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Abstract: Nowadays, Breast cancer is a massive health 

problem worldwide. To fight against this disease, we propose a 

high-performance Computer-Aided Diagnosis system using deep 

learning. Specifically, we focus on the classification of 

histopathological images of breast cancer into two classes (benign 

and malignant). For that, we present a Mobilenet-based breast 

cancer classification model. This model is trained with a new 

extended Breakhis dataset, which is created by applying some 

data augmentation techniques. According to the experiments, 

our proposed model gives a very competitive result and the ac-

curacy reaches 0.9. This proposed model outperforms two others 

proposed models based on Inception and Inception-Resnet.  

 
Keywords: Breast cancer classification, MobileNet, Deep learning, 

Data Augmentation, BreakHis dataset 

 

I. Introduction 

Breast cancer is a disease due to the uncontrolled growth of 

certain cells in the breast. It is a major health issue and the 

leading cause of female cancer deaths in the world [33]. 

To fight against this disease and to improve the survival rate, 

the development of automatic medical imaging processing is 

becoming a necessity. Indeed, this field is a rapidly expanding 

area where the problem of automatic interpretation of medical 

images is a pressing need. And given the large number of 

medical imaging devices, it becomes tedious to process this 

huge amount of information, hence the need for artificial 

intelligence, especially in the deep learning field. In this 

context, a multitude of datasets are collected and a variety of 

deep neural networks have been proposed. 

In this work, we are interested in the classification of 

histopathological images of breast cancer into two binary 

classes (benign and malignant). To achieve this goal, and to 

obtain a robust model, we use the Breakhis dataset [1] as a 

model validator and the pre-trained network Mobilenet [2] as 

the features extractor.  

This paper is organized as follows: section 2 presents the 

field of automated Breast Cancer Diagnosis. Section 3 

describes the proposed materials and methods. In Section 4, 

we give and analyze experiment results, and at the end, 

conclusions and future works are given in Section 5. 

II. Automated Breast Cancer Diagnosis  

A. Breast cancer imaging modalities 

 

Since cancer detection at an early stage of its development 

considerably increases the chances of successful treatment, 

several breast cancer screening methods are proposed 

(Ethiopian Cancer Association 2016) and among which we 

cite: 

• Screen‑film mammography (SFM) 

• Digital mammography (DM) 

• Ultrasound (US) 

• Magnetic resonance imaging (MRI) 

• Digital breast tomosynthesis (DBT) 

• A genome Sequencing diagnostic (Gene) 

• Histology images diagnostics (Histology) 

In the table 1, we present some advantages and disadvantages 

of each modality. 

 

 

 

 

 

 

https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s10549-011-1683-z&casa_token=idTEeKiz864AAAAA:MXNNhyG1soS63wOedYgFwGbBLEPA_RZLSQC0FScZm2-6nGAJRiSjJp7qeBhg7lpSlxuBwtdiXAmw3g
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Table 1. Breast Cancer modalities 

Modality Advantages Disadvantages Breast cancer 

dataset samples 

SFM Detect lesions at an early stage, 

High sensitivity in detecting breasts with 

fatty tissue. 

Low sensitivity in detecting dense breast 

tissue,  

In dense breast tissue, 20% of tissue 

breast cancers are not visualized,  

Not digital imaging modality. 

VinDr-Mammo 

[3]. 

DM Effective imaging modality for early 

detection,  

Image improvement for better contrast is 

possible, 

Improves radiologist’s sensitivity 

compared to SFM. 

High imaging cost relative to SFM,  

High probability to miss cancer for 

overlapping breast tissue,  

High false positive results.  

 

InBreast [4] 

Mammography 

Image Analysis 

Society 

(MIAS)[5] 

CBIS-DDSM 

Digital Database 

for Screening 

Mammography 

(DDSM)[6]. 

 

US Achieved high accuracy in detecting and 

classifying benign and malignant,  

High sensitivity to identify abnormalities in 

dense breasts. 

Breast lesions detection is possible only 

with the help of an operator,  

Ultrasound image interpretation is not 

straightforward. 

Breast US 

Image [7]. 

MRI Used for clinical diagnosis and monitoring 

of breast cancer, 

Has high sensitivity for breast cancer 

diagnosis compared to US and DM. 

It has low specificity,  

It is expensive compared to US and DM. 

DCE-MRI[8]. 

DBT Improves the effect of overlapping breast 

tissue using reconstructed volume,  

Significantly decreases screening recall and 

decreased women's compliance,  

Reduces the number of false positives and 

false negatives,  

Detects more invasive cancers, malignant 

and benign lesions compared to 2D DM,  

Achieves high-resolution images with 

limited-angle tomography,  

Produces multiple 3D images with a single 

screening, 

Improves accuracy, sensitivity, and 

specificity compared to DM,  

Benign visibility is superior in DBT than 

DM. 

