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Abstract: In daily healthcare work routines, automatic 

diagnosis systems are essential. Human errors are very likely 

when working in those dangerous environments with a heavy 

workload and stress. One of the medical procedures where 

mistakes are risky and can result in severe complications if not 

caught in time is the task of positioning tubes and catheters. A 

type of tube is inserted for a patient as part of the tube 

placement procedure. The position of the installed tube is then 

determined by screening the patient. Waiting for a radiologist to 

confirm the diagnosis will delay the tube adjustment. Indeed, 

more complications may result from the tube adjustment delay 

or any potential diagnostic mistakes. Through this work, we 

propose a framework for diagnosis and validation for in-time 

tube placement error detection. The framework analyzes the 

chest X-ray right after the tube is inserted and generates a 

segmentation mask along with classification values for possible 

errors. Our proposed framework is founded on a customized 

U-net model that provides competitive segmentation results 

(dice coefficient of 94,5%) compared to the original U-Net model 

version. Moreover, the proposed framework is optimized to 

support deployment on production-edge mobile devices with 

75% fewer training parameters. 

 
Keywords: Semantic segmentation, U-Net, Endotracheal tube, 

Central venous catheter, Nasogastric tube, Chest X-ray image, 
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I. Introduction 

Diagnosis errors are frequent in healthcare (Diagnosis is 

wrong 10-15% of the time) [1]. The tubes and catheters 

positioning task are not an exception. Research revealed that 

10-20 % of inserted airway tubes (ETT and ET) are 

mispositioned [2]. Furthermore, 3 % of NG tubes are 

positioned abnormally within 40% of those errors causing 

grave complications [3-5]. There are multiple causes for this 

high number of complications that happened while or after 

installing a tube for the patient. First, patients needing these 

devices are in critical health situations or unconscious. So, the 

doctor gets no feedback from the patient helping him to adjust 

the device during the tube placement operation. Therefore, if 

an error occurs is not detected during the process. The second 

reason is that complications can be developed if a 

mispositioned tube is not adjusted immediately after the 

placement operation. This problem is due to delay caused by 

retarding the post-operative diagnosis. The post-placement 

diagnosis occurred by performing a Chest-X-Ray screening 

after the tube placement. Then the X-Ray image must be 

examined immediately by a radiologist who decides if the 

tube needs an adjustment. Delays or errors during this 

operation can cause serious complications. Another reason for 

this high number of complications is the low number of 

radiologists examining the post-operative X-Rays for a fast 

tube adjustment in case of errors. The diagnosis is suspended 

until a doctor is available, causing severe complications. An 

example of a serious problem is lung perforation [6]. The lung 

perforation is due to placing the ETT (Endotracheal tube) tube 

in one lung instead of the correct position between the two 

lungs (7cm above the carina [7]). Therefore, the other lung is 

still not ventilated, which causes lung perforation. Apart from 

these three reasons, there is always room for errors caused by 

human nature. A radiologist can misdiagnose a Chest-X-Ray 

for an inserted tube. So, an abnormally placed tube can be 

classified as normal, and the patient's case will get worst. 

Those types of errors can be avoided by using an automatic 

diagnosis system to help the experts to validate their diagnosis. 

We propose through this work a framework for automatic 

diagnosis verification. The framework can be used by a 

radiologist to get a prediction for possible errors within the 

mask images for those tubes. The final diagnosis is the 
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radiologist opinion based on the framework results. The 

proposed framework is designed to use in work environments 

and can be deployed on mobile devices with minimum 

performance. We demonstrated that we could reduce the 

number of parameters by 50%. We still get highly accurate 

results (approximately the same result as the full parameter 

model -1%) with an inference time of 30% less. The proposed 

framework could be embedded into hospital portable devices 

to help doctors’ diagnosing accurately the patients' X-Ray or 

to notify the doctors to adjust the tube for a suspect error. This 

paper is arranged as follows: Section II presents some 

background in Deep learning segmentation methods. In 

Section III, we introduce the Tubes and Catheters abnormal 

positioning segmentation-related works. In Section IV, we 

introduce the used Dataset. Section V introduces the 

methodology and presents the proposed Tube diagnosis 

framework. Section VI presents the results and the discussion. 

