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Abstract: As the need for replacing fossil and other non-

renewable energy sources with renewables becomes more critical 

and urgent, wind energy appears to be among the two or three 

best choices for the short and medium time frames. The 

dominance of wind energy as the first choice in many regions, 

leads to an increasing impact of wind power quality on the 

overall grid. Wind energy’s inherent intermittent nature, both in 

intensity and longevity, could be an impediment to its adoption 

unless utility operators have the tools to anticipate the impact 

and integrate wind resources seamlessly by increasing or 

reducing its contribution to the overall capacity of the grid. The 

wind forecasting science is well established and has been the 

subject of serious study in multiple fields such as fluid dynamics, 

statistical analysis and numerical simulation and modeling. With 

the renewed interest and dependence on wind as a major energy 

source, these efforts have increased exponentially. One of the 

areas that shows great promise in developing improved 

forecasting tools, is the category of “Biological Inspired 

Optimization Techniques. The study presented in this paper is 

the result of a study to survey and assess an array of forecasting 

models and algorithms.    

 

Keywords: Wind Forecasting, Computational Fluid Dynamics, 

Support Vector Machine Method, Random Theory, Bio-inspired 
Optimization Methods. 

I. INTRODUCTION 

Wind power has seen considerable increase in all energy 

power systems. In the near future offshore wind power is also 

expected to expand rapidly as the world needs quickly to be 

energy independent from Russia.  

Wind power is variable and intermittent since it is weather 

dependent, as such, wind power integration into traditional 

transmission lines needs additional power systems and 

electricity market planning and management for system 

balancing. This extra system balancing means that there are 

additional system costs associated with wind power 

assimilation. Wind power forecasting and prediction methods 

are used by system operators to plan unit commitment, 

scheduling, and dispatch and by electricity traders and wind 

farm owners to maximize profit. Accurate wind power 

forecasting and prediction has numerous challenges.  

In this paper, different methodologies for wind power 

prediction are introduced and analyzed. As wind energy takes 

on a more significant role in fulfilling the need to replace fossil 

fuels, developing better forecasting tools for wind power 

become even more critical. The accuracy and precision of 

wind power forecasting are essential in making wind energy a 

reliable component of the overall energy supply infrastructure. 

The increasing ratio of wind energy supplies in relation to 

conventional sources, puts on more stringent requirements for 

its stability and reliability. Better forecasting allows 

increasing integration of wind power for utilities and therefore 

an increasing opportunity for wind power to replace fossil 

fuels. There are several techniques and mathematical models 

that allow to minimize the negative impacts of wind and 

power prediction problems [1-7]. Some of these models and 

mathematical techniques are inspired by biological algorithms 

based on Artificial Intelligence [8-18]. This paper is an 

extension of the research started by Puga, et al. [17]. To 

determine the best option, the following techniques were 

considered and analyzed: Fuzzy Logic based algorithms, 

Neural Network base algorithms, The Grey Model, 

Algorithms (GA), Empirical Mode Decomposition (EMD), 

Random Theory-based algorithms (RTA), Computational 

Fluid Dynamics-based algorithms (CFD), and Support Vector 

Machine Method algorithms. 

This paper, it is organized as follows: Section II, Bio-Inspired 

Optimization Techniques, section III, a summarized Fuzzy 

Logic based algorithm, section IV, Neural Network base 

algorithms, section V, the Grey Model and section VI an 

integration of Neural Networks and Genetic Algorithms. 

Section VII presents the Empirical Mode Decomposition, 

section VIII, Random Theory based algorithms, section IX, 

Computational Fluid Dynamics based algorithms and section 

X, Support Vector Machine Method algorithms. In section XII 
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a comparative analysis of the multiple algorithms is presented 

and in section XIII, main conclusions, along with future work 

suggestions are provided. 

II. Bio-Inspired Optimization Techniques 

The routine of an organization often involves solving a large 

number and diversity of optimization problems, with a 

significant impact on the organization’s performance. 

Production and distribution planning, transport planning, 

resource allocation (raw materials, labor or time availability 

in machinery) and task scheduling are classes of combinatorial 

optimization problems common in the industrial reality.  

