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Abstract: The problem of choosing places for evacuation 

centers is considered in this paper. We consider the case when 

the territory model is represented by an intuitionistic fuzzy 

graph. To solve this problem, the concept of a minimal antibase 

of such graph is introduced, and on its basis, the concept of an 

antibase set as an invariant of this graph is introduced too. A 

method and algorithm for calculating the minimal antibases are 

proposed and justified. The problem of finding all minimal 

antibases of the graph allows us to solve the task of determining 

the antibase set. The paper considers a numerical example of 

finding the antibase set of an intuitionistic fuzzy graph. The task 

of choosing the places of evacuation centers in an optimal way 

depends on their number. The calculation of the minimal 

antibase set allows us to directly solve this problem.  
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I. Introduction 

The evacuation of the population is one of the effective ways 

to protect the population, material and cultural values from the 

dangers arising from natural and man-made emergencies. The 

essence of evacuation is the organized movement of the 

population and material and cultural values to safe areas. In 

many situations, this method is the only acceptable method of 

protection, for example, in the event of catastrophic flooding, 

long-term radioactive contamination of the area with densities 

higher than permissible, etc. 

Significant volumes, the complexity of organizing and 

conducting evacuation measures impose increased 

requirements on the optimal placement of evacuation centers, 

their timely and high-quality preparation for the evacuation of 

the population. We are talking about places of collection, 

reception, intermediate evacuation centers and optimization of 

evacuation routes. 

A decision maker (DM), with a comprehensive assessment 

of the circumstances, deals with many factors and 

uncertainties: the level of danger, the behavior of the 

population, the location of evacuation centers, transport. 

To facilitate the management of evacuation operations, 

evacuation plans should be developed in advance during the 

preparation phase: 

- for stakeholders involved in crisis management; 

- for events in various evacuation scenarios; for escape 

routes, shelters and behavior of people; 

- to manage shelters and resource providers; 

- to return after evacuation. 

The work [1] presents various methods for support effective 

evacuation planning. However, both a general evacuation 

planning model and a general set of specific parameters that 

should be included in the plan as initial data are missing here. 

The work [2] considers various stages in the planning of flood 

evacuation. But there is no approach to assessing information 

about the current situation to justify the need for evacuation. 

The evacuation studies carried out in [3] identified the 

following tasks for the development of an evacuation plan at 

the preparation stage: determining the predicted parameters 

and disaster scenarios, characterizing the vulnerability, 

determining actions and data such as the capacity of the 

transport network, the number of evacuees, strategies and 

evacuation scenarios, their optimization, selection of an 

evacuation plan and its application in real time. The work [4] 

presents a program for modeling floods, traffic flows during 

evacuation, as well as optimization of possible strategies. 

According to their purpose, evacuation modeling tools can be 

divided into two types: models of specific disasters [5, 6] and 

models that provide evacuation [1, 7-9]. 

Existing evacuation traffic models can be classified as:  
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- flow models [10];  

- agent-based models, in which individual vehicles are 

considered as agents with autonomous behavior interacting 

with other vehicles [11];  

- scenario-based simulation models to identify evacuation 

bottlenecks [12]. 

The paper [13] presents a review of the literature on the 

methods of mathematical modeling of evacuation traffic. 

Time models taking into account critical paths are presented 

in [14, 15]. 

The models listed above are commonly used as support 

tools for evacuation planning using geographic information 

systems (GIS). The use of GIS for evacuation planning makes 

it possible to display the results of evacuations on maps, which 

makes it easier for decision makers to understand. The 

integration of GIS technologies, simulation models and 3D 

visualization for traffic impact analysis appears to open up 

new perspectives for evacuation planning and decision 

making. 

The decision to initiate a mass evacuation plan based on a 

crisis assessment becomes a challenge for decision makers. 

Several issues related to this problem are considered in the 

literature: criteria for making decisions about evacuation, the 

decision-making process taking into account uncertain factors, 

as well as decision-making modeling [16, 17]. 

The main factors considered by existing methods and 

models for making decisions about evacuation are: 

- hazard forecast; 

- danger alert; 

- assessment of the consequences of the disaster; 

- evacuation time; 

- evacuation costs; 

- factors of uncertainty. 

Accounting for forecast uncertainty is a complex part of the 

decision making. Several studies have been conducted to 

quantify the uncertainty of possible developments and to help 

decision makers determine what to plan for. Some studies 

emphasize the importance of interpreting uncertainty in 

predicting the level of danger and evacuation [18, 19]. These 

studies illustrate how different levels of forecast uncertainty 

affect the optimal evacuation decision over time.  

The assessment of natural hazards is always subject to 

uncertainty due to the lack of accurate knowledge, the 

complexity of physical processes, and their natural variability. 

Therefore, many studies emphasize the importance of 

interpreting uncertainty in predicting the local level of danger 

and in the perspective of evacuation. 

Subjective uncertainty factors are not widely represented in 

the literature. They are difficult to model, so studies are 

required to consider subjective uncertainty in the process of 

planning to evacuate. At present, the need to model support 

for making decisions about evacuation is becoming 

increasingly important. Such tasks are difficult to formalize, 

characterized by incompleteness and fuzziness of the initial 

information, fuzziness of the goals set [20, 21].  

Several methods have been proposed to solve them under 

fuzzy conditions, and fuzzy set theory has been extended by 

developing new types of fuzzy sets, such as non-stationary 

fuzzy sets, intuitionistic fuzzy sets, fuzzy multisets, oscillating 

fuzzy sets. Fuzzy logic, dealing with subjective uncertainty, in 

many cases turns out to be more effective than using only 

deterministic, probabilistic, or heuristic approaches. In 

addition, the application of the theory of fuzzy sets and fuzzy 

logic to solving the problems of evacuation, choosing the 

location of evacuation centers allows you to include in the 

decision-making model data that are not always quantifiable, 

as well as incomplete, inaccessible information, and partially 

ignored facts. Therefore, fuzzy logic methods are particularly 

suitable for making evacuation decisions when there is little 

data, knowledge of cause-and-effect relationships is 

inaccurate, and observations and criteria can be expressed in 

linguistic qualitative terms. 

