
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988Volume 15 (2023) pp. 166-175

© MIR Labs,www.mirlabs.net/ijcisim/index.html

MIR Labs, USA

Received: 15 Dec.2022; Accepted: 19 April, 2023; Published: 9 June, 2023

An Intelligent Pattern Matching approach with Deep

Hypersphere Model for Secure Big Data Storage in

Cloud Environment

K R Remesh Babu1, Saritha S2, Preetha K G3, Sangeetha U4 and Sminu Izudheen5

1Government Engineering College, Idukki, Kerala, India,

remeshbabu@yahoo.com

2,3,5Rajagiri School of Engineering & Technology, Kochi, Kerala, India,

2saritha_s@rajagiritech.edu.in, 3preetha_kg@rajagiritech.edu.in, 5sminu_i@rajagiritech.edu.in

4Government Engineering College, Sreekrishnapuram, Palakkad,

Kerala, India
sangeethau2013@gmail.com

Abstract: Due to the rapid growth of volume, velocity, and

diversity of data termed as big data, the traditional data storage

systems are inadequate nowadays. There are lots of advancement

in the area of storage, processing, and analysis of data. The data

are mostly stored in cloud environment and distributed

computing frameworks are used to access those data. The

distributed data environment in the big data processing and

cloud computing imposes many security and privacy challenges.

Security measures applied to data storage, analytics and

processing. Firewalls are not sufficient to identify content based

at-tack. A more efficient algorithm, called as PRS is proposed in

the paper, which uses pattern matching technology to identify the

intrusion. The working of the algorithm is based on the input

data evaluated by a centralized controller based on the previous

attack history and attack feature data. The performance analysis

of PRS algorithm is compared with the existing pattern matching

algorithms such as KMP (Knuth-Morris-Pratt Algorithm) and

BM (Boyer-Moore). The simulation result shows the proposed

algorithm gives a better and quick attack pattern detection

compared to the existing ones. After the PRS (Pattern

Recognition for Security) algorithm has identified a matching

pattern, the suspected pattern is fed into a deep hypersphere

model, which produces a more accurate result for identifying

attack patterns.

Keywords: Big data, Security, Cloud computing, Patten

Recognition, Deep learning, Classification.

I. Introduction

A massive amount of data is produced every second in today’s

world, because of the advancement of technology. Of the huge

amount of data produced, more than 60% of the same has been

generated within last two years [1]. The term “Big Data” refers

to the large volume of versatile heterogeneous information,

along with its management and analysis. The traditional data

processing technologies are inadequate to process Big Data

due to it’s massive size and heterogeneity. Big Data is

differentiated from traditional data by 3Vs – volume (the

amount of data), velocity (the rate of data generation and

transmission), and variety (the types of structured and

unstructured data) [2]. It is also characterized by Variability

and Veracity, thus known as 5Vs in Big Data [2]. Checking

embedded virus patterns in big data is a time-consuming

operation due to the 5Vs of large data. The situation is again

worsen by cybercriminals by packing and encrypting the at-

tacking malware patterns into the data stream to cloud,

escalating the arms race once again. The embedded and

encrypted patterns known as attack payloads forced the anti-

malware researches to develop more enhanced methods in

order to discover malware patterns or behavior from this

massive data.

The primary goal of big data processing is to make accurate,

strategic decisions by examining the ever-increasing amount

of data available, which involves data acquisition, extraction,

integration, review, interpretation, and decision-making [3].

Data acquisition is the first and most important phase in big

data processing, and it necessitates good data collection,

filtering, and metadata generation strategies. Data

transformation, normalization, aggregation, and error

handling are all part of the data extraction process. During the

integration process, data standardization, dispute resolution,

and other tasks are completed. Data interpretation is a

component of data analysis, which necessitates extensive

domain awareness as well as a variety of analysis techniques.

The final and most critical phase in big data processing is

decision making, and perfect decision making requires excel-

lent managerial skills. Because it impacts previously saved

uninfected data, security is the primary concern. Affected data

poses a risk in processing, storing, and making decisions

based on it. As a result, an effective strategy is required to

avoid data that has been damaged or data that has attack

patterns incorporated in it.

 Security and privacy are two of the most significant issues

in big data. The majority of computing resources are housed

An Intelligent Pattern Matching approach with Deep Hypersphere Model for Secure Big Data Storage… 167

in the cloud, and services are delivered via the Internet, posing

challenges such as data protection and access control for

sensitive data. Information theft, DDoS attacks, ransomware,

and other malicious actions area examples of big data attacks

that can cause a system to crash [4]. When firms keep sensitive

or secret information like credit card numbers or customer

information, the implications of information theft can be

significantly worse. Cybercriminals can tamper with data on

endpoint devices and send the erroneous information to cloud

storage. This highlights the importance of an intrusion

detection system (IDS) in a cloud environment. The structure

and format of the network data is different, hence gathering

network data from many sources makes it challenging to

analyse using traditional methods. An IDS should

continuously tracks behavior in a system to decide whether or

not they are part of an attack.

There are various IDS that exists for network monitoring

and detecting attacks such as network IDS, host IDS,

signature-based IDS, anomaly-based IDS, etc. [5]. In network

IDS data packets sent over the network were captured and

analyzed by comparing them to existing attack patterns

(signature) in the database. If the patterns differ from the

normal, these IDS will be useless. In host IDS, detection

modules are installed in host IDS which is used to analyze the

log files to detect intrusion. The main drawback of host IDS is

it consumes large amount of re-sources, which may lead to

host’s performance; and attacks will not be detected until they

have already reached the host. In anomalous IDS, intrusions

are detected by monitoring the network for new attacks. The

disadvantage of anomaly detection is that if traffic or activity

deviates from the defined normal traffic pat-terns or activity,

an alarm is issued. Signature IDS based on signatures which

describe a collection of rules or signatures that are used to

determine whether or not a given pattern is that of an intruder.