Finally, in section VII, we introduce the conclusion. 

II. Background 

In this section, we present the existing image segmentation 

approaches and their applications on medical images. Then 

we examine and compare the use of the traditional 

segmentation methods with deep learning-oriented 

segmentation methods. At the end of this section, we give an 

overview of the U-net model. 

A. Medical images segmentation 

Before diving into the medical image segmentation subject, 

we begin by giving a general definition of image 

segmentation. Image segmentation is the operation of 

partitioning an image into non-intersecting regions. Each 

region is homogenous. The goal is to detect an object in the 

image or simply remove the complexity of the image and 

make it easy to analyze. This process applies to different 

digitalized image types; light-intensity images, magnetic 

images (MRI), or X-ray images which is the subject of this 

study. Now move on to be specific and develop the medical 

image segmentation. Medical image segmentation consists of 

the extraction or isolation of interest regions from medical 

images such as MRI, CT scans, or X-ray images. The isolated 

area can contain bones, and medical devices, on any desired 

image part to focus. The segmentation helps to eliminate 

unnecessary details such as soft tissue, air, or boundaries from 

the image. There are two families of segmentation: traditional 

methods and deep learning-based methods. The first method 

uses techniques like edge detection and mathematical filters 

[8]. The second method uses the learning from annotated 

dataset Image-mask to train convolutional neural 

architectures like U-net, Mask R-CNN, or Feature Pyramid 

Network (FPN) [9]. The trained networks are saved and then 

used for inference on new patients’ Chest-X-Ray images. 

B. No deep learning segmentation methods 

Before the introduction of deep learning in medical image 

segmentation, classic segmentation technics were used. 

Classic segmentation focuses on the processed image and 

doesn’t require previous training on annotated images. 

Therefore, the approach is limited when images contain 

complex patterns, like in the case of medical images. An 

example of known classic segmentation technics is 

edge-based, region-based, and thresholding-based 

segmentations. One old, simple, and popular segmentation 

method is gray-level thresholding. The gray level 

segmentation consists of subdividing the image based on the 

variation of the gray level intensity (gray histogram). There 

are two known gray threshold families: global and local 

threshold segmentation. The global threshold is done by 

setting only one threshold value for the whole image [10]. 

Otherwise, the local threshold segmentation is performed by 

splitting the image into regions and setting a specific 

threshold for each image region [11-13]. Another 

segmentation method to mention is the edge-based approach. 

This technique aims to look at the pixel level point in which 

the gray level is burnt by examining neighbor points [14-16]. 

We exemplify only these two methods. However, there are 

plenty of ways for no deep learning image segmentation 

available in the literature. The choice of one technic or 

another depends on the presence or absence of edges, noise, 

and the nature of the image histogram. An example of the 

application of the classic segmentation method is 

threshold-based leg segmentation in chest x-ray images [17] 

and a CAD system for Lung Nodule Detection proposed by 

[18]. 

 

C. Deep learning medical image segmentation methods 

One of the most known deep learning segmentation methods 

for medical images is U-Net. U-Net is a convolutional neural 

network introduced recently by Ronneberger [19]. Later 

several modified versions were developed to be accurate or to 

reduce train and inference time. A reduced U-Net version was 

proposed by Matuszewski [20]. This reduced U-Net 

architecture is designed to recognize viruses from electron 

microscopy images. The deep learning methods consist of 

training a deep convolutional network like U-Net and then 

using this model for inference to segment new images related 

to the images into the initial training database. The advantage 

of this method is that it permits the extraction of complex 

shapes from images independently to their position or 

dimension into the inference image. 

