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Abstract: Due to the rapid growth of volume, velocity, and 

diversity of data termed as big data, the traditional data storage 

systems are inadequate nowadays. There are lots of advancement 

in the area of storage, processing, and analysis of data. The data 

are mostly stored in cloud environment and distributed 

computing frameworks are used to access those data.  The 

distributed data environment in the big data processing and 

cloud computing imposes many security and privacy challenges. 

Security measures applied to data storage, analytics and 

processing. Firewalls are not sufficient to identify content based 

at-tack. A more efficient algorithm, called as PRS is proposed in 

the paper, which uses pattern matching technology to identify the 

intrusion. The working of the algorithm is based on the input 

data evaluated by a centralized controller based on the previous 

attack history and attack feature data. The performance analysis 

of PRS algorithm is compared with the existing pattern matching 

algorithms such as KMP (Knuth-Morris-Pratt Algorithm) and 

BM (Boyer-Moore). The simulation result shows the proposed 

algorithm gives a better and quick attack pattern detection 

compared to the existing ones. After the PRS (Pattern 

Recognition for Security) algorithm has identified a matching 

pattern, the suspected pattern is fed into a deep hypersphere 

model, which produces a more accurate result for identifying 

attack patterns. 

 
Keywords: Big data, Security, Cloud computing, Patten 

Recognition, Deep learning, Classification.  

 

I. Introduction 

A massive amount of data is produced every second in today’s 

world, because of the advancement of technology. Of the huge 

amount of data produced, more than 60% of the same has been 

generated within last two years [1]. The term “Big Data” refers 

to the large volume of versatile heterogeneous information, 

along with its management and analysis. The traditional data 

processing technologies are inadequate to process Big Data 

due to it’s massive size and heterogeneity. Big Data is 

differentiated from traditional data by 3Vs – volume (the 

amount of data), velocity (the rate of data generation and 

transmission), and variety (the types of structured and 

unstructured data) [2]. It is also characterized by Variability 

and Veracity, thus known as 5Vs in Big Data [2]. Checking 

embedded virus patterns in big data is a time-consuming 

operation due to the 5Vs of large data. The situation is again 

worsen by cybercriminals by packing and encrypting the at-

tacking malware patterns into the  data stream to cloud,  

escalating the arms race once again. The embedded and 

encrypted patterns known as attack payloads forced the anti-

malware researches to develop more enhanced methods in 

order to discover malware patterns or behavior from this 

massive data. 

The primary goal of big data processing is to make accurate, 

strategic decisions by examining the ever-increasing amount 

of data available, which involves data acquisition, extraction, 

integration, review, interpretation, and decision-making [3]. 

Data acquisition is the first and most important phase in big 

data processing, and it necessitates good data collection, 

filtering, and metadata generation strategies. Data 

transformation, normalization, aggregation, and error 

handling are all part of the data extraction process. During the 

integration process, data standardization, dispute resolution, 

and other tasks are completed. Data interpretation is a 

component of data analysis, which necessitates extensive 

domain awareness as well as a variety of analysis techniques. 

The final and most critical phase in big data processing is 

decision making, and perfect decision making requires excel-

lent managerial skills. Because it impacts previously saved 

uninfected data, security is the primary concern. Affected data 

poses a risk in processing, storing, and making decisions 

based on it.  As a result, an effective strategy is required to 

avoid data that has been damaged or data that has attack 

patterns incorporated in it. 

 Security and privacy are two of the most significant issues 

in big data. The majority of computing resources are housed 
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in the cloud, and services are delivered via the Internet, posing 

challenges such as data protection and access control for 

sensitive data.  Information theft, DDoS attacks, ransomware, 

and other malicious actions area examples of big data attacks 

that can cause a system to crash [4]. When firms keep sensitive 

or secret information like credit card numbers or customer 

information, the implications of information theft can be 

significantly worse. Cybercriminals can tamper with data on 

endpoint devices and send the erroneous information to cloud 

storage. This highlights the importance of an intrusion 

detection system (IDS) in a cloud environment. The structure 

and format of the network data is different, hence gathering 

network data from many sources makes it challenging to 

analyse using traditional methods. An IDS should 

continuously tracks behavior in a system to decide whether or 

not they are part of an attack. 