This paper considers one of the tasks that arises when 

supporting decision-making during evacuation, namely, the 

choice of locations for evacuation centers on the plan of a 

certain territory. At the same time, the territory model is 

represented by an intuitionistic fuzzy graph. In the graph 

under consideration, the vertices determine the locations of 

people and the possible locations of evacuation centers, and 

the intuitionistic degree assigned to the edges determines the 

degree of safety of movement along this edge. Concepts of the 

minimal antibase and the antibase set of intuitionistic fuzzy 

graph are introduced here. It is shown that the choice of the 

best placement of evacuation centers is equivalent to finding 

an intuitionistic fuzzy set of antibases for a given graph. 

II. Preliminaries 

The concept of a fuzzy set as a method of representing 

uncertainty was proposed and discussed in [22]. In the articles 

[23, 24], the fuzzy set was generalized as the concept of an 

intuitionistic fuzzy set. In the latter, the degree of non-

membership was added to the concept of the membership 

function of the fuzzy set. 

The original definition of a fuzzy graph [25] was based on 

the concept of a fuzzy relationship between vertices [26]. The 

concept of complementing a fuzzy graph and some operations 

on fuzzy graphs were considered in [27, 28]. The concepts of 

an intuitionistic fuzzy relation and an intuitionistic fuzzy 

graph were considered in the papers [29, 30]. The concepts of 

a dominating set, and a base set as invariant of intuitionistic 

fuzzy graph were introduced in the papers [31 - 35]. 

The intuitionistic fuzzy set on the set 𝑋 is the set of triples 

𝐴̃ ={⟨𝑥,𝜇𝐴(𝑥),ν𝐴(𝑥)⟩|𝑥∈𝑋} [23]. Here μ𝐴(𝑥)∈[0,1] is the 

membership function of 𝑥 in 𝐴̃, and ν𝐴(𝑥)∈[0, 1] is the non-

membership function 𝑥 in 𝐴̃ . Moreover, for any 𝑥∈X the 

values μ𝐴(x), and ν𝐴(x) must satisfy the condition: 

μ𝐴(𝑥) + ν𝐴(𝑥) ≤ 1. 

The intuitionistic fuzzy relation 𝑅̃=(μ𝑅(𝑥,𝑦),ν𝑅(𝑥,𝑦)) on the 

set 𝑋×𝑌 is the set 𝑅̃={⟨(𝑥,𝑦), 𝜇𝑅(𝑥,𝑦), ν𝑅(𝑥,𝑦)⟩ | (𝑥,𝑦)∈𝑋×𝑌}, 

where μ𝑅: 𝑋×𝑌→[0,1] and ν𝑅: 𝑋×𝑌→[0,1]. In this case, the 

following condition is fulfilled: 

(𝑥,y∈X)[μ𝑅(𝑥,𝑦) + ν𝑅(𝑥,𝑦) ≤ 1]. 

Let p=(µ(p),ν(p)) and q=(µ(q),ν(q)) be intuitionistic fuzzy 

variables, where μ(p)+ν(p)≤ 1 и μ(q)+ν(q)≤ 1. Then the 

operations “&” and “˅” are defined as [24]: 

p&q = (min(μ(p), μ(q)), max(ν(p), ν(q))),             (1) 
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p˅q = (max (μ(p), μ(q)), min(ν(p), ν(q))).            (2) 

We will consider p≤q if μ(p)≤μ(q) and ν(p)≥ν(q). Otherwise, 

we will assume that p and q are incommensurable 

intuitionistic fuzzy variables. 

An intuitionistic fuzzy graph [29,30] is a pair 𝐺̃ = (𝐴̃, 𝑈̃), 

where 𝐴̃=⟨𝑉,μA,νA⟩ is an intuitionistic fuzzy set on the vertex 

set 𝑉, 𝑈̃=⟨𝑉×𝑉,μU,νU⟩ is an intuitionistic fuzzy set of edges, 

and the following inequalities hold: 

𝜇U(𝑥𝑦)≤min(𝜇𝐴(𝑥), 𝜇𝐴(𝑦));                           (3) 

νU(𝑥𝑦)≤max(ν𝐴(𝑥),ν𝐴(𝑦));                             (4) 

(𝑥,y∈V)[0≤𝜇U(𝑥𝑦)+νU(𝑥𝑦)≤1].                    (5) 

III. Antibase Set 

Let 𝐺̃ = (𝐴̃, 𝑈̃)  be an intuitionistic fuzzy graph. Let 

p(x,y)=(𝜇(𝑥,𝑦),ν(𝑥,𝑦)) be an intuitionistic fuzzy variable that 

determines the degree of adjacency and degree of non-

adjacency of vertex y from vertex x. 

An intuitionistic fuzzy path 𝐿̃(𝑥𝑖, 𝑥𝑗) [36, 37] from a vertex 

xi to a vertex xj of a graph 𝐺̃ = (𝐴̃, 𝑈̃) is a directed sequence 

of vertices and edges in which the end vertex of any edge 

(except for xj), is the starting vertex of the next arc.  

The strength of the path 𝑠(𝐿̃(𝑥𝑖, 𝑥𝑗)) is determined by the 

smallest value of the degrees of vertices and edges included in 

this path [38]. Taking into account expressions (3) and (4), the 

strength 𝑠(𝐿̃(𝑥𝑖, 𝑥𝑗)) of the path 𝐿̃(𝑥𝑖, 𝑥𝑗) is determined only 

by the values of its edges: 

𝑠(𝐿̃(𝑥𝑖, 𝑥𝑗)) = &
(𝑥𝛼,𝑥𝛽)∈𝐿̃(𝑥𝑖,𝑥𝑗)

𝑝(𝑥, 𝑥). 

Here the operation & is defined according to expression (1). 

Since the strength of the path depends on the intuitionistic 

degrees of the edges and does not depend on the degrees of 

the vertices, we will further consider intuitionistic fuzzy 

graphs with crisp vertices: 𝐺̃ = (𝑉, 𝑈̃). 

The vertex xj is reachable from the vertex xi if there exists 

an intuitionistic fuzzy path 𝐿̃(𝑥𝑖, 𝑥𝑗)  with degree 

𝑠 (𝐿̃(𝑥𝑖, 𝑥𝑗))  different from (0,1). Each vertex xi is considered 

to be reachable from itself with degree 𝑠 (𝐿̃(𝑥𝑖, 𝑥𝑖)) = (1,0).  

