X X

• The creation of a unified data layer, which is the center-
piece of the virtual data layer and serves to harmonize,
transform, improve quality, and connect data across dif-
ferent data types.

• A universal mechanism for data publishing, which pro-
vides users with access to processed data through uni-
fied connected services.

• Agile and high-performance operations, achieved
through the application of real-time optimizations to
create a flexible workload (Earley, 2016; Gottlieb et al.,
2019).

E. Privacy and Data Protection

Data virtualization, by its nature, inherently promotes data
privacy. This is particularly relevant in the context of Gen-
eral Data Protection Regulation (GDPR), which requires data
protection to be implemented ”by design”. Data virtualiza-
tion allows organizations to fulfill this requirement by pro-
viding a flexible approach to data access and format.
Sources of data are not limited to predefined formats, nor
are they required to be accessed through a specific method.
Instead, data virtualization offers advanced data protection
mechanisms such as data anonymization, immutability of
data through refusal of signature, and end-to-end encryption
for transmitted transactions. These mechanisms ensure that
data remains secure and private, even as it is being accessed
and used (Bogdanov et al., 2020c).

F. Data Services

Data virtualization provides a layer of abstraction that en-
ables the creation of data services, simplifying the process of
accessing, transforming, and integrating data from multiple
sources.
Business-oriented services, such as querying all customers
across all repositories or obtaining revenue data from the past
five years, are common examples of the services offered by
the data virtualization layer. These services enable business
users to easily generate reports and insights without the need
for technical expertise or the intervention of a data engineer.
Operational-oriented services, such as updating a customer’s
address or email, are also available.
A data service consists of three components: an interface that
manages incoming parameters and outgoing results, a logic
component that handles data preparation specifications, and

a source abstraction that makes the service independent of
the underlying data source system. While the creation of
these services may seem deceptively straightforward, they
are responsible for much of the work involved in data prepa-
ration, including transformation, enrichment, joining, feder-
ation, synchronization, and historicization.
The complexity of the data services can vary, with some
requiring access to multiple systems, others requiring data
movement, and still others requiring the execution of ma-
chine learning algorithms. Despite this complexity, data vir-
tualization enables it to be hidden from the end user.
The performance of a data service is largely dependent on the
performance of the underlying systems, but it is also essential
that the data virtualization layer knows the most optimized
way to access these systems. This may involve sending re-
quests for sets of data or individual records, depending on
the nature of the request. The greatest performance challenge
arises when data services need to join data from multiple sys-
tems. To address this challenge, the data virtualization layer
minimizes the amount of data extraction and network move-
ment by pushing down queries to the connected data sources
as much as possible.
The data virtualization layer serves data services to con-
sumers as an integrated system, enabling the creation of a
360-degree customer view, for example, while hiding the
complexity of accessing data from disparate repositories.
The abstraction provided by the data virtualization layer is
achieved through the use of data services.

G. Virtual Tables

Data virtualization plays a crucial role in simplifying the de-
velopment of service logic. At its core, data virtualization is
comprised of virtual tables, which serve as a central compo-
nent in this process. Virtual tables serve as a blueprint for
transforming data sources into the desired format. They can
be used to outline the preparation process for data, which can
come from various other virtual tables. Additionally, virtual
tables can be accessed through a range of interfaces, includ-
ing REST, OData1, and JDBC services, among others (see
Fig. 4).
One of the key benefits of data virtualization is that it ab-
stracts the location and implementation details of the under-
lying data sources from virtual table developers. This re-
sults in a simplified development experience, as developers

1Open Data Protocol
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Figure. 4: Data virtualization and virtual tables (Akermi et
al., 2023)

can access a single logical database rather than multiple data
sources and services, and can interact with a single interface
instead of multiple technologies and interfaces.

H. Query Pushdown

The utilization of query pushdown as an optimization strat-
egy is a characteristic of data virtualization. This approach
aims to minimize network traffic and maximize the use of the
connected data sources by pushing down as much of the data
processing as feasible to the underlying data source systems,
such as databases, data lakes, or flat files. For instance, ex-
ecuting aggregations directly on a NoSQL database, which
is known for its scalability and optimized performance (Ala-
giannis et al., 2012), is more efficient than carrying out the
same operation on the data virtualization layer.
In the following section, we delve into the role of data virtu-
alization in enabling distributed data architectures. Specifi-
cally, we focus on two use cases: data fabric and data mesh.
Data virtualization provides a virtual layer for accessing data
from disparate sources, enabling real-time data access and
integration, as well as improved data governance, security,
and performance optimization. These capabilities make data
virtualization a critical component in the implementation of
a data fabric or a data mesh.