X-ray dose for tomosynthesis image is 

similar to DM,  

It is very expensive compared to SFM, 

US,DM, and MRI,  

Calcification detection using DBT is 

questionable,  

Benign visibility is higher but mimic 

malignant mass-like appearance. 

the Duke 

University 

Health System 

[9]. 

Gene Provide a precise diagnosis,  

Particularly helpful in proactively treating 

cognitive or behavioral disorders before 

people show signs of disease. 

Generate a large volume of data, although 

most of the data could be misleading or 

useless, 

It is also less efficient at predicting some 

conditions because there are conditions it 

is not screened for, 

It may uncover information that an 

individual may not be looking for and 

does not want to know. 

NKI Breast 

Cancer Data 

[10], 

Breast Cancer 

Proteomes [11]. 

Histology Provide more comprehensive information 

for diagnosis and the diseases are analyzed 

by detecting tissue and cells in lesions. 

Preparation of the slides using the paraffin 

technique can be time-consuming; frozen 

slides are faster to prepare, but this can 

affect the resolution, especially when 

using light microscopy. 

Bioimaging 

Challenge 2015 

Breast 

Histology 

Dataset [12], 

The BACH 

dataset [13], 

BreaKHis [1]. 
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B. Histological Breast cancer image datasets 

Over the last few decades, a lot of datasets were produced and 

published in different repositories and some of them were 

publicly available for use. Histological Breast cancer image 

analysis has mainly used these databases. The summary of the 

most cited and recently updated histological breast cancer 

databases is presented in Table 2. 

 

Table 2. Breast Cancer Images Datasets. 

Name Classes Images 

Bioimaging Challenge 2015 

Breast Histology Dataset [12]. 

4 249 

The BACH dataset[13]. 4 500 

BreaKHis [1]. 2 7909 

 

In Bioimaging Challenge 2015 Breast Histology Dataset 

[12], images are composed of high-resolution (2040 × 1536 

pixels). All the images are digitized with the same acquisition 

conditions, with a magnification of 200×. Each image is 

labeled with one of four classes:  

1. normal tissue,  

2. benign lesion, 

3. insitu carcinoma,  

4. invasive carcinoma. 

 

However, the BACH dataset[13] is composed of 

microscopy images annotated by two expert pathologists from 

the Institute of Molecular Pathology and Immunology of the 

University of Porto (IPATIMUP) and the Institute for 

Research and Innovation in Health (i3S). This dataset is 

composed of 400 training and 100 test images, with four 

classes. Images, where there was disagreement between the 

Normal and Benign classes, were discarded. The provided 

images are in RGB .tiff format and have a size of 2048 × 1536 

pixels. The labels of the images were provided in .csv format.  

The BreakHis [1] is an open-source dataset available. It 

consists of 7909 clinical breast tumor histopathological 

images of 700 x 460-pixel size, respectively, including 2480 

benign tumors (adenoma, fibroadenoma, trichome tumors, 

and tubular adenoma) images and 5429 malignant tumors 

(ductal carcinoma, lobular carcinoma, mucinous carcinoma, 

and papillary carcinoma) images at four magnifications of 40, 

100, 200, and 400 as shown in Table 3.  

 

Table 3. The Breakhis image distribution by the 

magnification factor. 

Magnification 

factors 

Class 

Benign 

Class 

Malignant 

Total 

40× 625 1370 1995 

100× 644 1437 2081 

200× 623 1390 2013 

400× 588 1232 1820 

 

Figure 1 illustrates four different magnification images of 

breast tissue sections containing malignant tumors from the 

BreakHis dataset.In this work, we focus on the BreakHis 

dataset because it has the highest number of images. 

 

 
Figure 1. A slide of a breast malignant tumor seen in different 

magnification factors:  (a) 40×, (b) 100×, (c) 200×, and (d) 

400×[1] 

 

C. Previous works on BreakHis 

With the importance of breast cancer classification in 

histopathological imaging, as shown in Table 4, there are 

several studies in the existing literature, and the most recent 

ones are based on the deep learning field. The most common 

works used the Convolutional Neural Network [14] or the pre-

trained models such as AlexNet [15], GoogleNet [16], ResNet 

[17], and VGG16 [18]. Indeed, F. A. Spanhol et al. [19] 

presented a novel strategy for training the Alexnet-CNN 

architecture, based on the extraction of patches obtained 

randomly or by a sliding window mechanism, to process high-

resolution textured images. Experimental results obtained on 

the BreaKHis dataset showed high performance and the 

accuracy reached 85.6 %. 