The degree of reachability of the vertex xj from the vertex 

xi is determined by the expression: 

𝛾(𝑥𝑖, 𝑥𝑗) = 
𝑘∈1,𝑡

{𝑠(𝐿̃𝑘(𝑥𝑖,𝑥𝑗)} = 
𝑘∈1,𝑡

{𝑠(𝜇𝑘, 𝜈𝑘)}.      (6) 

Here t is the number of different paths from vertex xi to vertex 

xj. The operation  is defined according to expression (2). 

If among the paths there are paths with an incommensurable 

degree, then as the degree of reachability we will choose the 

value for which the membership degree (𝜇𝑘) is the largest. 

Example 1. Consider the intuitionistic fuzzy graph 𝐺̃1 , 

shown in Fig. 1.  

Table 1 gives an intuitionistic fuzzy set of edges: 

Table 1. Intuitionistic fuzzy set edges of graph 𝐺̃1. 

𝒖𝟏 𝒖𝟐 𝒖𝟑 𝒖𝟒 𝒖𝟓 

(0.4,0.5) (0.6,0.4) (0.5,0.3) (0.2,0.7) (0.8,0.0) 

 

x4

x3

x2
u1

u2

u3

u4

u5
x1

 

Figure 1. Intuitionistic fuzzy graph 𝐺̃1 

Vertex x1 is not reachable from the vertex x4, but the vertex 

x4 is reachable from the vertex x1 by three ways: 

-  𝐿̃1 = (𝑥1, 𝑢1, 𝑥2, 𝑢2, 𝑥4),  with degree: 

𝑠1=(0.4,0.5)&(0.8,0)=(0.4,0.5); 

- 𝐿̃2 = (𝑥1, 𝑢2, 𝑥3, 𝑢4, 𝑥4),  with degree: 

𝑠2=(0.6,0.4)&(0.2,0.7)=(0.2,0.7); 

- 𝐿̃3 = (𝑥1, 𝑢2, 𝑥3, 𝑢3, 𝑥2, 𝑢5, 𝑥4),  with degree: 

𝑠3=(0.6,0.4)&(0.5,0.3)&(0.8,0)=(0.5,0.4). 

In this case, the degree of reachability will be defined as: 

𝛾(𝑥1, 𝑥4) = (0.5,0.4). 

Example 2. Consider the intuitionistic fuzzy graph 𝐺̃2 , 

shown in Fig. 2. Table 2 gives an intuitionistic fuzzy set edges 

of graph 𝐺̃2. 

 

x3u3

x2

u2

x1

u1

 

Figure 2. Intuitionistic fuzzy graph 𝐺̃2 

Table 2. Intuitionistic fuzzy set edges of graph 𝐺̃2. 

𝒖𝟏 𝒖𝟐 𝒖𝟑 

(0.8,0.1) (0.3,0.2) (0.5,0.3) 

 

Vertex x3 is reachable from the vertex x1 by two ways with 

incommensurable degrees: 

-  𝐿̃1 = (𝑥1, 𝑢1, 𝑥2, 𝑢2, 𝑥3),  with degree 𝑠1 = (0.8,0.1) & 

(0.3,0.2) = (0.3,0.2); 

- 𝐿̃2 = (𝑥1, 𝑢3, 𝑥3),  with degree 𝑠2 = (0.5,0.3). 

Therefore, the degree of reachability will be defined as: 

𝛾(𝑥1, 𝑥3) = (0.5,0.3). 
Let's the number of graph vertices |𝑉| = 𝑛.  

Definition 1. Intuitionistic fuzzy antibase of a graph 𝐺̃ is a 

subset of vertices 𝐵̅𝑉, that have the property that at least 

one of these vertices is reachable from any other vertices 

 𝑉\𝐵̅  with an intuitionistic reachability degree of at least 

=(μ,ν). 

Definition 2. Intuitionistic fuzzy antibase will be called 

minimal if there is no other antibase 𝐵′𝐵̅, with the same 

intuitionistic reachability degree . 

Minimal intuitionistic fuzzy antibase determines the best 

placement of evacuation centers in the territory modeled by 
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graph 𝐺̃. In this case, evacuation centers number is determined 

by the vertices number of of the considered antibase.  

The following property follows from the definition of an 

intuitionistic fuzzy antibase: 

Property 1. Let  𝐵̅ a minimal intuitionistic fuzzy antibase 

with intuitionistic reachability degree . Then the following 

statement is true: 

(∀𝑥𝑖, 𝑥𝑗 ∈ 𝐵̅)[𝛾(𝑥𝑖, 𝑥𝑗) < ]. 

In other words, the intuitionistic reachability degree 

between any two vertices belonging to the minimal 

intuitionistic fuzzy antibase 𝐵̅ is less than the value  of this 

antibase. 

Proof. Assume that this is not the case, that is, there are two 
vertices 𝑥𝑖, 𝑥𝑗 ∈ 𝐵̅  such that the reachability degree 

𝛾(𝑥𝑖, 𝑥𝑗) ≥ . In other words, there is some path 𝐿̃(𝑥𝑖, 𝑥𝑗) 

with degree 𝑠 (𝐿̃(𝑥𝑖, 𝑥𝑗)) ≥  . Some subset of vertices (for 

example, Y1) of this path belongs to the antibase 𝐵̅, and some 

(for example, Y2) does not. 

An example with Y1={y1, y4} and Y2={y2, y3} is shown in 

Fig.3.  

We remove the subset Y1 and the vertex xi from the antibase 

𝐵̅ . We get a subset 𝐵̅′ = 𝐵̅/(𝑌1⋃{𝑥𝑖}) , which is also an 

antibase with the same intuitionistic reachability degree . 

That is, the antibase 𝐵̅ is not minimal. This contradicts our 

assumption, which is what Property 1 proves. 

 

y
4

y1 y2

y3xj

xi

B V/B

 

Figure 3. Example case Y1={y1, y4}𝐵̅ and Y2={y2, y3}𝐵̅ 

Consider a family of subsets of minimal intuitionistic fuzzy 

antibase 𝑖 = {𝐵̅𝑖1
, 𝐵̅𝑖2

, . . . , 𝐵̅𝑖𝑘
}, each of which consists of i 

vertices and has reachability degrees {
𝑖1

, 
𝑖2

, . . . , 
𝑖𝑘

} 

respectively. Let 
𝑖
 be the largest of these degrees. If the 

family 𝑖 = ∅, then 
𝑖

= 
𝑖−1

. 