IV. Distributed Data Architecture Enabled by
Data Virtualization

Henderson et al. define Data architecture as follows ”iden-
tifying the data needs of the enterprise (regardless of struc-
ture), and designing and maintaining the master blueprints to
meet those needs. Using master blueprints to guide data inte-
gration, control data assets, and align data investments with
business strategy” (Henderson et al., 2017).
Data architecture, as a discipline, encompasses two key ar-
eas: data at rest and data in motion. The former pertains
to the organization and storage of data within information
systems, taking into account fundamental principles such as
data clustering and storage formats. The latter, also known as
data in transit, pertains to the patterns and principles govern-
ing the flow of data between systems. Both areas aim to en-
sure efficient and effective data management within an orga-

nization. The two main approaches to data architectures are
monolithic and distributed. In this section, we explore both
of these data architectures, their characteristics, and their use
cases.

A. Monolithic Data Architectures

A monolithic data architecture is a centralized approach to
data management in which all data is stored and managed
within a single, large system. Organizations with simple data
structures and low data volume often choose this architecture
because it offers a straightforward and easily manageable so-
lution.
In a monolithic data architecture, data is typically stored in
a single database management system (DBMS), a data ware-
house, a data lake, or a data lakehouse, and access to the data
is controlled through a centralized application layer. This
centralized control enables organizations to easily enforce
data governance and data security policies, and monitor data
quality.
One advantage of monolithic data architecture, such as data
warehouse, is that it provides a single source of truth for all
data in the organization. This helps to eliminate data silos
and duplicated data, and it ensures that all business users
have access to consistent, accurate data.
However, as the volume, velocity, and complexity of data
grow, the limitations of a monolithic data architecture grad-
ually emerge. For example, it can be difficult to scale the
architecture to meet increasing data needs, it can result in
slow performance and hinder data processing, and it can be
inflexible, as changes to the architecture require changes to
the entire system. Additionally, monolithic data architectures
can be challenging to integrate with newer technologies and
cloud-based systems, which can limit the organization to take
advantage of the latest trends in data management.
Despite these challenges, monolithic data architecture re-
mains a popular approach for organizations with small to
medium-sized data requirements, where the benefits of a cen-
tralized data architecture outweigh the limitations (Harding,
2022).

B. Distributed Data Architectures

Distributed data architecture is a modern approach to data
management that seeks to overcome limitations of mono-
lithic data architecture by distributing data across multiple
systems and data repositories. The aim of a distributed data
architecture is to provide a more flexible and scalable solu-
tion for organizations with complex data structures and large
data volumes. This architecture democratizes access to data
and enables business users to engage in self-service analyt-
ics. Recently, data fabric and data mesh have emerged as
new distributed data architectures. However, the role of data
virtualization in enabling both remains unclear.

1) Data Fabric

Data Fabric is a data architecture paradigm (Li et al., 2022)
and an emerging data management framework, or ”design”
(Gartner, n.d.), that enables the seamless access and shar-
ing of diverse data sources within an organization. It pro-
vides a flexible, scalable and efficient way of managing data
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across multiple platforms, systems, and devices (Kuftinova
et al., 2022b; Macı́as et al., 2023). Data Fabric is designed
to handle large-scale data environments and to support the
increasing demand for real-time access to data, regardless of
its location or format (Kuftinova et al., 2022a). The main
purpose of data fabric is to provide a single point of access
for data, making it easier for data analysts and data scientists
to access, share, and process data (Östberg et al., 2022). This
eliminates the need for manual data integration and helps to
improve data accuracy, consistency, and security.
The data fabric also enables organizations to leverage exist-
ing data sources and infrastructure, reducing the need for ad-
ditional investment in data management tools and systems.
Data Fabric is enabled by a combination of tools and tech-
nologies, including ETL processes, data warehouses, master
data management (MDM) systems, metadata management
systems, and data catalogs. Among these components, data
virtualization plays a key role in the data fabric ecosystem.
In conclusion, data fabric plays a crucial role in realizing a
distributed data architecture, offering organizations a com-
prehensive, flexible, and scalable approach to data manage-
ment. Its ability to provide real-time access to data from dis-
parate systems, without the need for relocating or duplicating
data to another repository, is enabled by data virtualization.
As a result, data fabric is an essential component for organi-
zations seeking to unlock the full value of their data assets
(Kuftinova et al., 2022b).