However, in the era of the internet, mal-ware attacks can

spread quickly before security experts can release the most up-

to-date signatures to block them. Another issue is that as

cyber-attacks got more regular, signature databases grew in

size, possibly slowing system performance. So it is not

advisable to new attacks. Due to its capacity to prevent attacks

by malicious network users, a pattern matching intrusion

detection system (IDS) has become a hot research topics.

The proposed paper evaluates various available IDS

schemes Pattern matching is a technique for locating a pattern

within a document. Brute force search algorithm, Rabin Karp

algorithm, Knuth Morris Pratt (KMP) algorithm, Boyer

Moore algorithm are some classic examples of pattern

matching algorithms [6]. The biggest drawback of brute force

strikes is that they take a long time to complete and it is only

effective for a limited number of patterns. The Rabin Karp

algorithm calculates the hash value for the pattern and the time

complexity increases due to the spurious hit. In KMP

algorithm when the alphabets get bigger, it doesn't work as

well. As a result, more and more errors arise. The fundamental

disadvantage of Boyer-Moore algorithms is the time and space

required for pre-processing, which is dependent on the

alphabet size and pattern size. Thus, it is evident that the

existing algorithms have a gap in terms of time and space

requirement, as well as, accurate classification, for using it in

IDS. In this work, this particular research gap is addressed and

a new pattern matching algorithm is demonstrated to identify

intrusion with more accuracy and less latency, which

improves the detection phase and thus enhances data security

in cloud environment to a greater extent.

 In this work, the problem addressed is to create an effective

IDS for cloud environment using pattern matching technique.

The work proposes a pattern matching algorithm called

Pattern Recognition for Security (PRS). The algorithm is

based on two stages, first, in which a centralized controller

analyzes attack history patterns for a matching pattern and

second, in which attack function data from previous attacks

are matched for detection of the same using deep learning

techniques. The highlighted novelty of the method is that the

proposed model attempts single pattern matching algorithm

for faster pattern recognition. In the second stage, the matched

pattern is classified into an attack or a non-attack pattern using

deep learning methodologies, in which significant

functionalities as mentioned below are being added for

effectiveness of the detection system. The IDS gains added

performance and accuracy from the ANN combined method.

The significant contributions of the work described are three-

fold as mentioned.

• The proposed methodology uses a deep hypersphere

model which aids in the learning of the relative

relevance of attack pattern recognition, thus allowing

the right attack pattern to be identified.

• A combination of “center” loss and “softmax” loss

technique is used to enhance the discriminative power

of the attack feature pattern for more accurate

classification of the same.

• It is established through experimental evaluations, that

the proposed PRS algorithm can be used in real time

applications as it has low latency and high recall, which

confirms its effectiveness.

The rest of this paper is organized as follows. The Section

II briefs the related research reported in the relevant area. The

proposed design and PRS algorithm is described in Section III.

Section IV presents the experimental setup and validation of

results and a conclusion is given in Section V.

II. Related Works

Advances in data diversity have ushered in a revolution in the

field of big data and cloud computing over the last decade. Big

data protection is extremely important and has always

attracted the attention of researchers all over the world. The

author in paper [7] gives an elaborated study on security issues

and challenges related to big data. Detailed comparisons and

the shortcomings of traditional security domains and

technologies are also presented. The authors provide a

practical solution for different security infrastructure

components based on access control and identity management.

Scientific Data Infrastructure (SDI) and Scientific Data

Lifecycle Management (SDLM) models are discussed in [8].

Using current technology and best practices, these models can

be used to create an interoperable data or project-centric SDI.

In [9] the authors discuss the firewalls and all types of

intrusion detection systems that can be used in cloud

environment. Paper [10] present a study of various cloud

Babu et al. 168

storage systems for big data applications. A conceptual hybrid

technique is proposed to improve the reliability and storage

efficiency. In paper [11] the run time and size of network

captured files were compared for brute-force, Rabin Karp,

Boyer-Moore, and Knuth-Morris-Pratt. The string matching

problems are analyzed in paper [12] and prove that the Rabin-

Karp algorithm is more efficient than other pattern matching

algorithms. A new linear search algorithm is pro-posed in [13].

In this algorithm, matching is a two-step process that is used

to avoid unnecessary backtracking. The useless shift of

patterns during matching is avoided by using a prefix function.

The output of the prefix function is fed to the matching

function and the function returns the location of the pattern

within the input string. A matching algorithm is proposed in

[14] which performs the same from the last character of the

string instead of the first character. The proposed algorithm

called sublinear algorithm depends on two tables, namely,

delta1 and delta 2. Table delta1 contain an entry for each

character in the alphabet. The rightmost possible reoccurrence

of a terminal substring of a pattern is described in table delta2.

A multiple pattern matching algorithm is used to locate all

occurrences of a finite number of keywords in the paper [15].

A finite state pattern matching machine is created for all

keywords. Using this machine the patterns are searched in the

given text in a single pass. The authors in the paper [16]

discuss the need for an IDS in a distributed environment and

also propose a distributed IDS model for intrusion detection.

The proposed model in [16] captures and analyzes large flow

of data, generate a report based on knowledge and also

provides an analysis of legitimate and non-legitimate users’

behaviour. A multi-threaded cloud IDS model is defined in

paper [17], which is managed by a third party monitoring

service for improved productivity and accountability for cloud

users.

A two stage intrusion detection method is proposed using a

combined behaviour-based and knowledge-based approach in

[18]. If the first method failed to detect the attack, the second

method captures and analyzes the data by comparing it to

database signatures. To detect intrusion, the authors use the

system's usual actions as well as various attack signatures and

they also claim that the false positive rate is reduced

appreciably. A comprehensive approach to monitor security

events from many heterogeneous sources is described in [19].