Definition 2. We call the intuitionistic fuzzy set 

𝐵̃ = {< 
1

/1 >, < 
2

/2 >, . . . , < 
𝑛

/𝑛 >} 

the antibase set of the graph 𝐺̃ [34]. 

Example 3. For the intuitionistic fuzzy graph 𝐺̃2, shown in 

Fig. 2, we have: 

𝐵̃ = {< (0.3,0.3)/1 >, < (0.8,0.1/2 >, < (1,0)/3 >}. 

Thus, the antibase set determines the greatest possible 

reachability degree (
𝑖
) for a given number of evacuation 

centers (𝑖 = 1, 𝑛̅̅ ̅̅̅). 

Property 2. The following inequality holds true:  

(0,1) ≤ 
1

≤ 
2

≤. . . ≤ 
𝑛

= (1,0). 

In other words, the more vertices in the antibase, the greater 

the intuitionistic reachability degree. 

The proof of Property 2 follows directly from the definition 

of the antibase set. 

IV. METHOD FOR FINDING MINIMAL 

INTUITIONISTIC FUZZY ANTIBASES 

We consider a method for finding the family of all minimal 

intuitionistic fuzzy antibases. This method is similar to the 

approach proposed in [39]. 

Let 𝐵̅  be the minimal antibase with intuitionistic 

reachability degree β=(µβ,νβ). Then the following expression 

is true: 

(∀𝑥𝑖 ∈ 𝑉)[𝑥𝑖 ∈ 𝐵̅  ∨

(∃𝑥𝑗 ∈ 𝐵̅  |𝜇(𝑥𝑖, 𝑥𝑗) ≥ 𝜇𝛽&𝜈(𝑥𝑖, 𝑥𝑗) ≤ 𝜈𝛽)].
       (7) 

For each vertex xiV we introduce a variable pi such that if 

xi𝐵̅  then pi =1, and 0 otherwise.  

Let us associate the intuitionistic variable ij=β=(µβ,νβ) for 

the expression (𝜇(xi,xj),(xi,xj))β. Then, passing from the 

quantifier notation in expression (7) to logical operations, we 

obtain the truth: 

𝛷𝐵̅ = &
𝑖=1,𝑛

(𝑝𝑖 ∨ ∨
𝑗=1,𝑛

(𝑝𝑗&𝜉𝑖𝑗)). 

Considering that (𝑗 = 1, 𝑛̅̅ ̅̅̅)[𝜉𝑗𝑗 = (1,0)] , and (𝑖 =

1, 𝑛̅̅ ̅̅̅)[𝑝𝑖 ∨∨
𝑗

𝑝𝑗&𝜉𝑖𝑗 =∨
𝑗

𝑝𝑗&𝜉𝑖𝑗] , the last expression will be 

rewritten as: 

𝛷𝐵̅ = &
𝑖=1,𝑛

( ∨
𝑗=1,𝑛

(𝑝𝑗&𝜉𝑖𝑗)).                        (8) 

Let us open the brackets in expression (8) and reduce like 

terms, following the rules: 

𝑎 ∨ 𝑎&𝑏 = 𝑎;    𝜉1&𝑎 ∨ 𝜉2&𝑎&𝑏 = 𝜉1&𝑎 if  𝜉1 ≥ 𝜉2.   (9) 

Here, 𝑎, 𝑏{0,1}, and (0,1) ≤ 𝜉1, 𝜉2 ≤ (1,0).  

Then the expression (8) can be rewritten as: 

𝛷𝐵̅ = ∨
𝑖=1,𝑙

(𝑝1𝑖
&𝑝2𝑖

&. . . &𝑝𝑘𝑖
&𝛽𝑖).              (10) 

Theorem. The variables included in each parenthesis of 

expression (10) define a subset of graph vertices, which is a 

minimum antibase set with the intuitionistic reachability 

degree βi. 

Proof. Let's consider that further simplification is 

impossible in expression (10). Let, for definiteness, 

disjunctive member 

(𝑝1&𝑝2&. . . &𝑝𝑘&𝛽),  𝑘 < 𝑛,  (0,1) < 𝛽 ≤ (1,0), (11) 

is included in the expression (6). 

We rewrite (8) as: 

𝛷𝐵̅ = ((1,0)&𝑝1 ∨ 𝜉21&𝑝2 ∨. . .∨ 𝜉𝑛1&𝑝𝑛)&

             (𝜉12&𝑝1 ∨ (1,0)&𝑝2 ∨∨ 𝜉𝑛2&𝑝𝑛)&  . . . 
&(𝜉1,𝑘+1&𝑝1 ∨ 𝜉2,𝑘+2&𝑝2 ∨. . .

                     ∨ 𝜉𝑘,𝑘+1&𝑝𝑘 ∨ (1,0)&𝑝𝑘+1 ∨ … ∨ 𝜉𝑛,𝑘+1𝑝𝑛)

                  &. . . &(𝜉1𝑛&𝑝1 ∨ 𝜉2𝑛&𝑝2 ∨. . .∨ (1,0)&𝑝𝑛).

   (12) 

Then in expression (12) the following statement should be 

fulfilled: 
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(∀𝑖 = 1, 𝑘)[𝜉𝑖,𝑘+1 < 𝛽]. 
 

 

Therefore, all disjunctive members which do not contain 

variables 𝑝𝑘+1, 𝑝𝑘+2, . . . , 𝑝𝑛  necessarily contain coefficients 

of the smaller value β in expression (10). From there, the 

disjunctive member (11) is not included in the expression (10). 

The received contradiction proves that subset 𝐵̅ =
{𝑥1, 𝑥2, . . . , 𝑥𝑘} has degree β. 

We now show that the disjunctive member (11) is the 

minimum member. We will assume the opposite. Then should 

be performed condition a) or condition b): 

a) There is a vertex 𝑥 ∈ 𝐵̅  such that 𝛾(𝑦, 𝑥) > 𝛽  holds 

for any vertex 𝑦 ∈ 𝑉/𝐵̅. An example of such case is 

shown in Fig. 4. 

b) There is a subset 𝐶̅ ⊂ 𝐵̅ such that for any vertex 𝑦 ∈

𝑉/𝐶̅ there exists a vertex 𝑥 ∈ 𝐶̅ such that 𝛾(𝑦, 𝑥) = 𝛽. 

An example of such case is shown in Fig.5. 
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Figure 4. Example case a) 
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Figure 5. Example case b) 

Let the condition a) is performed. Then the next statement 

is true: 

(∀𝑦 ∈ 𝑉/𝐵̅)(∃𝑥 ∈ 𝐵̅)(𝛾(𝑦, 𝑥) = 𝛽′ > 𝛽).  