There are various IDS that exists for network monitoring 

and detecting attacks such as network IDS, host IDS, 

signature-based IDS, anomaly-based IDS, etc. [5].  In network 

IDS data packets sent over the network were captured and 

analyzed by comparing them to existing attack patterns 

(signature) in the database. If the patterns differ from the 

normal, these IDS will be useless. In host IDS, detection 

modules are installed in host IDS which is used to analyze the 

log files to detect intrusion. The main drawback of host IDS is 

it consumes large amount of re-sources, which may lead to 

host’s performance; and attacks will not be detected until they 

have already reached the host. In anomalous IDS, intrusions 

are detected by monitoring the network for new attacks. The 

disadvantage of anomaly detection is that if traffic or activity 

deviates from the defined normal traffic pat-terns or activity, 

an alarm is issued. Signature IDS based on signatures which 

describe a collection of rules or signatures that are used to 

determine whether or not a given pattern is that of an intruder. 

However, in the era of the internet, mal-ware attacks can 

spread quickly before security experts can release the most up-

to-date signatures to block them. Another issue is that as 

cyber-attacks got more regular, signature databases grew in 

size, possibly slowing system performance. So it is not 

advisable to new attacks. Due to its capacity to prevent attacks 

by malicious network users, a pattern matching intrusion 

detection system (IDS) has become a hot research topics. 

The proposed paper evaluates various available IDS 

schemes Pattern matching is a technique for locating a pattern 

within a document. Brute force search algorithm, Rabin Karp 

algorithm, Knuth Morris Pratt (KMP) algorithm, Boyer 

Moore algorithm are some classic examples of pattern 

matching algorithms [6]. The biggest drawback of brute force 

strikes is that they take a long time to complete and it is only 

effective for a limited number of patterns. The Rabin Karp 

algorithm calculates the hash value for the pattern and the time 

complexity increases due to the spurious hit. In KMP 

algorithm when the alphabets get bigger, it doesn't work as 

well. As a result, more and more errors arise. The fundamental 

disadvantage of Boyer-Moore algorithms is the time and space 

required for pre-processing, which is dependent on the 

alphabet size and pattern size.  Thus, it is evident that the 

existing algorithms have a gap in terms of time and space 

requirement, as well as, accurate classification, for using it in 

IDS. In this work, this particular research gap is addressed and 

a new pattern matching algorithm is demonstrated to identify 

intrusion with more accuracy and less latency, which 

improves the detection phase and thus enhances data security 

in cloud environment to a greater extent.   

 In this work, the problem addressed is to create an effective 

IDS for cloud environment using pattern matching technique. 

The work proposes a pattern matching algorithm called 

Pattern Recognition for Security (PRS). The algorithm is 

based on two stages, first, in which a centralized controller 

analyzes attack history patterns for a matching pattern and 

second, in which attack function data from previous attacks 

are matched for detection of the same using deep learning 

techniques. The highlighted novelty of the method is that the 

proposed model attempts single pattern matching algorithm 

for faster pattern recognition. In the second stage, the matched 

pattern is classified into an attack or a non-attack pattern using 

deep learning methodologies, in which significant 

functionalities as mentioned below are being added for 

effectiveness of the detection system. The IDS gains added 

performance and accuracy from the ANN combined method. 

The significant contributions of the work described are three-

fold as mentioned. 

 

• The proposed methodology uses a deep hypersphere 

model which aids in the learning of the relative 

relevance of attack pattern recognition, thus allowing 

the right attack pattern to be identified. 

• A combination of “center” loss and “softmax” loss 

technique is used to enhance the discriminative power 

of the attack feature pattern for more accurate 

classification of the same. 

• It is established through experimental evaluations, that 

the proposed PRS algorithm can be used in real time 

applications as it has low latency and high recall, which 

confirms its effectiveness.  

 

The rest of this paper is organized as follows. The Section 

II briefs the related research reported in the relevant area.   The 

proposed design and PRS algorithm is described in Section III. 

Section IV presents the experimental setup and validation of 

results and a conclusion is given in Section V. 

II. Related Works 

Advances in data diversity have ushered in a revolution in the 

field of big data and cloud computing over the last decade. Big 

data protection is extremely important and has always 

attracted the attention of researchers all over the world. The 

author in paper [7] gives an elaborated study on security issues 

and challenges related to big data. Detailed comparisons and 

the shortcomings of traditional security domains and 

technologies are also presented. The authors provide a 

practical solution for different security infrastructure 

components based on access control and identity management. 

Scientific Data Infrastructure (SDI) and Scientific Data 

Lifecycle Management (SDLM) models are discussed in [8]. 

Using current technology and best practices, these models can 

be used to create an interoperable data or project-centric SDI. 