D. U-Net Architecture 

The U-Net network is a convolutional neural network first 

designed for semantic segmentation (known as pixel-level 

segmentation) on biomedical images. The U-Net is a CNN 

encoder-decoder model with skipped and concatenated 

connections between equivalent levels from the encoder to the 

decoder. This symmetric connection between the same level 

layers from the encoder to the decoder gives the model the 

shape of U(U-Net). The convolutional layers are used to 

search features, and the skipped connections are used to 

localize them and put them in the right position in the 

segmented image. The architecture of U-Net is a succession of 

repeated blocs (convolution or deconvolution bloc). In the 

encoder: each bloc is formed by a convolution operation 

followed by the Relu activation function and Maxpooling for 

downsampling the input. For the decoder blocs, each bloc is 

formed by a deconvolution operation followed by the Relu 

activation function and Maxpooling for upsampling (see 

Fig.1). Sometimes during training to help the model better 
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generalize, a dropout layer is placed after the Relu layer. This 

helps the model avoid overfitting. In the original U-net 

version, the output layer is (1x1) convolution with a sigmoid 

activation function. The sigmoid function generates the final 

mask using a pixel-level classification. The output mask 

(segmentation result) has the exact dimensions as the input 

image. 

 

 

  
Figure 1. U-NET-64 Architecture. 

 

The power of U-Net is the ability to learn from a few samples 

which are suitable for the medical field. Indeed, the cost of 

labeling medical images is very height. The U-net is 

considered an improvement of its precursor Network FCN for 

semantic image segmentation developed by Jonathan Long et 

al. (2015) [21]. 

III. Related works 

In this section, we give an overview of related works to tube 

segmentation based on chest x-ray images for adult and infant 

patients. Moreover, we scroll the related work to the models' 

performance optimization and the number of parameter 

reductions. 

A. Tubes segmentation based on adult CXR images 

Medical segmentation is a hot research subject. Many recent 

works targets CXR-images segmentation; In one related work, 

Xiaoyan Wang [22] proposes a method for peripherally 

inserted central catheter (PICC) extraction and tips 

positioning predictions using Chest-X-ray images. The 

proposed method (MAG-Net) (Automatic multi-stage 

attention-guided framework) consists of two stages. The first 

stage is the coarse stage which the training is performed on the 

low-resolution image to identify the region that contains the 

PICC tube. Then, the desired area is extracted and replaced by 

a high-resolution part from the original image in the training 

dataset. The new image is used as an input to train the next 

stage model (fine tuning) to extract the tube. This approach 

permits the reduction of the training computing costs for the 

second stage model.  Instead of training on the entire 

high-resolution image, a small area of the original image is 

used (which contains the tube). The MAG-Net framework is 

adapted to extract very thin tubes such as PICC from 

high-resolution CXR images. 

 

B. Deep learning methods for segmentation of lines in 

pediatric chest radiographs 

Another study by Ryan Sullivan [23] presents a two-stage 

segmentation model en-coder-decoder that focuses on the 

segmentation of tubes from pediatric CXR images. The 

encoder is ResNet50, and the decoder is ResNet101. The 

objective is to check the existence of tubes in the image and 

then highlight them in the CXR image if found. The 

importance of this method is saving performance by selecting 

the only image with lines for training and inference of the 

segmentation model. So, the first stage operates like a filter 

selecting only images which contain tubes. The second stage 

process only the filtered data with images containing tubes. 

Therefore, the processing time is reduced for training and 

inference. 

C. Methods used to reduce u-net parameter number and 

increase Model performance 

1) Truncated Architectures 

Recently CNN models have been implemented in real-world 

medical devices and equipment. Those devices perform 

inference in real-time and require small models’ architectures 

with few parameters to function. So, the research focuses 

more on the performance optimization when developing 

models for medical devices use. The objective is to get more 

accurate results with less computing time and using less 

resources. An example of research proposed by [24] tests and 

compares several truncated medical-oriented architectures 

with fewer parameters like ResNet18 and Effi-cientNetB0 for 

diseases detection tasks on the CheXpert dataset. The tested 

models give equivalent results to the big architectures. 

Models’ truncation is performed by dropping some dense 

layers of the original models' structure and keeping the 

low-level layers unchanged. 