Let's present expression 𝛷𝐵̅  in the form (12). If to make 

logic multiplication of each bracket against each other without 

rules of absorption (9) we will receive n2 disjunctive members 

containing exactly n elements and on one element from each 

bracket of decomposition (12).  

We will choose one of n2 disjunctive members as follows: 

- conjunction of the pair (1,0)&p1 is selected from the first 

bracket; 

- conjunction of the pair (1,0)&p2 is selected from the 

second bracket; 

- etc.; 

- conjunction of the pair (1,0)&pk; is selected from the kth 

bracket; 

- from (к+1)th bracket we will select conjunction of the pair 

𝜉𝑖1,𝑘+1&𝑝𝑖1
 such, that index 𝑖1 ∈ [1, 𝑘], and 𝜉𝑖1,𝑘+1 ≥ 𝛽′; 

- from (к+2)th bracket we will select conjunction of the pair 

𝜉𝑖2,𝑘+2&𝑝𝑖2
, for which index 𝑖2 ∈ [1, 𝑘], and 𝜉𝑖2,𝑘+2 ≥ 𝛽′;  etc.; 

- from nth bracket we will select conjunction of the pair 

𝜉𝑖𝑛−𝑘,𝑛&𝑝𝑖𝑛−𝑘
, for which index 𝑖𝑛−𝑘 ∈ [1, 𝑘], and 𝜉𝑖𝑛−𝑘,𝑛 ≥ 𝛽′. 

Using rules of absorption (9), the received disjunctive 

member can be led to the form 𝑝1&𝑝2&. . . &𝑝𝑘&𝛽′, in which 

value 𝛽′ = 𝑚𝑖𝑛{ 𝜉𝑖1,𝑘+1, 𝜉𝑘+2,i2 , . . . , 𝜉𝑛,𝑖𝑛−𝑘
} > 𝛽  and which 

will be necessarily absorbed disjunctive member (11). 

We obtained a contradiction, which proves the 

impossibility of case a).  

Now suppose that condition b) is performed.  

Let's for definiteness 𝐶̅ = {𝑥1, 𝑥2, . . . , 𝑥𝑘−1} . Considering 

expression 𝛷𝐵̅ in the form (12), we will choose a disjunctive 

member as follows: 

- conjunction of the pair (1,0)&p1 is selected from the first 

bracket; 

- conjunction of the pair (1,0)&p2 is selected from the 

second bracket; - etc.; 

- from (к-1)th bracket we will select conjunction of the pair 

(1,0)&pk-1; 

- from kth bracket we will select conjunction of the pair 

𝜉𝑖1,𝑘&𝑝𝑖1
 such, that index 𝑖1 ∈ [1, 𝑘 − 1], and 𝜉𝑖1,𝑘 ≥ 𝛽; 

- from (к+1)th bracket we will select conjunction of the pair 

𝜉𝑖2,𝑘&𝑝𝑖2
, for which index 𝑖2 ∈ [1, 𝑘 − 1], and 𝜉𝑖2,𝑘 ≥ 𝛽;  etc.; 

- from nth bracket we will select conjunction of the pair 

𝜉𝑖𝑛−𝑘+1,𝑛&𝑝𝑖𝑛−𝑘+1
, for which index 𝑖𝑛−𝑘+1 ∈ [1, 𝑘 − 1], and 

𝜉𝑖𝑛−𝑘+1,𝑛 ≥ 𝛽. 

Using rules of absorption (9), the resulting disjunctive 

member can be represented as (𝑝1&𝑝2&. . . &𝑝𝑘−1&𝛽′) , in 

which 𝛽′ = 𝑚𝑖𝑛{ 𝜉𝑖1,𝑘, 𝜉𝑖2,𝑘+1, . . . , 𝜉𝑖n-k+1/,𝑛} ≥ 𝛽  and which 

will be necessarily absorbed by a disjunctive member (11).  

We obtained a contradiction, which proves the 

impossibility of case b). 

Theorem is proved. 

V. ALGORITHM FOR FINDING MINIMAL 

INTUITIONISTIC FUZZY ANTIBASES 

To construct the expression (10) we rewrite expression (8) like 

this: 

𝛷𝐵̅ = &
𝑖=1,𝑛

(𝜉𝑖1&𝑝1 ∨ 𝜉𝑖2&𝑝2 ∨. . .∨ 𝜉𝑖𝑛&𝑝𝑛). (13) 

Let us assign the conjunction of the pair 𝜉𝑖𝑗&𝑝𝑗  from 

expression (13) to the conjunction of the pair 𝜉𝑖𝑗&𝑃̅𝑗 . Here 

vector 𝑃̅𝑗 = |𝑝𝑖
(𝑗)

| is a binary vector that has dimension of n. 

Its elements are defined as: 

𝑝𝑖
(𝑗)

= {
1, if 𝑖 = 𝑗
0, if 𝑖 ≠ 𝑗.

  

Example 4. Let n=4, then the conjunction of the pair 

(0.5,02)&p2 corresponds to the binary vector (0.5,0.2)& (

0
1
0
0

), 
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and the conjunction of the pair (0.3,0.6)&p3 corresponds to the 

binary vector (0.3,0.6)& (

0
0
1
0

). 

The conjunction of pairs (𝜉′&𝑝′)  and (𝜉"&𝑝")  from 

expression (11) corresponds the conjunction of two weighted 

binary vectors 𝜉′&𝑃′̅  and 𝜉"&𝑃̅" . Parameters 𝜉′  and 𝜉"  take 

values from the [(0,1), (1,0)] interval. 𝑃′̅ = |𝑝′
𝑘

|, and 𝑃̅" =

|𝑝"𝑘|,  𝑘 = 1, 𝑛̅̅ ̅̅̅  are binary vectors. In a vector space the 

conjunction is defined as (𝜉′&𝑃′̅)&(𝜉"&P̅") = 𝜉&𝑃̅, here 𝜉 =

min {𝜉′, 𝜉"}. Binary vector 𝑃′ is defined as 𝑃̅ = |𝑝𝑘|, 𝑘 = 1, 𝑛̅̅ ̅̅̅, 

𝑝𝑘 = max {𝑝′
𝑘

, 𝑝"𝑘}. 