In [9] the authors discuss the firewalls and all types of 

intrusion detection systems that can be used in cloud 

environment. Paper [10] present a study of various cloud 
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storage systems for big data applications. A conceptual hybrid 

technique is proposed to improve the reliability and storage 

efficiency. In paper [11] the run time and size of network 

captured files were compared for brute-force, Rabin Karp, 

Boyer-Moore, and Knuth-Morris-Pratt. The string matching 

problems are analyzed in paper [12] and prove that the Rabin-

Karp algorithm is more efficient than other pattern matching 

algorithms. A new linear search algorithm is pro-posed in [13]. 

In this algorithm, matching is a two-step process that is used 

to avoid unnecessary backtracking. The useless shift of 

patterns during matching is avoided by using a prefix function. 

The output of the prefix function is fed to the matching 

function and the function returns the location of the pattern 

within the input string. A matching algorithm is proposed in 

[14] which performs the same from the last character of the 

string instead of the first character. The proposed algorithm 

called sublinear algorithm depends on two tables, namely, 

delta1 and delta 2.  Table delta1 contain an entry for each 

character in the alphabet. The rightmost possible reoccurrence 

of a terminal substring of a pattern is described in table delta2. 

A multiple pattern matching algorithm is used to locate all 

occurrences of a finite number of keywords in the paper [15]. 

A finite state pattern matching machine is created for all 

keywords. Using this machine the patterns are searched in the 

given text in a single pass. The authors in the paper [16] 

discuss the need for an IDS in a distributed environment and 

also propose a distributed IDS model for intrusion detection. 

The proposed model in [16] captures and analyzes large flow 

of data, generate a report based on knowledge and also 

provides an analysis of legitimate and non-legitimate users’ 

behaviour. A multi-threaded cloud IDS model is defined in 

paper [17], which is managed by a third party monitoring 

service for improved productivity and accountability for cloud 

users. 

A two stage intrusion detection method is proposed using a 

combined behaviour-based and knowledge-based approach in 

[18]. If the first method failed to detect the attack, the second 

method captures and analyzes the data by comparing it to 

database signatures. To detect intrusion, the authors use the 

system's usual actions as well as various attack signatures and 

they also claim that the false positive rate is reduced 

appreciably. A comprehensive approach to monitor security 

events from many heterogeneous sources is described in [19]. 

The method in [19] also evaluates the issues existing in 

heterogeneous intrusion detection architectures, and Security 

Information and Event Management (SIEM) systems. In paper 

[20], a hierarchical IDS for Power Systems was proposed, 

which combines misuse detection and irregular detection. 

They use data mining algorithms to create detection rules from 

historical data processing and mining. This proposed model 

reliably detects cyber-attacks with a low rate of false positives 

and negatives. In [21], the authors focused on two important 

features of distributed storage: the capacity of distributed 

storage and information security in cloud computing. They 

also introduced Brewer’s CAP Theorem and summarize 

current implementations of the popular NoSQL database. In 

[22], a real-time intrusion response systems to mitigate attacks 

that affect integrity, confidentiality, and availability in cloud 

computing platforms are analyzed. It also suggested self-

awareness, self-optimization, and self-healing autonomic 

intrusion response strategy. Non-relational data is normally 

stored in NoSQL databases, but NoSQL databases do not 

provide any support to enhance security. Due to the 

tremendous advancements in the size of big data, an auto tiring 

solutions are used, which also do not keep track of the storage 

location. It allows you to search through a continuous data 

stream for exact matches to previously saved data sequences. 

The method in [23] use a neural network with input and output 

layers, as well as variable connections between them, at its 

core. Each possible character or number in the data stream is 

represented by one neuron in the input layer, and each stored 

pattern is represented by one neuron in the output layer. The 

network's unique feature is that the delays between the input 

and output layers are tailored to match the temporal 

occurrence of an input character within a stored sequence. In 

paper [24] a thorough examination of deep learning models 

used in cyber security tasks, such as intrusion detection is 

carried out by authors. In the intrusion detection domain, 

restricted Boltzmann machines, autoencoders, and recurrent 

neural networks are particularly popular, according to the 

authors. They also point out that evaluating the performance 

of different models is challenging be-cause academics utilize 

different datasets and measures to evaluate models. On two 

intrusion datasets (NSL-KDD and UNSW-NB15) [25], 

compare the performance of four deep learning models such 

as multi-layer perceptron (MLP), restricted Boltzmann 

machine (RBM), Sparse autoencoder (SAE), and MLP with 

feature embeddings.  However, several prominent models, 

such as recurrent neural networks, are not included in their 

trials, and no evaluation of newer incursion datasets is done. 