 

2)  knowledge Distillation 

knowledge distillation technic used to tackle the large models' 

inference latency on edge mobile devices. It permits building 

fast inference models with equivalent results as large models 

or an ensemble of models. The knowledge distillation method 

can reduce the model parameters by 50x [25] or high. The 

principle of the distillation is to train a large model known as 

the teacher network. The teacher is used to train a smaller 

target model known as the student model. This approach is 

first announced by [26]. There are three ways to apply 

knowledge distillation. First, use the teacher probabilities 

predictions to train the student model [26]. The second 

consists of using a noise-based regularizer according to the 

teacher while the student training [27]. The last distillation 

technique uses in-between replicas learned by the teacher 

combined with the final predicted probabilities distributions 

to train the student model [28]. 

 

3) Deep convolutional neural networks techniques for 

abnormal tubes detection task 

The Use of DCNNs to handle the task of abnormal tubes tends 

to replace methods based on feature extraction and SVM 

(Support Vector Machine) [29]. DCNNs benefit from a large 

amount of labeled available data that may be employed to 

identify tube mispositioning issues with excellent outcomes. 

Tubes, lines, and catheters are visible on 33% of chest X-ray 
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images [30]. Even yet, not much research focuses on 

automated multi-tubes position detection. Most of the work is 

focused on a specific type of tube, namely the ET tube. 

Otherwise, there are various efforts to prevent overfitting [31] 

by adding Gaussian noise, random brightness, and random 

gamma. The horizontal flip augmentation is utilized to 

simulate the AP/PA techniques used to capture X-ray images. 

IV. Dataset 

The following section introduces the dataset used for 

classification and segmentation tasks. We give the structure, 

labels, and technical parameters related to this dataset with 

brief data analysis for this dataset. 

 

A. Classification data 

The dataset we work with in this paper is the Royal Australian 

and New Zealand College of Radiologists (RANZRC) dataset 

[32]. The dataset was published publicly in 2021 by the 

Australian college to accurate the tubes and catheter detection 

task based on chest X-ray images. Twenty nine radiologists 

participate in the annotation of 40,000 samples with 11 tubes 

of positioning labels: Three classes for ETT (Ab-normal, 

Borderline, Normal), four classes for NGT (Abnormal, 

Borderline, Incomplete, Normal), three classes for CVC 

(Abnormal, Borderline, Normal), and finally one class for 

Swan Ganz tube (present)(see Fig.2).The training dataset is 

divided to train and validation parts; we resize the images to 

the classification model corresponding input. All the training 

images are augmented using random brightness. 

 

  
Figure 2. Dataset classes distribution. 

B. Segmentation data 

 

The dataset also contains 18000 images with their 

corresponding masks for the tube segmentation task. For the 

data repartition, 40% of the sample corresponds to unique 

patients (9095 patients). Otherwise, 20% correspond to 

patients having more than two x-ray images. In this study we 

use the segmentation part of the dataset to train our 

segmentation models, and we use the classification part to 

train classification models for the task of abnormal tube 

positioning detection. To prepare the data for the 

segmentation task. We start by resizing the images and masks 

to the target model input size. Then we normalize the images 

to get all pixel values between 0 and 1. After we split the data 

to train, validate, and test data. Then we convert the dataset 

into a TensorFlow tensor. Given the specificity of the tube 

segmentation task and that the data is enough to perform well 

for this task, we don’t introduce any augmentation during the 

training process. 

V. METHODOLOGY 

This work aims at extracting tubes and lines from a patient 

CXR image using a segmentation model (Customized U-net). 

The extracted tubes can be associated with their prediction 

labels using a Deep convolutional neural network. The 

segmentation results (Image mask) associated with the 

classification results (prediction about the position of these 

tubes) can be presented visually to the medical staff to make a 

final diagnosis. To achieve this purpose, we will test some 

U-net architectures for medical segmentation to choose the 

more accurate and less compute cost architectures. We trained 

several U-Net variants with different number of parameters. 