In [20], H. Seo, et al. proposed a novel Primal-Dual Multi-

Instance SVM classification method, which allows scaling to 

a wide range of features. Histopathological images are 

segmented into patches. The feature vector is extracted 

through the Parameter Free Threshold Statistics (PFTAS) 

method for each patch. The PFTAS method extracts texture 

features by counting the number of black pixels in the 

neighborhood of a pixel. Experiment results on the BreaKHis 

dataset showed an improved accuracy of 89.8%. In [21] a 

Deep Convolution Generative Adversial Network (DCGAN) 

is applied to give the number of consistent images in the 

minority class (benign) with that in the majority class 

(malignant). In addition, the pre-trained DenseNet201 model 

is used, and features are extracted from the lower layers of 

DensNet201, via a global average pooling (GAP). These 

features are passed throw the SoftMax layer to classify breast 

cancer. The proposed architecture was evaluated using 

histopathological images from the BreakHis database and 

showed promising results with 96% with the 40× 

magnification. 

M. Saini et S. Susan [22] used the Deep Convolutional 

Generative Adversarial Network (DCGAN) for minority data 

augmentation in the initial phase of their experiments. 

DCGAN is used to generate high-quality synthetic fake 
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images from the available distribution of minority data. Then, 

the new dataset, with a balanced class distribution, is got 

across the deep transfer network. To enhance the network 

performance, the proposed VGG16 deep transfer architecture 

is followed by the batch normalization, 2D convolutional 

(CONV2D) layer, 2D Global Average Pooling, dropout, and 

dense layers. The model is evaluated using a two-class 

BreaKhis provided at four magnification levels and the best 

accuracy was 96.5%. 

A. M. Ibraheem et al. [23] proposed three parallel CNN 

branches (3PCNNBNet) for breast cancer classification 

through histopathological images. This network offered 

several advantages, such as learning the high-level and low-

level features by considering local and global features 

simultaneously. They also deployed deep residual blocks 

using skip connections to help the proposed model overcome 

the vanishing gradient problem and to improve training and 

testing. The proposed 3PCNNB-Net architecture was 

evaluated using histopathological images from the BreakHis 

database. The 3PCNNB-Net architecture achieved promising 

results, including a maximum accuracy of 97.04% with a 200× 

magnification. 

Y. Zou et al. [24], introduced a novel attention high-order 

deep network (AHoNet) by simultaneously embedding 

attention mechanism and high-order statistical representation 

into a residual convolutional network, this technique allows 

the network to capture more discriminant deep features for 

breast cancer pathological images. Experiments on the 

benchmark BreakHis dataset for different magnification 

factors: 40X, 100X, 200X, and 400X validate the 

effectiveness of the proposed deep network in terms of the 

high scores obtained compared to the state-of-the-art deep 

networks, in fact, AHoNet gets the optimal image-level 

classification accuracies of 99.09%. 

III. Materials and Methods 

A. Data Augmentation on BreakHis histopathological breast 

cancer dataset 

As the size of the dataset plays a very important role in 

achieving excellent performance in a deep-learning model, 

data augmentation enhances network performance and 

overcomes the overfitting problem [25].  

Data augmentation is a process of artificially increasing the 

amount of data by generating new data points from existing 

data. Augmented data are derived from original images with 

some sort of minor geometric transformations to increase the 

diversity of the training set. 

In this study, multiple data augmentation techniques are 

applied, creating multiple versions of each image. Moreover, 

the horizontal flip transformation is used to generate synthetic 

high-quality fake images from the available distribution of 

minority data (benign). So, the class distribution is balanced. 

Then some other techniques are used to increase the total 

number of images in this new extended dataset we use the 

vertical flip, rotation, cropping, and sharpening techniques so, 

as shown in Table 5. As a consequence, the total number of 

images becomes 51945 (24800 Benign and 27145 Malignant) 

as illustrated in Figure 2.  

 

Table 4. Compared results with CNN-based methods on the BreakHis dataset at the image level 

System Data Augmentation Features 

extraction 

Classification Magnification Accuracy

% 

F. A. Spanhol et al. [19] - AlexNet CNN Softmax layer All 85.60  

H. Seo, et al. [20] - PFTAS 

method. 

Primal-Dual 

Multi-Instance 

SVM  

200X 89.80 

H. Djouima,et al. [21] DCGAN +  

rotation ; shear; zoom; 

horizontal flip; fill 

mode; width shift; 

height shift. 

DenseNet201. Softmax layer 40X 96.00 

M. Saini et S. Susan [22] DCGAN. VGG16+ 

CNN. 