The authors compare the performance based on accuracy, 

precision, and recall, and the study does not provide insight 

into the performance parameters such as latency, time, and 

memory requirement.  

The review of literature section brings out clearly the 

requirement for a safe, reliable, and intelligent method to store 

and retrieve data in a cloud environment. The following 

session describes the features of the proposed method. 

III. Proposed Methodology 

While reviewing the literature, it was observed that several 

methods were put forward for improving the efficiency and 

security of big data storage mechanism but, none of them were 

optimal, thus necessitating the need of further research and 

development. Traditional security strategies targeted to 

private computing infrastructures, such as firewalls and 

demilitarized zones (DMZs), are no longer successful as Big 

Data expands with the aid of public clouds. As a result, an 

efficient security mechanism that operates through a 

heterogeneous set of hardware, operating systems, and 

network domains is required. More security issues arise as a 

result of the diversity of data, vast networks, large 

infrastructure and high-speed inter-cloud communication. 

Data centres are the primary target area of attackers wherein 

SQL injection, scripting attacks etc., are the normal attacking 

methods. It is greatly appreciated that an effective IDS/IPS, as 

well as a firewall, be required to provide more protection to 

data in data centres. In this work, the attack patterns are 

identified in two stages. In the first stage, a fast pattern 

matching algorithm is used to detect a pattern. There are 
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various pattern matching techniques available in literature 

which uses different methods for pattern recognition. There 

are single as well as multiple pattern matching algorithms in 

the literature. Compared to single pattern matching algorithms, 

multiple pattern matching algorithms are more efficient in 

terms of pattern recognition, but it requires more memory 

space and time for prediction. Hence the proposed model 

attempts single pattern matching algorithm for faster pattern 

recognition. In the second stage, the matched pattern is 

classified into an attack or a non-attack pattern using deep 

learning methodologies. 

 
Figure 1. DeepPRS -Proposed Methodology 

 

Figure 1 shows the architecture of the proposed system. The 

main components of the architecture includes data capturing 

module, pattern matching phase, deep learning hypersphere 

modelling phase and the cloud controller. When a user 

uploads a file, the data capturing module collects it and 

analyses the source address, user id, and other information 

before passing it on to the pattern matching phase. The pattern 

matching phase the most important component named as the 

PRS algorithm. The proposed new algorithm, PRS, along with 

the support of historical data, performs the pattern matching 

process in very less time. To prevent needless comparisons, 

the PRS algorithm starts by comparing the first four characters 

of each pattern with the uploaded file. If any match occurs, the 

hash value of text up to the duration of patterns of the matched 

characters is computed. Then compare the hash values of all 

patterns to the string hash value in the uploaded file. Patterns 

are stored as distinct files. KMP and Boyer Moore algorithms 

are used for pattern matching. Once the patterns are matched, 

they are passed to the deep hypersphere modelling phase, 

wherein it is fed as input to the Convolutional Neural Network. 

The matched patterns are also logged in the historical data file 

for future prospective matching to be done. The Convolutional 

Neural Networks has two stages (i) training and (ii) recalling. 

The output from the convolutional neural network classifies 

the pattern into either of the two kinds (a) attack or (b) non-

attack. Depending upon the classified pattern, the cloud 

controller takes decisions regarding data storage to the cloud. 

A. PRS Algorithm 

The proposed two phase PRS algorithm is given in figure 2. 

Suppose T = {t1, t2, ....... tn} is the input string and P = {p1, 

p2, ....... pj}, is the pattern to be identified, subject to the 

conditions j ≤  n, n ≥  1. Here both T and P are set of 

characters from a finite set of alphabets. The first four 

alphabets of each pattern are extracted and compared to the 

contents of the uploaded document in the first stage. The hash 

value H(T)of the text content upto the length of the pattern is 

computed.  

If any match occurs, then, it reads characters from the 

substring to the length of the pattern. In the next step, it 

compares this value with the hash value of the patterns present 

in the cached historical data, H(P). If any similarity is found 

be-tween these patterns i.e., if H(T) is equal to H(P), a pattern 

matching is claimed and the algorithm proceeds to the next 

phase. The cached historical data is also updated with the 

occurrence count of the pattern, count_P. If the similarity is 

not detected, then the pattern is further matched with the 

logged historical data and compares H(T) with the hash value 

of the patterns present in the logged historical data, H(Q). 