All the training processes and parameters are detailed below. 

A. Customized U-Net architectures 

We take the original U-Net architecture as an initial point to 

develop a compressed customized version of the U-net. For 

the rest of this paper, we call the developed version 

Custom-U-Net-F. F in Fig.3 refers to the number of filters. 

Custom-U-net model is formed by varying the number of 

filters for bought convolutional and deconvolutional U-Net 

blocs. Then we replace the output with a multiclass layer. The 

number of classes is 6, which is the possible types and 

placements of tubes we can find in a training mask image. 

Next, we adapt the network input to our desired training input; 

(256,256,3) for the input images and (256,256,1) for the 

mask’s images. The figure below shows the Custom-U-Net 

proposed architecture. We trained different Custom-U-Net 

variants by changing the number of filters. For evaluating and 

selecting the best Custom-U-Net variants, we compared the 

variants with the original trained U-Net network. 

 

 

  
Figure 3. Customized U-Net Architecture. 

B. Segmentation training process 

The training process described below is applied to each model 

independently. We use this process to optimize and acquire 

the highest outcome for each model so that we can compare 

them later using the inference dataset. The process starts by 

training the customs U-Net segmentation models with 

different numbers of parameters (see table .2) on the 

segmentation dataset. Each image in the training dataset 

corresponds to a mask. The training is performed on the train 

dataset splitted into train (60%) and validation (20%) (see 

Table 1.). We keep 20% of the data for tests. We use the 
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parameters in the table below (see Table 4.) as a starting point 

for all the models' training. The loss function is categorical 

cross-entropy, and we use dice-coefficient as a metric. We run 

all the pieces of training on a local CentOS machine using 

Keras framework for 50 epochs. Then, we save all the models 

weights for future inferences on the test dataset. 

 

Table 1. Dataset subsets for training, validation, and test. 

Number of Samples 

par dataset 

Splits (60% for Training, 

20% for validation and 20% 

for test) 

Training 10799 Sample 

Validation 3600   Sample 

Test 3600   Sample 

 

The table below chows all trained models in this work. 

 

Table 2. U-net Trained models list 

Custom U-Net 

Variant 

Number of trainable 

parameters 

U-Net-64 34 550 598 

U-Net-32 8 639 910 

U-Net-16 2 161 110 

U-Net-08 540 846 

U-Net-04 135 498 

U-Net-02 34 020 

 

C. Classification models training process 

In addition, the classification task is presented as a 

complement to the segmentation task, which is the main value 

of this study. Classification prediction associated with the 

segmentation image helps the medical staff to quickly validate 

the diagnosis and see if there is any issue. For the 

classification task, we select to test five models that fit well 

with the lines and catheters classification (ResNet50V2, 

DenseNet121, EfficientNetB4, DenseNet169, and Xception). 

We modified the original output to 11 classes new 

classification layer. We use transfer learning from ImageNet 

as initial weights initialization. To avoid training overfitting, 

we apply image augmentations such as rotation, horizontal 

flip, and random brightness. Moreover, we use early stopping 

and Learning rate reducer functions to stop training when the 

result doesn’t relieve. Please find below the list of 

classification models (see Table 3.). Notice that we perform 

all the training and inferences tasks using the Keras 

framework. 

 

 

Table 3. List of the classification trained models. 

Model Name Number of trainable 

parameters 

ResNet50V2 23,541,899 

DenseNet121 6,965,131 

EfficientNetB4 17,568,339 

DenseNet169 12,502,795 

Xception 20,829,491 

 

D. Classification models evaluation 

During training, performances are evaluated by AUC (area 

under the curve). We choose AUC because it’s an excellent 

metric for multiclass classification [33] problems. AUC 

estimates how the model can distinguish or separate classes. 

The higher the AUC, the better the model can classify 0s as 0s 

and 1s as 1s. Finding the ideal threshold values allows for the 

best possible separation between classes. AUC is calculated 

by measuring the percentage of TN (True negatives) and TP 

(True positives) compared to the sum of all True and False.  