Example 5. The conjunction of weighted vectors from 

example (4) is: 

(0.5,0.2)& (

0
1
0
0

) &(0.3,0.6)& (

0
0
1
0

) = (0.5,0.2)& (

0
1
1
0

). 

We define the operation  “less or equal” between binary 

vectors [30]. Binary vector 𝑃′̅ is less or equal than 𝑃̅" if each 

element of 𝑃′̅ is less or equal than the corresponding element 

of vector𝑃̅". Formally, this looks like: 

(𝑃̅′ ≤ 𝑃̅") → (∀𝑘 = 1, 𝑛̅̅ ̅̅̅)(𝑝′
𝑘

≤ 𝑝"𝑘).   

Example 6. (

0
1
0
0

) ≤ (

0
1
1
0

). 

Considering the algebra in the space of weighted binary 

vectors, we can propose the following absorption rule: 

(∀𝜉′, 𝜉")(∀𝑃̅′, 𝑃̅")(𝜉′ ≥ 𝜉")(𝑃̅′ ≤ 𝑃̅")

[𝜉′&𝑃′̅  ∨  𝜉"&𝑃̅" =  𝜉′&𝑃′̅].
 (14) 

Example 7.  

(0.5,0.2)& (

0
1
0
0

) ∨ (0.3,0.6)& (

1
1
1
0

) = (0.5,0.2)& (

0
1
0
0

), 

which corresponds to the absorption rule for elements 

(0.5,0.2)&𝑝2 ∨ (0.3,0.6)&𝑝1𝑝2𝑝3 = (0.5,0.2_&𝑝2 ) in the 

expression (13). 

Now we can construct statement (12) using the conjunction 

operation and the rule of absorption of weighted binary 

vectors by the following Algorithm. 

Algorithm for finding the family of all minimal intuitionistic 

fuzzy antibases: 

Step 1°. Each element of the first bracketed (j=1) of 

expression (13) is converted to weighted binary vector. The 

result is to be written in the first n elements of the buffer vector 

. 

Step 2°. j incrementing (j:=j+1). 

Step 3°. Each element of the bracketed expression j is also 

converted to weighted binary vectors. The result is to be 

written in the first n elements of the buffer vector 

. 

Step 4°. The next stage consists of the conjunction of two 

vectors  and . The result is placed into the buffer vector 

. While placing elements into , 

absorption is made using rule (12). 

Step 5°. All the elements of vector  are copied to vector

 ( ). 

Step 6°. j:=j+1. 

Step 7°. If jn then goes to Step 3°, otherwise go to Step 8°. 

Step 8°. Expression (8) is to be built using elements in the 

vector . This way we have minimal intuitionistic fuzzy 

antibases of graph. 

Having found all minimal intuitionistic fuzzy antibases, we 

automatically determine the antibase set of the considered 

graph. 

VI. EXAMPLE 

Let's consider an example of the best placement of district 

evacuation centers, the model of which is represented by the 

intuitionistic fuzzy graph 𝐺̃3, shown in Fig. 6. To do this, we 

will find all minimum antibases according to the considered 

approach. 

x4
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x2

x1
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42u

u31

u51
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54u

 
Figure 6. Intuitionistic fuzzy graph 𝐺̃3 

Table 3 gives an intuitionistic fuzzy set edges of graph 𝐺̃3: 

Table 3. Intuitionistic fuzzy set edges of graph 𝐺̃3. 

𝒖𝟏 𝒖𝟐 𝒖𝟑 𝒖𝟒 𝒖𝟓 

(0.2,0.4) (0.3,0.1) (0.7,0.2) (0.8,0.1) (0.5,0.3) 

 

The adjacency matrix of the graph 𝐺̃3 has the form: 

𝑅𝑋 =

𝑥1            𝑥2             𝑥3             𝑥4            𝑥5

𝑥1

𝑥2
𝑥3
𝑥4

𝑥5

|

|

(1.0,0.0) (0.0,1.0) (0.0,1.0)

(0.2,0.4) (1.0,0.0)  (0.0,1.0)

(0.5,0.3) (0.0,1.0) (1.0,0.0)

 

(0.0,1.0)   (0.0,1.0)

(0.0,1.0)   (0.0,1.0)

(0.0,1.0)   (0.0,1.0)
(0.0,0.1) (0.3,0.1)  (0.0,1.0)
(0.2,0.6)  (0.0,0.1) (0.8,0.1)

 
(1.0,0.0) (0.0,1.0)
(0.7,0.2) (1.0,0.0)

|

|. 

Based on the adjacency matrix, one can construct 

reachability matrix: 

To find the intuitionistic reachability matrix of a graph, we 

define the operation of exponentiation adjacency matrix as 

follows: 

- zero degree adjacency matrix: 

𝑅𝑋
0 =

𝑥1            𝑥2             𝑥3             𝑥4            𝑥5

𝑥1

𝑥2
𝑥3
𝑥4

𝑥5

|

|

(1.0,0.0) (0.0,1.0) (0.0,1.0)

(0.0,1.0) (1.0,0.0)  (0.0,1.0)
(0.0,1.0) (0.0,1.0) (1.0,0.0)

 

(0.0,1.0)   (0.0,1.0)

(0.0,1.0)   (0.0,1.0)
(0.0,1.0)   (0.0,1.0)

(0.0,0.1) (0.0,1.0)  (0.0,1.0)
(0.0,1.0)  (0.0,1.0) (0.0,1.0)

 
(1.0,0.0) (0.0,1.0)
(0.0,1.0) (1.0,0.0)

|

|; 

2)1(

1 ,1||,|| nivV i ==

nivV i ,1||,|| )2(

2 ==
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3 ,1||,|| nivV i == 3V

3V

1V 2)3()1( ,1,: nivv ii ==

1V
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- first degree adjacency matrix: 𝑅𝑋
1 = 𝑅𝑋; 

- second degree adjacency matrix - 𝑅𝑋
2 = 𝑅𝑋 × 𝑅𝑋 = |𝑟𝑖𝑗

(2)
|. 