After a match being detected, the attack logs is updated in 

historical data, and the occurrence count, count_Q is 

incremented. The count_Q is compared with 

Threshold_Count, and if it exceeds the same, the attack log is 

transferred to the cached historical data. If no matching hash 

values are detected, then the algorithm reports the same. In 

this scenario, the cloud controller has to make a decision of 

storing/not storing the data in the cloud, with the consideration 

of risk factors. 

 

Correctness of the Algorithm 

 

Let the pattern P with length ‘h’, be aligned with the text 

starting at position a_i of the String S. Assume that for a given 

i, the value of i is such that 0 ≤ i ≤ m, where m is the 

maximum length of the string S, then minimum number of 

comparisons required is  

a + h  ≤  m.              (1) 

Since m is the maximum length of the string and the start 

position of the pattern is a, then a pattern of length h can be 

done maximum up to the length m of the string S. i.e., the sum 

of the start position of the pattern in the string and length of 

the pattern should always be less than or equal to the 

maximum of string length. E.g. if the string length is 10, 

pattern length is 4, and the start position of the pattern in the 

string is 5, then comparisons possible are 5 + 4 = 9, which is 

legal. Next comparison is 6 + 4 = 10, which is also possible. 

But the next comparison is 7th position to next 4 positions, i.e., 

7 + 4 = 11, which is impossible since the maximum string 

length is 10. So by adjusting the ‘h’ value we can speed up the 

comparison procedure of the algorithm. Henceforth, it is 

substantiated that the algorithm performs the pattern matching 

within an optimal time period. 

 

Table 1. Proposed PRS Algorithm 
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Input: Array of input string T[1..n],historical data Q,  array of 
Patterns P[1..m], Threshold_count 

Output: Hashed value of matched pattern, H[S] and execution 

time 

1. Read pattern_files P1, P2,…,Pm and input string 

T[1…n] 

2. Compute hash value for each input pattern, H(P1), 

H(P2),… ,H(Pm) 

3. while  (i<m && j<n) do 

3.1 S  First four characters of pattern 

3.2 if S is equal to T[j]..T[j+8], then compute 
hash 

    value of matched text, H[S] 

4.    If H[T] is equal to H[P] 

4.1 Pass the matched pattern to Deep_Model 
4.2 Update cached historical data 

4.3 Increment count_P 

4.3 Break from the loop 

4.4 Set Flag 
5.   Else if H[T] is equal to H[Q] 

5.1 Pass the matched pattern to Deep_Model 

5.2 Update logged historical data 

5.3 Increment count_Q 
5.4 Set Flag 

5.5 If count_Q>Threshold_Count, then copy 

pattern Q to cache  

5.6 Break from the loop 
6.   Repeat steps 3 -6 for all patterns, P1, P2, …Pm 

7.  If (!Flag) 

7.1 No Matching Pattern Detected 

7.2Print msg 
    8. Stop 

 

B. Deep Hypersphere for Identifying Attack/Non-Attack 

Patterns 

In the first stage, the proposed model generates matching 

patterns.. The second stage identifies the attack patterns, and 

generates the appropriate intrusion response depending on the 

pattern type. The success of deep learning methodologies has 

motivated to bring in the same to identify the attack patterns. 

The general architecture of the Convolutional Neural 

Networks (CNN) is presented in Figure 2. 

 

 
Figure 2. General Architecture of Convolutional 

NeuralNetwork 

 

The network has an input layer, hidden layers, and an 

output layer. Every deep learning model has a training phase. 

In our proposed method, the training samples fed into the 

CNN are the attack definitions, stored in the logs. Attack 

definitions are stored in the form of a multidimensional feature 

model, thus accounting for the use of a deep learning model 

in the problem. The hidden layers in the network help in 

extracting the information from the attack definitions. The 

working of a CNN is briefed in this context from the 

perspective of the defined problem. A CNN generally consists 

of a convolution layer, ReLU layer, pooling layer, and a fully 

connected layer. The convolution layer houses many filters to 

perform the convolution operation by sliding through the 

extensive attack features to obtain the convolved feature 

matrix. The ReLU layer produces a rectified feature map of 

the attack definitions. Multiple convolutions and ReLU 

operations are needed for obtaining the feature map of the 

attack definitions with maximum information. A down 

sampling operation to reduce the dimension of the rectified 

feature map is done in the pooling layer with the aid of 

appropriate filtering techniques. The feature map is further 

flattened before being fed to the fully connected layer to get 

the output as either an attacking pattern or a non-attacking 

pattern. The cloud controller analyses the classified/labelled 

pattern and then takes the appropriate decision of transferring 

the data to the cloud, thus ensuring the security of the 

environment. 