The existence of efficient, reliable, and cheap computing 

processing power over the last decades, had transformed many 

fields of science and engineering. This context facilitates the 

development of new optimization algorithms that operate in a 

rather different way than the classical ones, and that allow 

practitioners to solve optimization problems where the 

classical optimization methods are not applicable or simply 

too hard (in terms of processing time and other resources) to 

use. 

Over the past decades there has been a growing interest in the 

application of algorithms that somehow adopt the principles 

of natural processes, particularly about the biological 

component. The assumption that by understanding the 

solutions that nature employs in your daily life, we can use 

this knowledge acquired to solve our problems [9-11]. Such 

class of methods have received different names, such as Meta-

Heuristics, Nature-Inspired Techniques, Soft Computing, 

Evolutionary Computing and Swarm Intelligence [7-11],[19-

21]. 

Bio-Inspired Optimization Techniques form a class of 

approximate resolution methods, based on Artificial 

Intelligence concepts, specially developed to address complex 

combinatorial optimization problems. They consist of general 

research strategies, inspired by concepts from diverse areas 

such as classical heuristic procedures, biological evolution, 

neuronal systems, nature-inspired behaviors like the collective 

behavior of decentralized and self-organized systems, or 

statistical mechanisms. For example, Taboo Search, Genetic 

Algorithms, Neural Networks, Ant Colony Optimization, 

Particle Swarm Optimization, and others [7-11]. 

III. FUZZY LOGIC-BASED ALGORITHMS 

Even if the theory of fuzzy logic had been studied since the 

1920’s, the term fuzzy logic was only introduced in 1965 by 

Lotfi Zadeh, a professor of UC Berkeley in California. Lotfi 

showed that conventional computer logic was inefficient 

when it manipulated data representing subjective or unclear 

human ideas. Fuzzy logic was designed to allow the computer 

to determine the distinctions between data which is neither 

true nor false. This theory can be used to the Wind Power 

Forecasting. Fuzzy algorithm has been applied to various 

areas, from control theory to Artificial Intelligence (AI). 

Fuzzy logic algorithms approach the truth or false through the 

following procedure: 0 and 1 are set as the extremes, and in 

between there exist different degrees of truth. Something like 

the process of human reasoning.  

There are largely three types of fuzzifiers: 

• Singleton fuzzifier; 

• Gaussian fuzzifier; 

• Trapezoidal or triangular fuzzifier. 

 

Advantages of Fuzzy Logic System:  

• This system can work with inaccurate, distorted, or noisy 

input data; 

• The structure of Fuzzy Logic is simple and clear; 

• Fuzzy Logic comes with mathematical concepts from set 

theory and using it is simple; 

• It supplies efficient solution to complex problems in all 

fields that resembles human reasoning and decision-making; 

• Algorithms that can be characterized without much data, so 

less memory is needed. 

 

Disadvantages of Fuzzy Logic Systems: 

• There is no systematic approach to solve a given problem 

through fuzzy logic; 

• Confirmation of its characteristics is difficult or impossible; 

• As fuzzy logic works on precise as well as imprecise data 

so it is not timely accurate. 

 

Fuzzy logic is applied in three steps: first, fuzzification, where 

fresh inputs are exchanged for blurred ones; second, these 

inputs are used to generate a blurred signal; third, 

defuzzification, where results are graded and there can be 

more than one result, each with a different grade. Fig. 1 shows 

the diagram of fuzzy logic. 

 

Figure 1 – Fuzzy Logic structure 

Adaptive Neuro-Fuzzy Inference System (ANFIS) is an 

adaptive multi-layer feed forward network used for prediction 

of non-linear systems. This method uses past data samples to 

predict the future data, aligned with the self-learning ability of 

neural networks, in conjunction with a linguistic expression 

function of a fuzzy inference system. 

A. Fuzzy Rules knowledge base  

IF- THEN rules. Firstly, is consider Multi-Input, Single-

Output fuzzy systems: 

 

U⊂R^n→R                  (1) 

 

Where U is compact. 

 

The Multi-Input, Single-Output rules are: 

 

R(j): IF x1 is Aj,1, 

 

  x2 is Aj,2, and…and xL is Aj,L; 

 

  THEN y is Bj, 

 

Where; 
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j = 1,2,3,…,N; 

xi for i = 0,1,2,3, …,L; 

x is the input variable and y is the output variable. 