 

Accuracy: The total classes predicted correctly by the model. 

 

  (1) 

E. Inference methodology 

In practice, the inference is the function of exposing a trained 

model to a new image never seen before by this model, which 

is a real-world use of a trained model. In this paper, we use the 

test data splits for both segmentation and classification data to 

test the inference. For the segmentation task we fed the model 

an image without a mask from the test data. The model 

provides the mask image as output. Otherwise, for the 

classification model, we fed the model by the same chest 

X-Ray image, the one used to feed the segmentation model, 

and we get as an output the probabilities predictions for each 

tube position. Then we combine them(predictions) with their 

corresponding segmented tubes. 

F. Framework of diagnosis validation 

The diagnosis validation framework proposed by this work 

will help the medical staff, to prevent complications caused by 

the tubes positioning errors, by providing highly accurate 

results. The framework uses the trained models to output a 

mask image with the present tubes and the associated 

positioning labels (classification prediction) for each tube. In 

practice, we give an input image to the framework, and the 

framework generates the tubes masks using the segmentation 

model and predicts their positions by the classification model. 

After that, the radiologist can decide if the tube is normally 

positioned or suggest an adjustment. The figures (see Fig.4 

and Fig.5) below shows how the framework works. 

 

  
Figure 4. Diagnosis validation and abnormal tubes detection 

Framework. 

 

To build an instance of this framework, we begin by choosing 

separately the best segmentation and classification models 

based on the test data. Both models have to accept the same 

input format, or we insert an adaptation transformer if the 

inputs are different. The segmentation and classification 

models are placed after the framework input layer. The second 

layer is used to combine the mask (segmentation output) with 

their corresponding prediction (classification output). Finally, 
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the last layer is a graphical interface to visualize and present 

the results to the radiologist who gives the diagnosis 

validation. The validation represents the output of our 

proposed framework. The image below shows the complete 

framework pipeline. 

 

  
Figure 5. Framework pipeline 

VI. EXPERIMENTS AND RESULTS 

A. Segmentation with customized U-Net architectures 

We trained six U-Net versions with different parameter 

numbers. All the models are trained using the same training 

pipeline. For the training pipeline, all U-Net models use the 

hyperparameters below (see Table 4.). For the optimizer, we 

use Adam [34] with a learning rate of 10e-3. Finally, we 

choose sparsecategorialCrossentropy as a loss function 

adapted to multiclass segmentation tasks. Indeed, we want 

that the mask distinct between different tube types 

highlighting them using different contrasts see Fig.6. 

 

  
Figure 6. Mask with multi-tubes 

 

Table 4. Segmentation training Hyperparameters. 

Models’ Training Hyperparameters 

Initial Learning rate 1e-3 

Gradient descent 

Optimizer  

Adam 

Loss Function SparseCategoricalCrossentropy 

Input Image Format (256,256,3) 

Mask Image Format (256,256,1) 

EPOCHS Number 25 

 

The table below shows the results of the six U-Net versions 

for the tubes and catheters segmentation task. The table 

reports the dice coefficients for each model inference on the 

3600 samples (test dataset). The result also shows the number 

of trained parameters for all U-Net variants. Moreover, we 

associate the result with the training execution time to 

evaluate the training speed of the models. 

Table 5. Tubes and catheters segmentation results. 

Custom 

U-Net 

Variant 

Number of 

trainable 

parameters 

Dice 

Coefficient 

Training 

time 

(Min) 

for 15 

epochs 

Inference 

time 

For 3600 

test 

Image 

(Second) 
U-Net-64 34 550 598 96.36% 4793.95 2010s 

U-Net-32 8 639 910 94.50% 2296.52 1498s 

U-Net-16 2 161 110 79.57% 1276.50 1299s 

U-Net-08 540 846 41.06% 702.13 1182s 

U-Net-04 135 498 5.35% 451.75 1167s 

U-Net-02 34 020 0,13% 279.71 1153s 

 

The objective is to select models accurate enough for the tube 

segmentation task and slight enough to run on medical 

devices. The more the model is parameters-less, the more is 

suitable for real-time inference in the work environments. The 

table below shows the dice coefficient degradation associated 

with the performance gain for different models' lengths (see 

Table 6.). 