The method in [19] also evaluates the issues existing in

heterogeneous intrusion detection architectures, and Security

Information and Event Management (SIEM) systems. In paper

[20], a hierarchical IDS for Power Systems was proposed,

which combines misuse detection and irregular detection.

They use data mining algorithms to create detection rules from

historical data processing and mining. This proposed model

reliably detects cyber-attacks with a low rate of false positives

and negatives. In [21], the authors focused on two important

features of distributed storage: the capacity of distributed

storage and information security in cloud computing. They

also introduced Brewer’s CAP Theorem and summarize

current implementations of the popular NoSQL database. In

[22], a real-time intrusion response systems to mitigate attacks

that affect integrity, confidentiality, and availability in cloud

computing platforms are analyzed. It also suggested self-

awareness, self-optimization, and self-healing autonomic

intrusion response strategy. Non-relational data is normally

stored in NoSQL databases, but NoSQL databases do not

provide any support to enhance security. Due to the

tremendous advancements in the size of big data, an auto tiring

solutions are used, which also do not keep track of the storage

location. It allows you to search through a continuous data

stream for exact matches to previously saved data sequences.

The method in [23] use a neural network with input and output

layers, as well as variable connections between them, at its

core. Each possible character or number in the data stream is

represented by one neuron in the input layer, and each stored

pattern is represented by one neuron in the output layer. The

network's unique feature is that the delays between the input

and output layers are tailored to match the temporal

occurrence of an input character within a stored sequence. In

paper [24] a thorough examination of deep learning models

used in cyber security tasks, such as intrusion detection is

carried out by authors. In the intrusion detection domain,

restricted Boltzmann machines, autoencoders, and recurrent

neural networks are particularly popular, according to the

authors. They also point out that evaluating the performance

of different models is challenging be-cause academics utilize

different datasets and measures to evaluate models. On two

intrusion datasets (NSL-KDD and UNSW-NB15) [25],

compare the performance of four deep learning models such

as multi-layer perceptron (MLP), restricted Boltzmann

machine (RBM), Sparse autoencoder (SAE), and MLP with

feature embeddings. However, several prominent models,

such as recurrent neural networks, are not included in their

trials, and no evaluation of newer incursion datasets is done.

The authors compare the performance based on accuracy,

precision, and recall, and the study does not provide insight

into the performance parameters such as latency, time, and

memory requirement.

The review of literature section brings out clearly the

requirement for a safe, reliable, and intelligent method to store

and retrieve data in a cloud environment. The following

session describes the features of the proposed method.

III. Proposed Methodology

While reviewing the literature, it was observed that several

methods were put forward for improving the efficiency and

security of big data storage mechanism but, none of them were

optimal, thus necessitating the need of further research and

development. Traditional security strategies targeted to

private computing infrastructures, such as firewalls and

demilitarized zones (DMZs), are no longer successful as Big

Data expands with the aid of public clouds. As a result, an

efficient security mechanism that operates through a

heterogeneous set of hardware, operating systems, and

network domains is required. More security issues arise as a

result of the diversity of data, vast networks, large

infrastructure and high-speed inter-cloud communication.

Data centres are the primary target area of attackers wherein

SQL injection, scripting attacks etc., are the normal attacking

methods. It is greatly appreciated that an effective IDS/IPS, as

well as a firewall, be required to provide more protection to

data in data centres. In this work, the attack patterns are

identified in two stages. In the first stage, a fast pattern

matching algorithm is used to detect a pattern. There are

An Intelligent Pattern Matching approach with Deep Hypersphere Model for Secure Big Data Storage… 169

various pattern matching techniques available in literature

which uses different methods for pattern recognition. There

are single as well as multiple pattern matching algorithms in

the literature. Compared to single pattern matching algorithms,

multiple pattern matching algorithms are more efficient in

terms of pattern recognition, but it requires more memory

space and time for prediction. Hence the proposed model

attempts single pattern matching algorithm for faster pattern

recognition. In the second stage, the matched pattern is

classified into an attack or a non-attack pattern using deep

learning methodologies.

Figure 1. DeepPRS -Proposed Methodology

Figure 1 shows the architecture of the proposed system. The

main components of the architecture includes data capturing

module, pattern matching phase, deep learning hypersphere

modelling phase and the cloud controller. When a user

uploads a file, the data capturing module collects it and

analyses the source address, user id, and other information

before passing it on to the pattern matching phase. The pattern

matching phase the most important component named as the

PRS algorithm. The proposed new algorithm, PRS, along with

the support of historical data, performs the pattern matching

process in very less time. To prevent needless comparisons,

the PRS algorithm starts by comparing the first four characters

of each pattern with the uploaded file. If any match occurs, the

hash value of text up to the duration of patterns of the matched

characters is computed. Then compare the hash values of all

patterns to the string hash value in the uploaded file. Patterns

are stored as distinct files. KMP and Boyer Moore algorithms

are used for pattern matching. Once the patterns are matched,

they are passed to the deep hypersphere modelling phase,

wherein it is fed as input to the Convolutional Neural Network.

The matched patterns are also logged in the historical data file

for future prospective matching to be done. The Convolutional

Neural Networks has two stages (i) training and (ii) recalling.

The output from the convolutional neural network classifies

the pattern into either of the two kinds (a) attack or (b) non-

attack. Depending upon the classified pattern, the cloud

controller takes decisions regarding data storage to the cloud.

A. PRS Algorithm

The proposed two phase PRS algorithm is given in figure 2.