A and B are the linguistics terms characterized by the fuzzy 

membership functions µAj,I and µBj, respectively. 

Every R(j) able to be seen as a fuzzy implication where: 

 

A(j,1)×…×A(j,L)→Bj,1.             (2) 

 

Rule base includes the rule set and the IF-THEN conditions, 

provided by the experts to support the decision-making, based 

on linguistic information. Current developments in fuzzy 

theory offer several effective methods for the design and 

tuning of fuzzy controllers. Most of these developments 

reduce the number of fuzzy rules. 

B. Fuzzifier  

The concept of the fuzzifier is to transform a crisp input x into 

a fuzzy [13] sets defined in 𝑈𝑥 → [0,1]. 

Summing up the fuzzification step helps to convert inputs. It 

allows the conversion of crisp numbers into fuzzy sets. For 

example, crisp inputs measured by sensors and passed into the 

control system for further processing, like temperature, 

pressure, wind speed measure, etc. 

C. Inference Engine 

It helps to determine the degree of match between fuzzy input 

and the rules. Based on the % match, it determines which rules 

need implementation according to the given input field. 

Afterwards, the applied rules are combined to develop the 

control actions. So, when data is passed given, the fuzzy rules 

in the first stage are inferred, and then the consequences of the 

intermediate variables in the inference stage are formulated 

before they are passed on to the next stage as data. To 

construct a multi-stage inference fuzzy system, the most 

influential parameters of input variables are usually organized 

in the first stage, and so on [13]. There are several models for 

fuzzy inference in this paper, for example, one fuzzy inference 

system mapped to a neural network structure with five layers. 

D. Defusser 

Defuzzification convert the fuzzy sets into a crisp value. There 

are many techniques available, so one need to select the most 

suited for the defuzzification. 

One example is the mapping from fuzzy sets in Ux to a crisp 

point 𝑦 ∈ 𝑅. This mapping is generally chosen as the centre 

average: 

 

𝑦𝑖 = ∑ 𝑦�̅�
𝑙 × (𝜇𝐵𝑖 (𝑦�̅�

𝑙))𝑛
𝑖=1 ∑ (𝜇𝐵𝑖 (𝑦�̅�

𝑙))𝑛
𝑖=1⁄     (3) 

 

Where 𝑦�̅�
𝑙  is the center point in R at, where (𝜇𝐵𝑖 (𝑦𝑖)) 

achieves its maximum value in the ith inference stage. 

E. Fuzzy Logic for Wind Forecasting 

Use of renewable energy resources, mainly wind power, 

gathered considerable attention in a number of countries after 

the adoption of the Kyoto protocol and, currently, the war in 

Ukraine. However, despite its benefits to minimize climate 

change, the fluctuations in wind speed and other weather 

variables make the wind power output completely stochastic 

and different from conventional energy sources. Because of 

its stochastic nature, there several challenges in connecting 

large wind energy supplements into a power system grid. In 

order of increase the economic competence and acceptability 

of the wind energy and allow a reduction in the market 

overestimation or underestimation, accurate wind forecast 

power as well as wind speed is required. Accurate forecasting 

system can help the distribution operators and traders to make 

better decisions. Several techniques have been developed to 

predict wind power and speed. Existing techniques can be 

statistical, physical and time series models. Among these 

methods the is the Adaptive Neuro-Fuzzy Inference System 

(ANFIS) proposed in [2]. 

Determining the output power of wind generators is always 

associated with uncertainties in wind speed and other 

fluctuating weather conditions. Short-term forecasting is 

essential for its efficient operation. In [2], the author, propose 

a double stage hierarchical Adaptive Neuro-Fuzzy Inference 

System (ANFIS) for wind power forecast of a microgrid wind 

farm in Beijing, China. The first objective of ANFIS 

Numerical Weather Forecast (NWP) is to predict the wind 

speed at the exact location of the wind farm and turbine hub 

height. The second objective is to models the current wind 

speed and power ratios. So, the following day wind speed for 

the first day are applied to predict the wind energy. In order to 

assess the performance of the proposed model, it was 

compared to three other forecasting techniques and shown the 

most accurate. 