We can see from the table below that the dice coefficient falls 

with the reduction of the number of model parameters. The 

DC values for the models U-Net-02, U-net-04, and U-Net-08 

are extremely low and not accurate enough to work with. 

However, for the other models U-Net16 and U-Net-32 the 

decrease of the DC coefficients 2% for U-Net-16 and 17% for 

U-Net32 is still acceptable for the segmentation task (see 

Fig.7). The best results are registered for the model U-Net-32 

with 75% parameter less compared to U-Net-64 while the dice 

coefficient is still approximately the same as U-Net-64 

(94.5%). 

Table 6. Parameters reduction percentage for customized 

U-net Models. 

Custom 

U-Net 

Variant 

Paramet

er 

reductio

n 

(U-Net-6

4 as a 

referenc

e) 

Dice 

Coeffici

ent 

Custom 

U-Net 

Variant 

Parameter 

reduction 

(U-Net-64 as a 

reference) 

U-Net-64 0% 0% 0% 0% 

U-Net-32 75% 1,93% 52,10% 25,47% 

U-Net-16 93,75% 17,42% 73,37% 35,37% 

U-Net-08 98,43% 57,39% 85,35% 41,19% 

U-Net-04 99,61% 94,45% 90,58% 41,94% 

U-Net-02 99,90% 99,87% 94,17% 42,64% 

 

The image below shows the mask output for the tested models. 

We noticed that the results are acceptable for the models; 

U-Net (64,32, and 16). However, for the other models (U-net 

8,4, and 2), the results are not intriguing. So, even though 

there is a huge drop in parameters for those models, they are 

useless (U-Net-2,4 and 8). For the selected models we can see 
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clearly that the results are exploitable. So, we can tolerate 

some loss of dice coefficient without a clear impact on the 

visual result (mask). Those models with fewer parameters can 

be deployed on production devices with low computing 

resources. Another advantage is the inference time for 

U-Net16 and U-Net32. We register 25% and 35% less 

inference time compared to U-Net64. Which is perfect in the 

production environment. For the 3600 tested images; 

U-Net-32 inference time is 1299s (360ms per image), and 

U-Net16 inference time is 1498 (416ms per image). Both 

models are considered acceptable compared to the inference 

time of the reference model U-Net-64 (0.55s per image). The 

large results gap is noticed for training time. For the reference 

model U-net64 the training takes 4793s (>17 hours) for 15 

epochs compared to the selected models U-net16 and U-net32 

which take successively 2296s and 1276s (< 12 hours). The 

reduced train time will help developers update and accurate 

quickly the models while collecting more data in the 

production environment. 

  
Figure 7. Segmentation predicted Masks for the trained U-net 

Models. 

B. Classification models results. 

The classification task is a supervised learning task performed 

using Deep Convolutional Neural Networks. Other technics 

are used to increase the accuracy of the classification tasks; 

for instance, stacked generalization [35-38]. We included a 

classification model optimization in this work as a 

complement to testing the proposed validation framework. 

The validation framework required two models: the 

segmentation and the classification model. For the 

segmentation, we proposed a detailed framework for selection 

and optimization. Otherwise, for the classification task we 

used an extension of one of our previous works [39-40] as a 

starting point. Then we adapted the model to the validation 

framework. The table below shows the training and inference 

results on the classification test dataset (see Table 7.). 

 

 

 

 

 

 

 

Table 7. Inference results on the classification test dataset. 