Suppose T = {t1, t2, tn} is the input string and P = {p1,

p2, pj}, is the pattern to be identified, subject to the

conditions j ≤ n, n ≥ 1. Here both T and P are set of

characters from a finite set of alphabets. The first four

alphabets of each pattern are extracted and compared to the

contents of the uploaded document in the first stage. The hash

value H(T)of the text content upto the length of the pattern is

computed.

If any match occurs, then, it reads characters from the

substring to the length of the pattern. In the next step, it

compares this value with the hash value of the patterns present

in the cached historical data, H(P). If any similarity is found

be-tween these patterns i.e., if H(T) is equal to H(P), a pattern

matching is claimed and the algorithm proceeds to the next

phase. The cached historical data is also updated with the

occurrence count of the pattern, count_P. If the similarity is

not detected, then the pattern is further matched with the

logged historical data and compares H(T) with the hash value

of the patterns present in the logged historical data, H(Q).

After a match being detected, the attack logs is updated in

historical data, and the occurrence count, count_Q is

incremented. The count_Q is compared with

Threshold_Count, and if it exceeds the same, the attack log is

transferred to the cached historical data. If no matching hash

values are detected, then the algorithm reports the same. In

this scenario, the cloud controller has to make a decision of

storing/not storing the data in the cloud, with the consideration

of risk factors.

Correctness of the Algorithm

Let the pattern P with length ‘h’, be aligned with the text

starting at position a_i of the String S. Assume that for a given

i, the value of i is such that 0 ≤ i ≤ m, where m is the

maximum length of the string S, then minimum number of

comparisons required is

a + h ≤ m. (1)

Since m is the maximum length of the string and the start

position of the pattern is a, then a pattern of length h can be

done maximum up to the length m of the string S. i.e., the sum

of the start position of the pattern in the string and length of

the pattern should always be less than or equal to the

maximum of string length. E.g. if the string length is 10,

pattern length is 4, and the start position of the pattern in the

string is 5, then comparisons possible are 5 + 4 = 9, which is

legal. Next comparison is 6 + 4 = 10, which is also possible.

But the next comparison is 7th position to next 4 positions, i.e.,

7 + 4 = 11, which is impossible since the maximum string

length is 10. So by adjusting the ‘h’ value we can speed up the

comparison procedure of the algorithm. Henceforth, it is

substantiated that the algorithm performs the pattern matching

within an optimal time period.

Table 1. Proposed PRS Algorithm

Babu et al. 170

Input: Array of input string T[1..n],historical data Q, array of
Patterns P[1..m], Threshold_count

Output: Hashed value of matched pattern, H[S] and execution

time

1. Read pattern_files P1, P2,…,Pm and input string

T[1…n]

2. Compute hash value for each input pattern, H(P1),

H(P2),… ,H(Pm)

3. while (i<m && j<n) do

3.1 S First four characters of pattern

3.2 if S is equal to T[j]..T[j+8], then compute
hash

 value of matched text, H[S]

4. If H[T] is equal to H[P]

4.1 Pass the matched pattern to Deep_Model
4.2 Update cached historical data

4.3 Increment count_P

4.3 Break from the loop

4.4 Set Flag
5. Else if H[T] is equal to H[Q]

5.1 Pass the matched pattern to Deep_Model

5.2 Update logged historical data

5.3 Increment count_Q
5.4 Set Flag

5.5 If count_Q>Threshold_Count, then copy

pattern Q to cache

5.6 Break from the loop
6. Repeat steps 3 -6 for all patterns, P1, P2, …Pm

7. If (!Flag)

7.1 No Matching Pattern Detected

7.2Print msg
 8. Stop

B. Deep Hypersphere for Identifying Attack/Non-Attack

Patterns

In the first stage, the proposed model generates matching

patterns.. The second stage identifies the attack patterns, and

generates the appropriate intrusion response depending on the

pattern type. The success of deep learning methodologies has

motivated to bring in the same to identify the attack patterns.

The general architecture of the Convolutional Neural

Networks (CNN) is presented in Figure 2.

Figure 2. General Architecture of Convolutional

NeuralNetwork

The network has an input layer, hidden layers, and an

output layer. Every deep learning model has a training phase.

In our proposed method, the training samples fed into the

CNN are the attack definitions, stored in the logs. Attack

definitions are stored in the form of a multidimensional feature

model, thus accounting for the use of a deep learning model

in the problem. The hidden layers in the network help in

extracting the information from the attack definitions. The

working of a CNN is briefed in this context from the

perspective of the defined problem. A CNN generally consists

of a convolution layer, ReLU layer, pooling layer, and a fully

connected layer. The convolution layer houses many filters to

perform the convolution operation by sliding through the

extensive attack features to obtain the convolved feature

matrix. The ReLU layer produces a rectified feature map of

the attack definitions. Multiple convolutions and ReLU

operations are needed for obtaining the feature map of the

attack definitions with maximum information. A down

sampling operation to reduce the dimension of the rectified

feature map is done in the pooling layer with the aid of

appropriate filtering techniques. The feature map is further

flattened before being fed to the fully connected layer to get

the output as either an attacking pattern or a non-attacking

pattern. The cloud controller analyses the classified/labelled

pattern and then takes the appropriate decision of transferring

the data to the cloud, thus ensuring the security of the

environment.

Training Phase

The training phase of the deep learning model is given in

Figure 3. The attack patterns that had been encountered by the

cloud environment are logged and saved as attack patterns.

These attack patterns serve as the training samples in this

phase. The training samples are fed into the CNN and undergo

several convolutions, rectification, and max-pooling to obtain

rectified feature vector, which is being fed into the fully

connected layer. In the fully connected layer, the feature is

propagated in the forward direction, the error in classification

is back propagated and the weights are adjusted to minimize

the loss.