Here the elements of the matrix 𝑅𝑋
2 are calculated according 

to the expression:  

(∀𝑖, 𝑗 = 1, 𝑛̅̅ ̅̅̅)[𝑟𝑖𝑗
(2)

= ∨
𝑘=1,𝑛

𝑟𝑖𝑘&𝑟𝑘𝑗]; 

- tth degree of matrix - 𝑅𝑋
𝑡 = 𝑅𝑋

𝑡−1 × 𝑅𝑋 , where the 

elements of the matrix 𝑅𝑋
2 are found similarly: 

(∀𝑖, 𝑗 = 1, 𝑛̅̅ ̅̅̅)[𝑟𝑖𝑗
(𝑡)

= ∨
𝑘=1,𝑛

𝑟𝑖𝑘
(𝑡)

&𝑟𝑘𝑗]. 

Note. The elements of the matrix 𝑅𝑋
𝑡  determine the 

intuitionistic degree of reachability of the vertices of the graph 

with the help of a path of length t. 

Let's raise the adjacency matrix to the degree of 2, 3, …, 

(n-1). Then the intuitionistic reachability matrix 𝑅𝐷  can be 

calculated as: 

𝑅𝐷 = |𝑟𝑖𝑗
𝐷| = ⋃

𝑡=0,𝑛−1
𝑅𝑋

𝑡 . 

Here, the elements 𝑟𝑖𝑗
𝐷 of the matrix 𝑅𝐷 are defined as: 

(∀𝑖, 𝑗 = 1, 𝑛̅̅ ̅̅̅)[𝑟𝑖𝑗
(𝐷)

= ∨
𝑡=0,𝑛−1

𝑟𝑖𝑗
(𝑡)

]. 

Let's find the reachability matrix for the graph shown in 

Fig.3. To do this, we raise the adjacency matrix to the degree 

2, 3, and 4: 

𝑅𝑋
2 =

𝑥1         𝑥2             𝑥3                𝑥4           𝑥5

𝑥1

𝑥2
𝑥3
𝑥4

𝑥5

|

|

(0.0,1.0) (0.0,1.0) (0.0,1.0)

(0.0,1.0) (0.0,1.0)  (0.0,1.0)
(0.0,1.0) (0.0,1.0) (0.0,1.0)

 

(0.0,1.0)   (0.0,1.0)

(0.0,1.0)   (0.0,1.0)
(0.0,1.0)   (0.0,1.0)

(0.2,0.4) (0.0,1.0)  (0.0,1.0)
(0.5,0.3)  (0.3,0.2) (0.0,1.0)

 
(0.0,1.0) (0.0,1.0)
(0.0,1.0) (0.0,1.0)

|

|; 

𝑅𝑋
3 =

𝑥1         𝑥2             𝑥3                𝑥4           𝑥5

𝑥1

𝑥2
𝑥3
𝑥4

𝑥5

|

|

(0.0,1.0) (0.0,1.0) (0.0,1.0)

(0.0,1.0) (0.0,1.0)  (0.0,1.0)
(0.0,1.0) (0.0,1.0) (0.0,1.0)

 

(0.0,1.0)   (0.0,1.0)

(0.0,1.0)   (0.0,1.0)
(0.0,1.0)   (0.0,1.0)

(0.0,1.0) (0.0,1.0)  (0.0,1.0)

(0.2,0.4)  (0.0,1.0) (0.0,1.0)
 

(0.0,1.0) (0.0,1.0)

(0.0,1.0) (0.0,1.0)

|

|; 

𝑅𝑋
4 =

𝑥1         𝑥2             𝑥3                𝑥4           𝑥5

𝑥1

𝑥2
𝑥3
𝑥4

𝑥5

|

|

(0.0,1.0) (0.0,1.0) (0.0,1.0)

(0.0,1.0) (0.0,1.0)  (0.0,1.0)
(0.0,1.0) (0.0,1.0) (0.0,1.0)

 

(0.0,1.0)   (0.0,1.0)

(0.0,1.0)   (0.0,1.0)
(0.0,1.0)   (0.0,1.0)

(0.0,1.0) (0.0,1.0)  (0.0,1.0)
(0.0,1.0)  (0.0,1.0) (0.0,1.0)

 
(0.0,1.0) (0.0,1.0)
(0.0,1.0) (0.0,1.0)

|

|. 

From here we find 𝑅𝐷 = ⋃
𝑡=0,4

𝑅𝑋
𝑡 : 

𝑅𝐷 =

𝑥1         𝑥2             𝑥3                𝑥4           𝑥5

𝑥1

𝑥2
𝑥3
𝑥4

𝑥5

|

|

(1.0,0.0) (0.0,1.0) (0.0,1.0)

(0.2,0.4) (1.0,0.0)  (0.0,1.0)
(0.5,0.3) (0.0,1.0) (1.0,0.0)

 

(0.0,1.0)   (0.0,1.0)

(0.0,1.0)   (0.0,1.0)
(0.0,1.0)   (0.0,1.0)

(0.2,0.4) (0.3,0.1)  (0.0,1.0)
(0.5,0.3)  (0.3,0.2) (0.8,0.1)

 
(1.0,0.0) (0.0,1.0)
(0.7,0.2) (1.0,0.0)

|

|. 

Using the reachability matrix 𝑅𝐷, we write the expression 

(8): 

𝛷𝐵̅ = [(1.0,0.0)𝑝1]&[(0.2,0.4)𝑝1 ∨ (1.0,0.0)𝑝2]& 

            &[(0.5,0.3)𝑝1 ∨ (1.0,0.0)𝑝3]& 

            &[(0.2,0.4)𝑝1 ∨ (0.3,0.1)𝑝2 ∨ (1.0,0.0)𝑝4]& 

            &[(0.5,0.3)𝑝1 ∨ (0.3,0.2)𝑝2 ∨ (0.8,0.1)𝑝3 ∨ 

             ∨ (0.7,0.2)𝑝4 ∨ (1.0,0.0)𝑝5] . 

The vectors 𝑉̅1  and 𝑉̅2  before the first iteration of the 

algorithm will have the following form: 

𝑉̅1 =
|
|

(0.2,0.4)

(0.0,0.1)

(10000)

(01000)
(0.0,0.1)
(0.0,0.1)
(0.0,0.1)

(00100)
(00010)
(00001)

|
|
  

and 

𝑉̅2 =
|
|

(0.2,0.4)

(1.0,0.0)

(10000)

(01000)
(0.0,0.1)
(0.0,0.1)
(0.0,0.1)

(00100)
(00010)
(00001)

|
|
. 