F. Proposed Wind Power Prediction Strategy 

The prediction performance of the wind power forecaster in 

this approach is highly depends on the Numerical Weather 

Prediction (NWP) models. In fact, the focus of the research 

was to study is the impact of NWP in the improvement of 

short-term predictions. The prediction scheme is depicted in 

Fig. 2. While modelling, a one-year record, provided from 

Supervisory Control and Data Acquisition (SCADA) 

historical measurements Weather Research and Forecasting 

(WRF) and NWP/WRF model historical weather forecasts are 

used to train an ANFIS that successfully can estimate a 

transfer function between specific patterns of input and output. 

Then, Back Propagation (BP) is applied to optimize the 

parameters of the membership functions of ANFIS. This 

process continues until the prediction error reaches to a 

suitable value [2]. 

 

 

Figure 2 Double-stage prediction model using ANFIS [2] 
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An example of an ANFIS network is the Takagi-Sugeno fuzzy 

inference system mapped to a neural network structure with 

five layers is presented in [2]. 

Each layer has several nodes characterized by the node 

function as seen in Figure 3. 

 

Figure 3 Development pipeline for the proposed algorithms 

[2] 

The first stage implements the wind forecast at the turbine site; 

the second stage relates the wind speed to the power output of 

the turbine. The combination of the first two stages provides a 

day-ahead power generation forecast. The same study also 

proposes a new hybrid approach for short-term wind power 

prediction using ANFIS with two hierarchical stages. The 

results are compared for every season of the year with the 

following forecasting methods: 

• Mean Absolute Percentage Error (MAPE); 

• Sum squared error (SSE);  

• Root mean squared error (RMSE); 

• Standard deviation of error (SDE); 

• Mean absolute error (MAE). 

 
The average MAPE (8.1133%) for one-day ahead forecast, 

shows an improved when compared with the other techniques. 

IV. NEURAL NETWORK-BASED ALGORITHMS 

Lijie Wang study the brings wavelet transform into the time 

series of wind power and noted that the decomposed series all 

have chaotic characteristic.  

A new technique of wind power prediction with Artificial 

Neural Network (ANN) model based on wavelet transform to 

predict wind power data from the Fujin wind farm and 

Saihanba wind farm of China were proposed in this study. The 

prediction results are presented and compared to the no 

wavelet transform method and ARMA method.  

The results show that the new method based on wavelet 

transform ANN will be a useful tool in wind power prediction. 

A. The Wavelet Theory 

Multi-resolution approximation by wavelet basis functions is 

a technique for representing a function, which are formed by 

a scaled and translated mother wavelet. The Continuous 

Wavelet Transform (CWT) of a signal x(t) is defined as [3]: 

𝑊𝑇𝑥(𝑎, 𝑏) =
1

√𝑎
∫ 𝑥(𝑡)

+∞

−∞
𝜓∗ (

𝑡−𝑏

𝑎
) 𝑑𝑡 = 〈𝑥(𝑡), 𝜓𝑎,𝑏(𝑡)〉 (4) 

Where ψ(t) is the mother wavelet, and other wavelets: 

𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓 (

𝑡−𝑏

𝑎
)  (5) 

The associated dilated and translated versions. “a” and “b” are 

the dilation and translation parameters respectively.  

Where 𝑎 = 𝑎0
𝑗
, 𝑏 = 𝑘𝑎0

𝑗
𝑏0,j, k ∈ Z. 

Wavelet theories use the mathematical method Wavelet 

Transform, which decomposes the original signal into several 

time series with simpler frequency components, achieving a 

new level of analysis of the initial wave. The wavelet theory 

has a continuous (Equations 4 and 5 and a discrete form, with 

the latter applied in practical applications. 

Fig. 4 shows a decomposition process that results in many 

lower resolution components of the initial wavelet. 

 

Figure 4 Mallat wavelet decomposition tree [3] 

This method was used in conjunction with an ANN to predict 

the power output of a wind turbine. The results achieved are 

better than the ARMA method [3]. The maximum power 

output of the wind turbine during the test was 850 KW. 