Pioneering work in deep learning methodologies uses

“softmax” loss functions [26] for discriminating classes. It is

seen that the features learned by softmax loss functions are not

discriminative enough to ensure accurate classification in the

aforementioned problem. Hence, in the proposed model, a

combination of “center” loss and “softmax” loss is used to

enhance the discriminative power of the attack feature pattern

for more accurate classification. This innovative part of our

work, is substantiated with necessary proof, towards the end

of this section. Once the loss is minimized, the network is

considered to be stable and can be utilized for real time attack

detection in the next phase, viz., recall phase.

Figure 3.Training Phase of Deep Learning Model

Recall Phase

In the recall phase, the matched pattern is fed into the deep

hypersphere model for classification purpose. The recall phase

of the deep hypersphere model is given in Figure 4. The

matched pattern from the PRS algorithm is fed into the

hypersphere model, which is trained using the attack

definitions. The trained model is more accurate as we are

using a combination of “softmax” and “center” loss functions

An Intelligent Pattern Matching approach with Deep Hypersphere Model for Secure Big Data Storage… 171

in the model. The matched pattern from the PRS algorithm is

the input pattern in the recall phase. The trained hypersphere

model produces labelled patterns, viz., attack or non-attack

kind.

Figure. 4. Recall Phase of Deep Learning Model

Correctness of the deep hypersphere learning model

Consider the problem space as hypersphere decision boundary

where Euclidean distance between the unknown pattern and a

fixed point c (i.e., centre of the hypersphere) is considered.

The aim is to classify whether the input data contains any kind

of attacking pattern or not. So the proposed problem can be

designed into a binary classification that contains m number

of attack patterns as input.

Let fp be the feature set of attack pattern, say, i and the

hypersphere circumscribing data points having a radius R,

then the objective functions is to minimize the error in

classification, so that the attack patterns can be easily

identified. The objective function Z can be represented as,

Minimize Z = R2 +
1

𝑒𝑛
∑𝑠𝑖 where R⊆fp and R > 0. (2)

subject to:

||ψk(xi) – ck||
2fp ≤ R2 for all i = 1, . . . , n (3)

where function ψk is the mapping function of data to a higher

dimensional feature space fp, such that a minimal volume

hypersphere can be found.

But, there will be possibility of error in the prediction, and

therefore, the equation (3) can be modified as

||ψk(xi) – ck||
2fp ≤ R2 + si where si ≥ 0, ∀i (4)

where si is the error correction factor for the hypersphere

border line conditions and the e [0 - 1] is a control factor to

regulate the error correction factor si and boundary of the

sphere. Thus the data points that lie outside the hypersphere

are outliers or non-attacking patterns. It is evident that the

error correction factor controls the decision boundary of the

hypersphere.

Thus this neural network maps input data stream X ⊆ Rd to

feature space F ⊆ Rp.

Let W = {w1, . . . , wl} is weight of the layers in the network,

where l = {1, 2,, L}. Then the objective function can be

modified for the deep learning network as

Minimize Z = R2 +
1

𝑒𝑛
∑ max{0, ||ψ(𝑥𝑖;𝑊)– c||2 − 𝑅2}𝑛
𝑖=1 +

1

2
∑ ||𝑊𝑙||𝐹

2𝑙=𝐿
𝑙=1 (5)

As in the equation (2), the first term try to minimize R and the

second term determines the boundary of the hypersphere. This

error correction factor provides more accuracy for the

classification. Finally, the last term is to control the weight W

in the network layers. Thus by minimizing R in each layer the

method tries to minimize the error in the classification of the

input patterns into attacking or non-attacking kind. The

experimental results presented in the next section will prove

the efficiency of the proposed model.

IV. Results and Discussions

The proposed algorithm is implemented using Adobe

Dreamweaver CS6 and Amazon database. The collected

pattern is stored in MySQL database. The efficiency of the

proposed PRS algorithm is compared against two well-known

algorithms such as Boyer-Moore and KMP. PRS algorithm

blocks the attack files to store in the database and the attack

details are recorded for further analysis. The proposed pattern

matching algorithm is evaluated using files containing 25000

records. The attack patterns are forcefully injected with

different lengths 2, 4, 6, 8, 10, 20, 40, 80, 100, 200, 400, and

800 to generate test cases as shown in table 1. Later the attack

patterns are randomly added to these record files and

generated three more test cases, which are shown in the last

three rows of Table 2.

It is evident from the results that the PRS algorithm

outperforms the KMP and BM in terms of its quick response

time. Consider the attack pattern of 2 bytes, compared to KMP,

PRS gives 0.22461ms reduction in the inspection time. When

the attack pattern increases to 800 bytes the time reduction is

0.43464ms. The performance analysis with randomly

generated attack patterns in text files 1, 2, and 3 are 0.25355ms,

0.34266ms, and 0.2421ms respectively. These results show

that PRS produces huge performance improvement compared

to the traditional KMP algorithms.

While comparing with the BM, the performance

improvement with 2 bytes, 800 bytes pattern attacks are

0.0507ms and 0.0814ms respectively. Similarly, comparison

with random pattern attacks are 0.0481ms, 0.0869ms and

0.0518ms related to text files 1, 2 and 3. PRS algorithm thus

proves its time efficiency to detect attack patterns compared

to KMP and BM algorithms.

For the evaluation of the efficiency of the PRS algorithm,

the latency is inspected for different data sizes. Comparing the

performance of PRS in terms of latency against the KMP and

BM for 5000, 10000, 20000, and 25000 size data files, it is

interesting to note that the inspection delay is less than 0.3, 0.6,

0.9, and, 2.1 milliseconds respectively than KMP. The PRS

takes less than 0.60ms to inspect data than BM because the

length of hash value as mentioned in the pro-posed design is a

significant factor in reducing the inspection delay. The latency

is noticeably low in the case of PRS as against the other two

algorithms, thereby confirming the increased credence of the

proposed PRS as given in Figure 5.