 
Training Phase 

 
The training phase of the deep learning model is given in 

Figure 3. The attack patterns that had been encountered by the 

cloud environment are logged and saved as attack patterns. 

These attack patterns serve as the training samples in this 

phase. The training samples are fed into the CNN and undergo 

several convolutions, rectification, and max-pooling to obtain 

rectified feature vector, which is being fed into the fully 

connected layer. In the fully connected layer, the feature is 

propagated in the forward direction, the error in classification 

is back propagated and the weights are adjusted to minimize 

the loss.  

Pioneering work in deep learning methodologies uses 

“softmax” loss functions [26] for discriminating classes. It is 

seen that the features learned by softmax loss functions are not 

discriminative enough to ensure accurate classification in the 

aforementioned problem. Hence, in the proposed model, a 

combination of “center” loss and “softmax” loss is used to 

enhance the discriminative power of the attack feature pattern 

for more accurate classification. This innovative part of our 

work, is substantiated with necessary proof, towards the end 

of this section. Once the loss is minimized, the network is 

considered to be stable and can be utilized for real time attack 

detection in the next phase, viz., recall phase.  

 

 
Figure 3.Training Phase of Deep Learning Model 

 

Recall Phase 

 

In the recall phase, the matched pattern is fed into the deep 

hypersphere model for classification purpose. The recall phase 

of the deep hypersphere model is given in Figure 4. The 

matched pattern from the PRS algorithm is fed into the 

hypersphere model, which is trained using the attack 

definitions. The trained model is more accurate as we are 

using a combination of “softmax” and “center” loss functions 
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in the model. The matched pattern from the PRS algorithm is 

the input pattern in the recall phase. The trained hypersphere 

model produces labelled patterns, viz., attack or non-attack 

kind. 

 
Figure. 4. Recall Phase of Deep Learning Model 

 

Correctness of the deep hypersphere learning model 

 

Consider the problem space as hypersphere decision boundary 

where Euclidean distance between the unknown pattern and a 

fixed point c (i.e., centre of the hypersphere) is considered. 

The aim is to classify whether the input data contains any kind 

of attacking pattern or not. So the proposed problem can be 

designed into a binary classification that contains m number 

of attack patterns as input. 

Let fp be the feature set of attack pattern, say, i and the 

hypersphere circumscribing data points having a radius R, 

then the objective functions is to minimize the error in 

classification, so that the attack patterns can be easily 

identified. The objective function Z can be represented as, 

 

Minimize Z = R2 + 
1

𝑒𝑛
∑𝑠𝑖 where R⊆fp and R > 0.    (2) 

subject to:  

||ψk(xi) – ck||
2fp  ≤  R2  for all i = 1, . . . , n       (3)  

 

where function ψk is the mapping function of data to a higher 

dimensional feature space fp, such that a minimal volume 

hypersphere can be found. 

But, there will be possibility of error in the prediction, and 

therefore, the equation (3) can be modified as 

 

||ψk(xi) – ck||
2fp  ≤  R2 + si where si  ≥ 0, ∀i      (4)  

 

where si is the error correction factor for the hypersphere 

border line conditions and the e [0 - 1] is a control factor to 

regulate the error correction factor si and boundary of the 

sphere. Thus the data points that lie outside the hypersphere 

are outliers or non-attacking patterns. It is evident that the 

error correction factor controls the decision boundary of the 

hypersphere. 

Thus this neural network maps input data stream X ⊆ Rd to 

feature space F ⊆ Rp.  

Let W = {w1, . . . , wl} is weight of the layers in the network, 

where l = {1, 2, ......., L}. Then the objective function can be 

modified for the deep learning network as  

Minimize Z = R2 + 
1

𝑒𝑛
∑ max{0, ||ψ(𝑥𝑖;𝑊)– c||2 − 𝑅2}𝑛
𝑖=1 +


1

2
∑ ||𝑊𝑙||𝐹

2𝑙=𝐿
𝑙=1                  (5) 

 

As in the equation (2), the first term try to minimize R and the 

second term determines the boundary of the hypersphere. This 

error correction factor provides more accuracy for the 

classification. Finally, the last term is to control the weight W 

in the network layers. Thus by minimizing R in each layer the 

method tries to minimize the error in the classification of the 

input patterns into attacking or non-attacking kind. The 

experimental results presented in the next section will prove 

the efficiency of the proposed model. 