2) Data Mesh

Data mesh is a novel approach to data management that aims
to address the challenges posed by monolithic data architec-
tures. It is characterized by a decentralized and domain-
driven approach to data ownership and management (De-
hghani, 2019). Traditionally, data management was ap-
proached as a centralized function, where data was managed
by a central data team (Machado et al., 2022) and distributed
to business units as needed. This monolithic data architec-
ture often resulted in challenges such as slow data access,
difficulty in maintaining data quality, and a lack of data own-
ership among business units.
Data mesh, as defined by Dehghani, seeks to resolve these
challenges by distributing data ownership across different
data domains within an organization. Each data domain is
responsible for managing and packaging its specific data as
a product for distribution throughout the organization (De-
hghani, 2019). This approach enables business units to en-
gage in self-service analytics and makes data more accessible
and valuable to the entire organization (Dehghani, 2022).
However, a successful data mesh requires seamless inter-
operability between data domains, to prevent fragmenta-
tion, duplication, and inconsistencies. Interoperability can
be achieved through the use of a universal interoperability
layer, which provides data standards and governance proto-
cols (Dehghani, 2020).
In conclusion, data mesh offers a novel and decentralized ap-
proach to data management that can help organizations ad-
dress the challenges posed by traditional monolithic data ar-
chitectures. By distributing data ownership and enabling in-
teroperability, it can make data more accessible, valuable,
and actionable to the entire organization.

C. The Role of Data Virtualization in Distributed Data Ar-
chitectures

Data virtualization is a technology that enables real-time ac-
cess to data from disparate sources, without having to phys-
ically move the source data to a centralized repository. This
technology creates a virtual data layer that provides access
to data from multiple sources, and it is typically used in the
context of distributed data architectures such as data fabric
and data mesh (Biggenden, 2022).
In a data fabric, data virtualization plays a crucial role in fa-
cilitating access and sharing of disparate data sources. Data
virtualization enables data fabric by providing real-time ac-
cess to data across multiple systems, without having to first
move the source data to a new repository. This allows for a
seamless access to data, without the need for data consumers,
e.g. data analysts and business users, to know where the data
is stored. Data virtualization provides the necessary interop-
erability, governance, and security for data fabric.
In a data mesh architecture, data virtualization enables the
seamless interoperability of data domains, providing a uni-
versal interoperability layer that provides data standards and
governance protocols. Data virtualization provides a virtual
data-access layer between data sources and domain-specific
data consumers, and helps establish the foundation for data
mesh configurations. This technology enables data con-
sumers to gain access to only the data they need, when they
need it, reducing the need for data replication.
Data virtualization provides advanced performance opti-
mization and self-service search and discovery using data
catalogs, and these features are critical for distributed data
architectures like data fabric and data mesh. In summary,
data virtualization plays a crucial role in enabling distributed
data architectures, providing real-time access to data, reduc-
ing data replication, and improving data governance and se-
curity.

V. Conclusions and Future Work

Data virtualization has emerged as a decoupling technology
that offers a number of key features and capabilities that
address many of the challenges associated with traditional
data integration approaches. By providing a unified view of
data, regardless of its source or format, data virtualization
increases the efficiency of data operations, minimizes repli-
cations, reduces complexity and cost, and enables faster and
more flexible access to data.
One of the major benefits of data virtualization is its abil-
ity to enable real-time data delivery and self-service analyt-
ics, which empowers different users to access and manip-
ulate data without the intervention of the data engineering
team. This shifts the focus from data storage to data usage
and from moving data to connecting data. In this model, data
is not moved from the source system to the target system, but
rather the target system can request data on demand and use
the services offered by the source system to manipulate it.
Data virtualization is also playing a key role in enabling new,
distributed data architectures, such as data fabric and data
mesh. These architectures allow for the creation of a highly
flexible, scalable, and decentralized data infrastructure that
can accommodate the growing volume and variety of data
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that organizations must manage and analyze.
Data virtualization offering organizations a powerful and
flexible solution for effectively leveraging and unlocking the
value of their data. With its ability to support real-time data
delivery, self-service analytics, and distributed data architec-
tures, data virtualization is poised to play a critical role in
driving the next information revolution and facilitating the
creation of new and innovative data-driven solutions.
Future work in the area of data virtualization could include
the integration of active metadata, which involves the use
of dynamic metadata that automatically updates based on
changes in the underlying data sources.
The impact of data virtualization on data privacy and security
could also be studied in depth to further strengthen its role in
modern data management.
Future work could also include exploring the integration of
data virtualization with modern data stacks. Research in this
area would also help organizations to better understand the
evolving requirements of modern data management, and how
data virtualization can play a critical role in meeting these de-
mands, in order to stay ahead of the curve in a rapidly chang-
ing data landscape.
Finally, continued exploration of the use of data virtualiza-
tion in distributed data architectures, such as data fabric and
data mesh, could yield valuable insights into how these ap-
proaches can be used to support the efficient and effective
management and utilization of data at scale.
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