Softmax layer 40X 96.50  

A. M. Ibraheem et al. 

[23] 

-Three zoom ranges, 

-Rotation at 90°, 

-Horizontal and 

vertical flipping. 

Three parallel 

CNN branches 

+ residual 

blocks. 

Softmax layer 200X 97.04 

Y. Zou, et al. [24] - simple cropping, 

-horizontal and vertical 

flipping, 

-rotation (90, 120, and 

180), 

-Cutmix method for 

data amplification. 

ResNet1825 

+ attention 

mechanism + 

high-order 

statistical 

representation. 

Softmax layer 200X  99.09  
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Table 5. Data augmentation techniques were applied to 

image “SOB_B_A-14-22549AB-40-017” from the Breakhis 

dataset. 

Image Transformation 

 

Raw image 

 

Horizontal flip 

 

Vertical flip 

 

Rotation 

 

Crop 

 

Sharpen 

 

 
Figure 2. The balanced class distribution in the new 

extended Breakhis dataset 

B. MobilNet for features extraction 

MobileNet V3 is a family of neural network architectures for 

efficient on-device image classification and related tasks, 

originally published by A. Howard et al. [2]  

Similar to earlier MobileNets, MobileNet V3 adjusts the 

accuracy vs. latency tradeoff by multiplying the depth 

(number of features) in the convolutional layers. In order to 

adapt the network to use cases requiring low or high resource 

levels, MobileNet V3 is available in two sizes, small and large. 

All pre-trained checkpoints were provided with the exact 224 

× 224 input resolution, even though V3 networks, like other 

Mobilenets, can be constructed with different input 

resolutions. This TF Hub model uses the TF-Slim 

implementation of mobilenet_v3 as a large network with a 

depth multiplier of 0.75. 

This implementation of Mobilenet V3 (Figure 3) rounds 

feature depths to multiples of 8. Depth multipliers less than 

1.0 are not applied to the last convolutional layer (from which 

the module takes the image feature vector). 

The model contains a trained instance of the network, 

packaged to get feature vectors from images. the full model 

including the classification it was originally trained for use. 

The checkpoint’s weights were originally obtained by training 

on the ILSVRC-2012-CLS dataset for image classification 

("Imagenet"). 

 

 
Figure 3. The Mobilenet architecture for features extraction. 

 

C. Fully connected network for classification 

A fully connected layer refers to a neural network in which 

each neuron applies a linear transformation to the input vector 

through weights matrix. As a result, all possible connections 

layer-to-layer are present, meaning every input of the input 

vector influences every output of the output vector. 

High-level features in the data are represented in the 

convolutional layer output. It is possible to flatten that output 

and connect it to the output layer, but adding a fully connected 

layer provides a (typically) less expensive technique to learn 

non-linear combinations of these features. 

 

D. BatchNormalization layer 

The BatchNormalization layer normalizes the activation of the 

previous layer at each batch and by default, it is using the 

following values: 

• Momentum defaults to 0.99 

• The hyperparameter ε defaults to 0.001 

• The hyperparameter β defaults to an all-zeros vector 

• The hyperparameter γ defaults to an all-ones vector 

https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v3.py
https://www.tensorflow.org/hub/common_signatures/images#feature-vector
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E. Dropout 

In a deep network, overfitting may occur as a result of the huge 

number of parameters. To protect the network against this 

problem, dropout [26] was applied in different layers. This 

technique is highly effective although it may increase the 

training time since it consists in temporarily removing 

randomly selected units from the network during the training 

step. This regularization method improves network 

performance and significantly reduces the error rate. 

F. ReLU 

As the activation functions can change any linear classifier 

into a non-linear one, they are regarded as a vital component 

of neural networks. These activation functions have also 

witnessed high performance across several tasks in recent 

years. Different activation functions like tanh or sigmoid can 

approximate arbitrary continuous functions, so, theoretically, 

they are often considered equivalent; however; practically 

they often show very diverse behaviors. For example, the 

sigmoid was revealed to be less suitable for learning despite 

its highly important activation functions in neural networks. 

This different behavior is caused by its small derivative which 

may result in the vanishing gradients phenomenon. In this 

framework, the ReLU function has proven its greater 

suitability because it has an identity derivative in the positive 

region and is thus claimed to be less susceptible to vanishing 

gradients. 

G. System architecture 

First, The Breakhis dataset is randomly shuffled to be divided 

into training, testing, and validation sets. Then, the images are 

resized to 224 × 224 pixels to comply with the input size 

requirements of MobileNet V3[2] used for feature extraction. 