A. Deep Hypersphere Model

One of the hyperparameters used to control the model's

performance is learning rate. It determines how quickly the

network updates the information it has gathered. The

outcomes of experimenting with various learning rate settings

are summarized in Table 3. The learning rate of 0.001, which

is also the default rate for the Adam optimizer employed by

the model, yields the best results. Figure 6 shows the model's

training and validation loss when the learning rate is set to

0.001.

Babu et al. 172

Table 2. Comparison of proposed algorithm PRS with KMP and BM algorithms in terms of execution time with varying file

size which contains attack pattern.

Pattern

Size

(Bytes)

Average Pattern Inspection Time in milliseconds

5000 10000 20000 25000

KMP BM PRS KMP BM PRS KMP BM PRS KMP BM PRS

2 0.22861 0.0547 0.004 0.61275 0.3848 0.008 0.92009 0.5635 0.0125 2.13249 1.2773 0.0279

4 0.24477 0.064 0.0042 0.75125 0.4602 0.008 0.87875 0.5365 0.0122 2.16297 1.3151 0.0271

6 0.24673 0.0621 0.004 0.63548 0.4165 0.007 0.81142 0.5854 0.0123 2.09309 1.3004 0.0319

8 0.42209 0.0817 0.0057 0.72216 0.5144 0.0078 0.97336 0.5047 0.0122 2.19378 1.3338 0.0354

10 0.41526 0.0842 0.007 0.62497 0.379 0.0082 0.98676 0.4976 0.0148 2.13336 1.261 0.0245

20 0.26945 0.053 0.0039 0.63258 0.5357 0.0091 0.97001 0.5037 0.0138 2.17317 1.3159 0.0307

40 0.3028 0.0637 0.0045 0.64584 0.452 0.0105 1.00227 0.6701 0.0125 2.15637 1.2498 0.032

80 0.22507 0.0639 0.0039 0.65453 0.4848 0.0113 0.87653 0.5109 0.0122 1.98845 1.2708 0.0329

100 0.38114 0.0862 0.0053 0.60076 0.4451 0.0065 0.85145 0.5016 0.0124 2.06707 1.2742 0.0319

200 0.24565 0.0611 0.0071 0.56595 0.3723 0.0066 0.91966 0.4969 0.0122 2.04767 1.2687 0.0317

400 0.24853 0.067 0.004 0.63258 0.5117 0.0083 0.9166 0.5349 0.0122 2.0807 1.2683 0.0311

800 0.44094 0.0877 0.0063 0.60917 0.4945 0.0116 0.80299 0.5717 0.0124 2.10773 1.2345 0.0305

Text file 1 0.26125 0.0558 0.0077 0.56275 0.3372 0.0059 0.92113 0.5519 0.0142 2.03222 1.3154 0.032

Text file 2 0.34986 0.0941 0.0072 0.63136 0.4506 0.0079 0.92948 0.6157 0.0158 2.16953 1.193 0.0326

Text file 3 0.2462 0.0559 0.0041 0.54309 0.3704 0.0063 0.97326 0.6305 0.0146 2.07895 1.2524 0.028

Figure 5. Comparison of PRS algorithm with KMP and BM

for proving latency time

Table 3. Effect of learning rate in model accuracy

Dropout Rate RMSE

0.0000001 0.098543520

0.00001 0.097820940

0.0001 0.096456226

0.001 0.094187275

0.01 0.099730260

0.1 0.123614386

Figure 6. Training and validation loss with learning rate =

0.001

In order to counter over fitting and improve regularization

error, dropout nodes are introduced. Dropout nodes are used

to counteract over fitting and improve regularization error.

This is an extra hyperparameter that specifies the chance of

the layer's outputs being dropped out. Table 4 summarizes the

model's impact for various values of this hyerparameter. It is

noticed that a dropout rate of 0.1 results in higher

performance. Figure 7 shows the training and validation losses

for a model with a dropout rate of 0.1.

Table 4. Effect of dropout rate in model accuracy

Dropout Rate RMSE

0.5 0.10334229

0.3 0.09148774

0.2 0.10313607

0.1 0.08498888

0.05 0.10534138

0.01 0.09218325

An Intelligent Pattern Matching approach with Deep Hypersphere Model for Secure Big Data Storage… 173

Figure 7. Training and validation loss with dropout rate =

0.001

The output represented in Figure 8 clearly shows that the

proposed deep hypersphere model outperforms the existing

feed forward [27], Jordan's [28], Elman's [29], and fully

connected [30] recurrent neural networks. The error rates for

the training set for feed forward, Jordan's, Elman's, and fully

connected networks are 0.85, 0.65, 0.625, and 0.575,

respectively, whereas the suggested technique has just

0.472.During the testing phase, the above approach had error

rates of 3.7, 3.1, 2.9, and 2.7. However, the proposed model

only reveals a 1.3% error rate. After tuning the

hyperparameters the error rate convergence of the proposed

deep hypersphere model is represented in Figure 9. The error

rate is steadily falling, indicating that the network has

converged and that the weights have been trained to their ideal

value. As a result, the network's output bias is minimal.

Figure 8. Comparison of proposed Hypersphere model with

existing Neural Network models in respect of error rate

during training and testing

Figure 9. Error rate Convergence in proposed Deep

Hypersphere Model

V. Conclusions

The paper proposed an algorithm PRS for improving the

efficiency and security of data storage in the cloud

environment. The PRS algorithm detects attacks by matching

patterns, and if an attack is discovered, the suspected pattern

is put into the newly built Deep hypersphere model, which

confirms the attack. When an attack is detected, the model

immediately ceases storing data in the cloud storage area,

thereby reducing the risk. The performance of the PRS

algorithm is evaluated in respect of execution time for attack

pattern recognition. The results are compared against the

existing Knuth-Morris-Pratt Algorithm (KMP) and Boyer-

Moore (BM) Algorithms. The experiment is carried out for

varying file sizes and the average execution time is taken for

comparison. The result shows the pronounced improvement in

the performance parameter of the proposed algorithm PRS.