IV. Results and Discussions 

The proposed algorithm is implemented using Adobe 

Dreamweaver CS6 and Amazon database. The collected 

pattern is stored in MySQL database. The efficiency of the 

proposed PRS algorithm is compared against two well-known 

algorithms such as Boyer-Moore and KMP. PRS algorithm 

blocks the attack files to store in the database and the attack 

details are recorded for further analysis. The proposed pattern 

matching algorithm is evaluated using files containing 25000 

records. The attack patterns are forcefully injected with 

different lengths 2, 4, 6, 8, 10, 20, 40, 80, 100, 200, 400, and 

800 to generate test cases as shown in table 1. Later the attack 

patterns are randomly added to these record files and 

generated three more test cases, which are shown in the last 

three rows of Table 2. 

It is evident from the results that the PRS algorithm 

outperforms the KMP and BM in terms of its quick response 

time. Consider the attack pattern of 2 bytes, compared to KMP, 

PRS gives 0.22461ms reduction in the inspection time. When 

the attack pattern increases to 800 bytes the time reduction is 

0.43464ms. The performance analysis with randomly 

generated attack patterns in text files 1, 2, and 3 are 0.25355ms, 

0.34266ms, and 0.2421ms respectively. These results show 

that PRS produces huge performance improvement compared 

to the traditional KMP algorithms. 

While comparing with the BM, the performance 

improvement with 2 bytes, 800 bytes pattern attacks are 

0.0507ms and 0.0814ms respectively. Similarly, comparison 

with random pattern attacks are 0.0481ms, 0.0869ms and 

0.0518ms related to text files 1, 2 and 3. PRS algorithm thus 

proves its time efficiency to detect attack patterns compared 

to KMP and BM algorithms.  

For the evaluation of the efficiency of the PRS algorithm, 

the latency is inspected for different data sizes. Comparing the 

performance of PRS in terms of latency against the KMP and 

BM for 5000, 10000, 20000, and 25000 size data files, it is 

interesting to note that the inspection delay is less than 0.3, 0.6, 

0.9, and, 2.1 milliseconds respectively than KMP.  The PRS 

takes less than 0.60ms to inspect data than BM because the 

length of hash value as mentioned in the pro-posed design is a 

significant factor in reducing the inspection delay. The latency 

is noticeably low in the case of PRS as against the other two 

algorithms, thereby confirming the increased credence of the 

proposed PRS as given in Figure 5. 

 

A. Deep Hypersphere Model 

 

One of the hyperparameters used to control the model's 

performance is learning rate. It determines how quickly the 

network updates the information it has gathered. The 

outcomes of experimenting with various learning rate settings 

are summarized in Table 3. The learning rate of 0.001, which 

is also the default rate for the Adam optimizer employed by 

the model, yields the best results. Figure 6 shows the model's 

training and validation loss when the learning rate is set to 

0.001. 
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Table 2. Comparison of proposed algorithm PRS with KMP and BM algorithms in terms of execution time with varying file 

size which contains attack pattern. 

Pattern 

Size 

(Bytes) 

Average Pattern Inspection Time in milliseconds    

5000 10000 20000 25000 

KMP BM PRS KMP BM PRS KMP BM PRS KMP BM PRS 

2 0.22861 0.0547 0.004 0.61275 0.3848 0.008 0.92009 0.5635 0.0125 2.13249 1.2773 0.0279 

4 0.24477 0.064 0.0042 0.75125 0.4602 0.008 0.87875 0.5365 0.0122 2.16297 1.3151 0.0271 

6 0.24673 0.0621 0.004 0.63548 0.4165 0.007 0.81142 0.5854 0.0123 2.09309 1.3004 0.0319 

8 0.42209 0.0817 0.0057 0.72216 0.5144 0.0078 0.97336 0.5047 0.0122 2.19378 1.3338 0.0354 

10 0.41526 0.0842 0.007 0.62497 0.379 0.0082 0.98676 0.4976 0.0148 2.13336 1.261 0.0245 

20 0.26945 0.053 0.0039 0.63258 0.5357 0.0091 0.97001 0.5037 0.0138 2.17317 1.3159 0.0307 

40 0.3028 0.0637 0.0045 0.64584 0.452 0.0105 1.00227 0.6701 0.0125 2.15637 1.2498 0.032 

80 0.22507 0.0639 0.0039 0.65453 0.4848 0.0113 0.87653 0.5109 0.0122 1.98845 1.2708 0.0329 

100 0.38114 0.0862 0.0053 0.60076 0.4451 0.0065 0.85145 0.5016 0.0124 2.06707 1.2742 0.0319 