Model Name Number of AUC (Test dataset) 

trainable 

parameters 

ResNet50V2 23,541,899 89.89% 

DenseNet121 6,965,131 92.02% 

EfficientNetB4 17,568,339 87.23% 

DenseNet169 12,502,795 90.28% 

Xception 20,829,491 88.88% 

 

All the models are trained on the segmentation task. The task 

consists of predicting 11 possible placements for the inserted 

tube and catheters. The output for a tested Chest-X-Ray image 

is (11,1) vector with the AUCs for each class. The columns 

AUC in Table 7 show the AUC average for the inference on 

the test dataset. DenseNet121 is our selected model for the 

validation framework. The DenseNet121 has less trained 

parameter compared to the other models in the list, with the 

highest AUC (92.02%). All the tests carried out in the next 

section are performed using the DenseNet121 model. 

 

C. Validation framework results 

We test our framework using the test dataset. For the choice of 

the appropriate models, we pick the best classification and 

segmentation models based on the results in sections (6.2 and 

6.3). The schema below shows the diagnosis of a patient's 

CXR image processed by the proposed framework (see Fig.8). 

We can see from the classification prediction that the CXR 

contains an ETT tube correctly positioned with a percentage 

of 98%. Otherwise, the segmentation model outputs a mask 

that visualizes the ETT tube in the exact position. With this 

information, the radiologist can decide if the ETT tube was 

positioned normally in the patient's X-ray image. 

 

  
Figure 8. Validation Framework Output Example 1. 

In the second example (see Fig.9). There is a mismatch 

between the segmentation result and the classification 

prediction. The segmentation mask shows a CVC tube 

incompletely segmented; otherwise, the classification 

prediction showed that the CVC tube is borderline. In such a 

case, we move to the next layer of the validation framework 

(Radiologist). The radiologist can see the contradiction and 

decide according to what he sees on the mask and his 

experience. 

  
Figure 9. Validation Framework Output Example 2. 
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D. Discussion 

Our proposed segmentation model performs as well as the 

available related work to the tube segmentation task. Wang et 

al.[22] proposed a segmentation method for the PICC tubes 

with a dice coefficient of 44%. Considering that our work 

targets the segmentation of tubes other than PICC, it is still an 

equivalent task of general tube segmentation. So, we can 

compare our results with the Wang proposed model. Our 

model outperforms this result for all the segmented tubes in 

our study. We registered a dice coefficient of 94% for the 

U-Net-32 model. Moreover, comparing our result to Ryan 

Sullivan et al. The work of Ryan Sullivan addresses the tube 

segmentation of lines in a pediatric chest radiograph; the 

study reported a dice coefficient of 73% less than our dice 

coefficient of 94% (see Table. 8). 

 

 

Table 8. Related works results comparison. 

Model Dice Coefficient 

U-Net-32(Our) 94.5% 

TwoStage-UNet-EfficientNetB3[22] 73.7% 

Mag-Net [23] 44.11% 

 

All the tests presented in this work were carried out 

independently using the models forming the framework. We 

test the classification model on the test dataset. Then the 

segmentation model. The test of the complete framework in 

not been performed yet. Indeed, the test includes the view of a 

radiologist as a final step to decide if the tube is normal or 

abnormally positioned which is not available in this work 

project. We planned the includes this test in a future article. 

VII. CONCLUSION 

Tubes and catheters are saving lives devices; these devices are 

used in intensive care units to support ill patients in breeding, 

administrating drugs, or feeding unconscious patients 

[41][42]. Some errors in the placement process by doctors can 

cause crucial health complications. Moreover, correcting 

these errors as quickly as possible is mandatory[43]. Through 

this work, we propose a framework for accelerating tube 

readjustment procedures. The framework diagnoses the 

post-operation chest image and output immediately visual and 

numerical results for each present tube. The framework results 

are easily understandable by the medical staff. Then, a 

radiologist is needed for an urgent diagnosis validation of the 

suspect's possible error in priority to avoid the risk caused by 

the retard. Finally, the proposed tubes and catheter diagnosis 

validation framework gives a relevant diagnosis methodology 

and results. However, the framework still needs to be tested in 

real situations by medical experts in intensive care units. 

Endnote 

Part of this work was presented at the 13th International 

Conference on Innovations in Bio-Inspired Computing and 

Applications(IBICA’22), December 15-17, 2022 [41]. 
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