The proposed deep hypersphere model recognizes attack

patterns and generates the appropriate intrusion response

based on the type of pattern. The new approach has precision

values ranging from 96.21% to 99.98%. Similarly, recall

ranges from 99.59% to 99.91% percent, and the approach

achieved F1 score of 0.9974 during the test phase. The

proposed model for security-based intelligent storage proved

to be a successful way for quickly and efficiently identifying

intrusions in the big data processing.

References

[1] Dias, Luis Filipe, and Miguel Correia. "Big data analytics

for intrusion detection: an overview." Handbook of

Research on Machine and Deep Learning Applications

for Cyber Security (2020): 292-316.

[2] Kumari, Aparna, Sudeep Tanwar, Sudhanshu Tyagi, and

Neeraj Kumar. "Verification and validation techniques

for streaming big data analytics in internet of things

environment." IET Networks 8, no. 3 (2018): 155-163.

[3] Du, Miao, Kun Wang, Yuanfang Chen, Xiaoyan Wang,

and Yanfei Sun. "Big data privacy preserving in multi-

access edge computing for heterogeneous Internet of

Things." IEEE Communications Magazine 56, no. 8

(2018): 62-67.

[4] Smys, S., Abul Basar, and Haoxiang Wang. "Hybrid

intrusion detection system for in-ternet of Things (IoT)."

Journal of ISMAC 2, no. 04 (2020): 190-199.

[5] Du, Miao, Kun Wang, Yuanfang Chen, Xiaoyan Wang,

and Yanfei Sun. "Big data privacy preserving in multi-

access edge computing for heterogeneous Internet of

Things." IEEE Communications Magazine 56, no. 8

(2018): 62-67.

[6] Xian-feng, Hou, Yan Yu-bao, and Xia Lu. "Hybrid

pattern-matching algorithm based on BM-KMP

algorithm." In 2010 3rd International Conference on

Advanced Computer Theory and Engineering (ICACTE),

vol. 5, pp. V5-310. IEEE, 2010.

[7] Demchenko, Yuri, Canh Ngo, Cees de Laat, Peter

Membrey, and Daniil Gordijenko. "Big security for big

data: Addressing security challenges for the big data

infrastructure." In Workshop on secure data

management, pp. 76-94. Springer, Cham, 2013.

[8] Demchenko, Yuri, Zhiming Zhao, Paola Grosso, Adianto

Wibisono, and Cees De Laat. "Addressing big data

challenges for scientific data infrastructure." In 4th IEEE

Babu et al. 174

International Conference on Cloud Computing

Technology and Science Proceedings, pp. 614-617.

IEEE, 2012.

[9] Archana D Wankhade, P N Chatur, Comparison of

Firewall and Intrusion Detection System, International

Journal of Computer Science and Information

Technologie(IJCSIT), Vol. 5, 2014, pp. 674-678.

[10] Nachiappan, Rekha, Bahman Javadi, Rodrigo N.

Calheiros, and Kenan M. Matawie. "Cloud storage

reliability for big data applications: A state of the art

survey." Journal of Network and Computer Applications

97 (2017): 35-47.

[11] Gupta, Vibha, Maninder Singh, and Vinod K. Bhalla.

"Pattern matching algorithms for intrusion detection and

prevention system: A comparative analysis." In 2014

International Conference on Advances in Computing,

Communications and Informatics (ICACCI), pp. 50-54.

IEEE, 2014.

[12] KARP, RM. "Efficient randomized pattern-matching

algorithms, The IBM Journal of Research and

Development." http://www. research. ibm.

com/journal/rd/312/ibmrd3102P. pdf 31 (1987).

[13] Hakak, Saqib Iqbal, Amirrudin Kamsin, Palaiahnakote

Shivakumara, Gulshan Amin Gilkar, Wazir Zada Khan,

and Muhammad Imran. "Exact string matching

algorithms: Survey, issues, and future research

directions." IEEE Access 7 (2019): 69614-69637.

[14] Namjoshi, Kedar, and Girija Narlikar. "Robust and fast

pattern matching for intrusion detection." In 2010

Proceedings IEEE INFOCOM, pp. 1-9. IEEE, 2010.

[15] Yang, Zhenglu, Jianjun Yu, and Masaru Kitsuregawa.

"Fast algorithms for top-k approximate string matching."

In Proceedings of the AAAI Conference on Artificial

Intel-ligence, vol. 24, no. 1. 2010.

[16] Shelke, Ms Parag K., Ms Sneha Sontakke, and A. D.

Gawande. "Intrusion detection sys-tem for cloud

computing." International Journal of Scientific &

Technology Re-search 1, no. 4 (2012): 67-71.

[17] M.Madhavi, An Approach For Intrusion Detection

System In Cloud Computing, International Journal of

Computer Science and Information Technologies

(IJCSIT), Vol. 3 (5) , 2012.

[18] S.V. Narwane, S. L. Vaikol, Intrusion Detection System

in Cloud Computing Environment, International

Conference on Advances in Communication and

Computing Technologies (ICACACT), Proceedings

published by International Journal of Computer

Applications (IJCA), 2012 .

[19] Richard Zuech, Taghi M Khoshgoftaar, Randall Wald,

Intrusion detection and Big Heterogeneous Data: a

Survey, Journal of Big Data, a Springer open Journal,

V.3, pp. 2-41, 2015

[20] Zeng, An Intrusion Detection System Based on Big Data

for Power System, International Symposium on

Advances in Electrical, Electronics and Computer

Engineering (ISAEECE), pp. 322-328, 2016.