200 0.24565 0.0611 0.0071 0.56595 0.3723 0.0066 0.91966 0.4969 0.0122 2.04767 1.2687 0.0317 

400 0.24853 0.067 0.004 0.63258 0.5117 0.0083 0.9166 0.5349 0.0122 2.0807 1.2683 0.0311 

800 0.44094 0.0877 0.0063 0.60917 0.4945 0.0116 0.80299 0.5717 0.0124 2.10773 1.2345 0.0305 

Text file 1 0.26125 0.0558 0.0077 0.56275 0.3372 0.0059 0.92113 0.5519 0.0142 2.03222 1.3154 0.032 

Text file 2 0.34986 0.0941 0.0072 0.63136 0.4506 0.0079 0.92948 0.6157 0.0158 2.16953 1.193 0.0326 

Text file 3 0.2462 0.0559 0.0041 0.54309 0.3704 0.0063 0.97326 0.6305 0.0146 2.07895 1.2524 0.028 

 

 
Figure 5. Comparison of PRS algorithm with KMP and BM 

for proving latency time 

 

 

Table 3. Effect of learning rate in model accuracy 

Dropout Rate RMSE 

0.0000001 0.098543520 

0.00001 0.097820940 

0.0001 0.096456226 

0.001 0.094187275 

0.01 0.099730260 

0.1 0.123614386 

 

 
Figure 6. Training and validation loss with learning rate = 

0.001 

In order to counter over fitting and improve regularization 

error, dropout nodes are introduced. Dropout nodes are used 

to counteract over fitting and improve regularization error. 

This is an extra hyperparameter that specifies the chance of 

the layer's outputs being dropped out. Table 4 summarizes the 

model's impact for various values of this hyerparameter. It is 

noticed that a dropout rate of 0.1 results in higher 

performance. Figure 7 shows the training and validation losses 

for a model with a dropout rate of 0.1. 

Table 4. Effect of dropout rate in model accuracy 

Dropout Rate RMSE 

0.5 0.10334229 

0.3 0.09148774 

0.2 0.10313607 

0.1 0.08498888 

0.05 0.10534138 

0.01 0.09218325 
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Figure 7. Training and validation loss with dropout rate = 

0.001 

 

The output represented in Figure 8 clearly shows that the 

proposed deep hypersphere model outperforms the existing 

feed forward [27], Jordan's [28], Elman's [29], and fully 

connected [30] recurrent neural networks. The error rates for 

the training set for feed forward, Jordan's, Elman's, and fully 

connected networks are 0.85, 0.65, 0.625, and 0.575, 

respectively, whereas the suggested technique has just 

0.472.During the testing phase, the above approach had error 

rates of 3.7, 3.1, 2.9, and 2.7. However, the proposed model 

only reveals a 1.3% error rate. After tuning the 

hyperparameters the error rate convergence of the proposed 

deep hypersphere model is represented in Figure 9. The error 

rate is steadily falling, indicating that the network has 

converged and that the weights have been trained to their ideal 

value. As a result, the network's output bias is minimal.  

 

 
Figure 8. Comparison of proposed Hypersphere model with 

existing Neural Network models in respect of error rate 

during training and testing 

 

 
Figure 9. Error rate Convergence in proposed Deep 

Hypersphere Model 

V. Conclusions 

The paper proposed an algorithm PRS for improving the 

efficiency and security of data storage in the cloud 

environment. The PRS algorithm detects attacks by matching 

patterns, and if an attack is discovered, the suspected pattern 

is put into the newly built Deep hypersphere model, which 

confirms the attack. When an attack is detected, the model 

immediately ceases storing data in the cloud storage area, 

thereby reducing the risk. The performance of the PRS 

algorithm is evaluated in respect of execution time for attack 

pattern recognition. The results are compared against the 

existing Knuth-Morris-Pratt Algorithm (KMP) and Boyer-

Moore (BM) Algorithms. The experiment is carried out for 

varying file sizes and the average execution time is taken for 

comparison. The result shows the pronounced improvement in 

the performance parameter of the proposed algorithm PRS.  

The proposed deep hypersphere model recognizes attack 

patterns and generates the appropriate intrusion response 

based on the type of pattern. The new approach has precision 

values ranging from 96.21% to 99.98%. Similarly, recall 

ranges from 99.59% to 99.91% percent, and the approach 

achieved F1 score of 0.9974 during the test phase. The 

proposed model for security-based intelligent storage proved 

to be a successful way for quickly and efficiently identifying 

intrusions in the big data processing. 
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