The MobileNet aims to use depthwise separable convolutions 

to make lighter deep neural networks, so the computational 

cost is less than the regular convolutional networks. However, 

MobileNet V3 uses a depth (number of features) multiplier in 

the convolutional layers to adjust the tradeoff between 

accuracy and latency.  

For classification, we propose a fully connected network 

with four dense layers, three Batch normalization layers, and 

three dropout layers with a rate of 0.5. 

Our proposed model to classify the histopathological 

images of breast cancer into benign and malignant classes is 

presented in Figure 4.  

 

 
Figure 4. The proposed system architecture 

 

IV. Experiment results and comparison  

A. Experiment results 

To train our model, we choose the Adam optimizer [27] and 

use the 5-Fold Cross Validation Technique, we perform 

categorical cross entropy [28] as a cost function and we set the 

batch size parameter as 32. 

The best accuracy during the training is 0.99. Figure 5 

visualizes the model performance history during the training 

and validation steps [29]. 

In addition, to analyze the recognition results on the testing 

set, we make the confusion matrix for our proposed model, as 

shown in Figure 6. It’s pretty obvious that our method has a 

very good discriminative effect on the histopathological 

images of breast cancer [34]. 

To evaluate the results, we follow the metrics proposed in 

[30] as it is a classification task. The proposed models are 

evaluated by Accuracy A, Precision P, Recall R, and F-score 

F. 

These metrics are computed according to Equations 1,2,3 

and 4 where TP is the number of True Positive, TN is the 

number of True Negative, FN is the number of False Negative, 

and False Positive (FP). 

 

𝐴 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (1) 

𝑃 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃 
    (2) 

𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁 
     (3) 

𝐹 =  
2∗𝑃∗𝑅

𝑃+𝑅 
    (4) 

 

𝐴 =  0.902  ;         𝑃 = 0.904  ;  
 𝑅 = 0.897 ;        𝐹 = 0.900 
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Figure 5. Accuracy and Loss during training and validation. 

 

 
Figure 6. Confusion matrix. 

B. Comparison 

We train the proposed system with other deep models using 

other features extraction techniques such as Inception V3 and 

Inception_resnet V2 presented below: 

1) Inception V3 

Inception V3 is a convolutional neural network, which uses 

the mathematical operations pooling and convolutions. The 

inception module is illustrated in Figure 7. 

A typical pooling and convolutional layer stem, followed 

by pooling layers in between inception modules, make up the 

architecture. The Inception V3 architecture also uses 

reduction modules, which are conceptually equivalent to 

inception modules but aim to condense the input's dimensions. 

Inception V3 has roughly 24M parameters in total. It's also 

important to note that the V3 employs an RSMProp optimizer 

and requires an input of 299×299×3 by default. 

 

2) Inception_resnet V2 

A convolutional neural architecture called Inception-ResNet-

v2 expands on the Inception family of architectures while 

incorporating residual connections, replacing the filter. 

A convolutional neural architecture called Inception-

ResNet-v2 expands on the Inception family of architectures 

while incorporating residual connections, replacing the filter 

concatenation stage of the Inception architecture, as shown in 

Figure 8.  

We note that Inception-ResNet-v2 is a variation of the 

Inception V3 model, and it is considerably deeper than the 

previous Inception V3 but the Mobilenet uses Depthwise 

separable convolution while Inception V3 uses standard 

convolution. This results in a lesser number of parameters in 

MobileNet compared to InceptionV3. 

To evaluate the results, we follow the same metrics 

proposed before, and both proposed models are evaluated by 

Accuracy A, Precision P, Recall R, and F-score F. 

Experimental results are listed in Table 6. 

 

Table 6. Obtained metrics by proposed models validated on 

the Breakhis dataset. 

Metrics Mobilenet_V3 
Inception_v3 

[31] 

Inception 

resnet[32] 

Accuracy 0.902 0.899 0.896 

Precision 0.904 0.900 0.898 

Recall 0.897 0.893 0.891 

F1-score 0.900 0.897 0.894 

 

V. Conclusions 

This paper presents a Mobilenet-based model for breast cancer 

classification from histopathological images. This model is 

trained with a new extended Breakhis dataset, which is created 

by applying some data augmentation techniques. Based on the 

experiments, our proposed model gives a very competitive 

result. Indeed, the accuracy reaches 0.9. This proposed model 

outperforms two others proposed models based on Inception 

and Inception-Resnet. 

In Future work, we propose to improve the network by 

increasing its depth to classify the subclasses of the BreastHis 

dataset.  
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Figure 7. The Inception V3 architecture for features extraction 
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Figure 8. The Inception Resnet V2 architecture for features 

extraction. 
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