[21] C.W. Hsu, C.W. Wang, Shiuhpyng Shieh, Reliability and

Security of Large Scale Data Storage in Cloud

Computing, part of the Reliability Society Annual

Technical Report 2010.

[22] Kleber Vieira, Fernando Schubert, Guilherme Arthur

Geronimo, Carlos Becker Westphall, Autonomic

Intrusion Detection System in Cloud Computing with

Big Data, International Conference on Security and

Management(SAM),pp.173-178,2014.

[23] Hoffmann, Heiko, Michael D. Howard, and Michael J.

Daily. "Fast pattern matching with time-delay neural

networks." In The 2011 International Joint Conference

on Neural Networks, pp. 2424-2429. IEEE, 2011.

[24] Berman, Daniel S., Anna L. Buczak, Jeffrey S. Chavis,

and Cherita L. Corbett. "A sur-vey of deep learning

methods for cyber security." Information 10, no. 4

(2019): 122.

[25] Yan, Jiaqi, Dong Jin, Cheol Won Lee, and Ping Liu. "A

comparative study of off-line deep learning based

network intrusion detection." In 2018 Tenth

International Conference on Ubiquitous and Future

Networks (ICUFN), pp. 299-304. IEEE, 2018.

[26] Liu, Weiyang, Yandong Wen, Zhiding Yu, and Meng

Yang. "Large-margin softmax loss for convolutional

neural networks." In ICML, vol. 2, no. 3, p. 7. 2016.

[27] Victor H. Benitez, Pattern Classification and Its

Applications to Control of Biomechatronic Systems,

Artificial Neural Networks for Engineering Applications,

Academic Press, 2019, pp. 139-154.

[28] Michael I. Jordan. Serial order: A parallel distributed

processing approach. Technical Report 8604, Institute

for Cognitive Science, University of California, San

Diego, 1986.

[29] Hee-Heon Song, Sun-Mee Kang and Seong-Whan Lee,

"A new recurrent neural net-work architecture for pattern

recognition," Proceedings of 13th International

Conference on Pattern Recognition, 1996, pp. 718-722

vol.4, doi: 10.1109/ICPR.1996.547658.

[30] Hongzhi Li, Joseph G. Ellis, Lei Zhang and Shih-Fu

Chang, PatternNet: Visual Pattern Mining with Deep

Neural Network. In ICMR ’18: 2018 International

Conference on Multimedia Retrieval, June 11–14, 2018,

Yokohama, Japan.

[31] Remesh Babu, K.R., Saritha, S., Preetha, K.G.,

Unnikrishnan, S., Izudheen, S. (2023). DeepPRS: A

Deep Learning Integrated Pattern Recognition

Methodology for Secure Data in Cloud Environment. In:

Abraham, A., Bajaj, A., Gandhi, N., Madureira, A.M.,

Kahraman, C. (eds) Innovations in Bio-Inspired

Computing and Applications. IBICA 2022. Lecture

Notes in Networks and Systems, vol 649. Springer,

Cham. https://doi.org/10.1007/978-3-031-27499-2_20.

Author Biographies

K R Remesh Babu received PhD Degree from Cochin

University of Science and Technology (CUSAT) in 2019.

He also holds bachelor degree in Mathematics,

Information Technology and master’s degree in Computer

Science. Currently he is working as Professor in the

department of Information Technology, Government

Engineering College, Idukki, India. He is author of several

publications in the leading international journals and

conferences. He is interested in Distributed and Cloud

Computing, Internet of Things, Wireless Sensor Networks,

Machine Learning, and Big Data Analytics.

Saritha S is a highly accomplished Computer Science

engineer with extensive experience in research and

academia. She earned her PhD in Computer Science from

Cochin University of Science and Technology, India and

has made significant contributions to the field through her

research, publications, and patents. She is currently

working as an Associate Professor in the Department of

An Intelligent Pattern Matching approach with Deep Hypersphere Model for Secure Big Data Storage… 175

Computer Science in Rajagiri School of Engineering &

Technology (Autonomous), Kochi, Kerala, India. Her

expertise lies in areas like Spatiotemporal Data Mining,

Cloud Computing and Internet of Things where she has

published numerous research papers in top-tier academic

journals and conferences.

Preetha K G has completed her PhD in Mobile Ad hoc

Networks from Cochin University of Science and

Technology in 2018. She has completed her M Tech and B

Tech Degree in Computer Science and Engineering. She

has been associated with Rajagiri School of Engineering &

Technology since 2004 and is now working as Professor

and Head in the Department of Computer Science &

Engineering. She has around 20 years of academic

experience. Her research interests include Mobile

Computing, Wireless Networks, Ad-hoc Networks, Data

Analytics etc.

Sangeetha U received B Tech degree in Information

Technology from the Cochin University of Science and

Technology (CUSAT), Kochi, India and MTech degree in

Computer Science and Engineering from NIT Trichy. She

received PhD in from NIT Kozhikode in 2022. Currently

she is working as Associate Professor and Head in the

department of information technology at Government

Engineering College, Palakkad, India. Her research

interest includes internet of things, wireless

communication, computer networks and cloud computing..

Sminu Izudheen is a Professor in the Department of

Computer Science & Engineering at Rajagiri School of

Engineering & Technology, Kakkanad, Kochi. She was

awarded Ph.D. in Data Mining in Bioinformatics from

Cochin University of Science and Technology. She has

around twenty years of academic experience in Rajagiri

School of Engineering & Technology. Her research

interests include Bioinformatics, Data Analytics and

Automata Theory. She has numerous publications in

various journals and conferences. She also has an Indian

National Patent to her credit.