After the first iteration of the Algorithm, we get: 

𝑉̅3 = 𝑉̅1&𝑉̅2 =
|

|

(0.2,0.4)
(1.0,0.0)

(10000)
(11000)

(0.0,0.1)
(0.0,0.1)
(0.0,0.1)
(0.0,0.1)

(01000)
(00100)
(00010)
(00001)

|

|
. 

The vectors 𝑉̅1  and 𝑉̅2  before the second iteration of the 

algorithm will have the following form: 

𝑉̅1: = 𝑉̅3 =
|

|

(0.2,0.4)
(1.0,0.0)

(10000)
(11000)

(0.0,0.1)
(0.0,0.1)
(0.0,0.1)
(0.0,0.1)

(01000)
(00100)
(00010)
(00001)

|

|
 

and 

𝑉̅2 =
|
|

(0.5,0.3)

(0.0,1.0)

(10000)

(01000)
(1.0,0.0)
(0.0,0.1)
(0.0,0.1)

(00100)
(00010)
(00001)

|
|
. 

After the second iteration of the Algorithm, we get: 

𝑉̅3 = 𝑉̅1&𝑉̅2 =

|

|

(0.2,0.4)
(0.5,0.3)

(1.0,0.0)

(10000)
(11000)

(11100)
(0.0,0.1)
(0.0,0.1)
(0.0,0.1)

(0.0,0.1)

(01000)
(00100)
(00010)

(00001)

|

|

. 

The vectors 𝑉̅1  and 𝑉̅2  before the third iteration of the 

algorithm will have the following form: 

𝑉̅1: = 𝑉̅3 =

|

|

(0.2,0.4)
(0.5,0.3)

(1.0,0.0)

(10000)
(11000)

(11100)
(0.0,0.1)
(0.0,0.1)
(0.0,0.1)

(0.0,0.1)

(01000)
(00100)
(00010)

(00001)

|

|

  

and 
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𝑉̅2 =
|
|

(0.2,0.4)

(0.3,0.1)

(10000)

(01000)
(0.0,0.1)
(1.0,0.0)
(0.0,0.1)

(00100)
(00010)
(00001)

|
|
. 

After the third iteration of the Algorithm, we get: 

𝑉̅3 = 𝑉̅1&𝑉̅2 =

|

|

|

(0.2,0.4)
(0.3,0.3)
(0.5,0.3)

(0.3,0.1)
(1.0,0.0)

(10000)
(11000)
(11010)

(11100)
(11110)

(0.0,0.1)
(0.0,0.1)

(0.0,0.1)
(0.0,0.1)

(01000)
(00100)

(00010)
(00001)

|

|

|

. 

The vectors 𝑉̅1  and 𝑉̅2  before the fourth iteration of the 

algorithm will look like: 

𝑉̅1: = 𝑉̅3 =

|

|

|

(0.2,0.4)
(0.3,0.3)
(0.5,0.3)

(0.3,0.1)
(1.0,0.0)

(10000)
(11000)
(11010)

(11100)
(11110)

(0.0,0.1)
(0.0,0.1)

(0.0,0.1)
(0.0,0.1)

(01000)
(00100)

(00010)
(00001)

|

|

|

  

and 

𝑉̅2 =
|
|

(0.5,0.3)

(0.3,0.2)

(10000)

(01000)
(0.8,0.1)
(0.7,0.2)
(1.0,0.0)

(00100)
(00010)
(00001)

|
|
. 

After the fourth iteration of the Algorithm, we finally get: 

𝑉̅3 = 𝑉̅1&𝑉̅2 =

|

|

|

(0.2,0.4)
(0.3,0.3)
(0.5,0.3)
(0.3,0.1)

(0.8,0.1)
(1.0,0.0)

(10000)
(11000)
(11010)
(11100)

(11110)
(11111)

(0.0,0.1)
(0.0,0.1)

(0.0,0.1)
(0.0,0.1)

(01000)
(00100)

(00010)
(00001)

|

|

|

. 

Thus, expression (10) for graph 𝐺̃3  has the form: 

𝛷𝐵̅ = (0.2,0.4)𝑝1 ∨ (0.3,0.3)𝑝1𝑝2 ∨ 

              ∨ (0.5,0.3)𝑝1𝑝2𝑝4 ∨ (0.3,0.1)𝑝1𝑝2𝑝3 ∨ 

              ∨ (0.8,0.1)𝑝1𝑝2𝑝3𝑝4 ∨ (1.0,0.0)𝑝1𝑝2𝑝3𝑝4𝑝5 . 

Whence it follows that this graph has 6 minimum 

intuitionistic antibases. From here it follows that:  

- if we have 2 evacuation centers at our disposal, then the 

best places for their placement are the vertices 𝑥1 and 𝑥2;  

- if we have 3 evacuation centers at our disposal, then the 

best places for their placement are the vertices 𝑥1, 𝑥2, and 𝑥4;  

- if we have 4 evacuation centers at our disposal, then the 

best places for their placement are the vertices 𝑥1, 𝑥2, 𝑥3, and 

𝑥4;  

- if we have only 1 evacuation center, then the best place is 

vertex 𝑥1. 

The antibase set for the considered graph 𝐺̃3 will look like: 

𝐵̃ = {< (0.2,0.4)/1 >, < (0.3,0.3)/2 >, 
 < (0.5,0.3)/3 >, < (0.8,0.1)/4 >, < (1,0)/5 >}. 

This set, in particular, can help answer the question: does it 

make sense to use two evacuation centers, or can one be 

enough? In this case, the intuitionistic reachability degree will 

decrease from the value (0.3,0.3) to (0.2,0.4). 

VII. Conclusion and Future Scope 

The problem of choosing places for evacuation centers when 

the territory model is represented by an intuitionistic fuzzy 

graph was considered. To solve this problem, the definitions 

of the minimal antibase and the antibase set of intuitionistic 

fuzzy graph were introduced. The method and algorithm for 

calculating all minimal antibases of graph have been 

considered. The numerical example of finding the antibase set 

has been reviewed and justified. It is shown that the antibase 

set allows solving the problem of choosing the places of 

evacuation points in an optimal way, depending on the number 

of evacuation centers. In this paper we considered the case of 

optimal placement of evacuation centers at the vertices of the 

graph. In further studies, it is planned to consider cases of 

placing evacuation centers on the edges of the intuitionistic 

fuzzy graph. In ordinary (nonfuzzy) graphs, such a problem is 

related to finding absolute centers [40, 41]. This in turn leads 

to the need to consider the problem of generating new graph 

vertices.  
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