 

Model 1h ahead 3h ahead 

ARMA 60.97 120.10 

no WT 58.58 110.88 

Hybrid 55.63 111.04 

Table 1. MAE of power output prediction for WT 1-(in 

kW)[3] 

Model 1hour-ahead 3hours-ahead 

ARMA 3.20 5.22 

no WT 3.15 5.35 

Hybrid 2.97 5.21 

Table 2. MAE of power output prediction for WT 2 (in kW) 

[3] 

The main difference between the prediction results shown in 

Tables 1 and Table 2 may be explained by the difference in 

the size of the dataset for each case. WT-1 had 1 month of 

training data, and 1 month of data for testing, while WT-2 had 

3 months of training data and 3 months of data for testing [3]. 

B. Back Propagation Neural Network (BPNN) 

The traditional Neural Network algorithms are based on a 

simple feed forward processes with a training data layer and a 

testing data layer and no feedback loop for error assessment 

and minimization [4]. The Back Propagation Neural Network 

(BPNN) model is a multi-layer feedforward Neural Network 
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with an error back propagation training algorithm to 

approximate any nonlinear mapping [ 4 ] .  

The BPNN model for this study has one hidden layer, as 

shown in Figure 5. 

The input layer has M neurons, expressed by m from 1 to M. 

The hidden layer has I neurons expressed by I from 1 to I. 

Similarly, the output layer has J neurons expressed by j from 

1 to J. 

 
Figure 5. BP neural network with one hidden layer [4] 

The synaptic weight of the input layer and the hidden layer are 

expressed by wmi (m = 1, 2, …, M; i = 1, 2, …, I). And the 

synaptic weight of the hidden layer and the output layer are 

expressed by wij (i = 1, 2, …, I; j =1,2, …, J)  

The output of each neuron is:  

𝑦𝑘𝑗(𝑛) = ∑ 𝑤𝑖𝑗
𝐼
𝑖=1 (𝑛)𝜑𝑖(∑ 𝑤𝑚𝑖(𝑛)𝑀

 𝑚=1 𝑥𝑘𝑚) (6) 

The error signal of each neuron of the output layer is: 

𝑒𝑘𝑗(𝑛) = 𝑑𝑘𝑗(𝑛) − 𝑦𝑘𝑗(𝑛)  (7) 

The data is divided in the sets: the training set; the error set; 

the retraining set; and the test set. The flowchart is represented 

in Figure 7 below. 

In order to test it, the results are compared with another 

prediction-based algorithm, in this case the Support Vector 

Machine [4]. The method shown better results in Table 3, 

when compared with the MAE/KW method, the Mean 

Relative Error (MRE) and the Root Mean Square Error 

(RMSE) per kW, for both the traditional and the improved 

prediction methods. 

 

Method 

MAE/k

W 

MRE/

% 

RMSE/k

W 

Time/

s 

Traditional 

pred. 44.75 30 56.48 65.34 

Improved pred. 28.56 22 34.32 86.27 

Table 3. Comparison between improved and normal method 

with BP as base [4] 

 

The results of the BPNN show better accuracy than the 

conventional NN as shown in Figure 6 below: 

 
Figure 6 - Improved Method with BP as base [4]. 

 

 

Figure 7  Improved wind power prediction process [4] 

C. Back Propagation Neural Network aligned with 

storage system 

The goal of the wind prediction is ultimately to achieve a 

better power supply to the grid from energy provenience from 

wind power. A way to achieve this goal is to have Energy 

Storage System (ESS) to be able to store energy when the 

production is above a certain level, as show in the figure 8. 

Where Pw = Pes + Pg is based on power equilibrium. Pw is the 

output of wind farm, Pes is the observing energy of the ESS 

and the Pg is the power inject to grid. 
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Figure 8 Scheme of wind power structure with power 

storage [5] 

Where Pw is the output power generation as a function of time 

and is integrated from t1 to t2, when generation exceeds 

demand, and Pg is the net power output to the grid integrated 

over the time interval t3 to t4, when demand exceeds 

generation. A study based on back propagation model with six 

input variables and one hidden layer was created to predict the 

power output of a wind turbine [5]. 

 
Figure 9 - Plots showing the real power as compared with 

predicted power [5] 

As we can see in Fig. 9 the prediction of the wind power 

output is poor, and yet, ESS allows a smooth power output, as 

shown in Figure 10. 

The improvement of the accuracy of the wind prediction 

would allow a lower energy storage by the system and a bigger 

power output to the grid. 

 

Figure 10 - Curves of power grid 错误!未找到引用源。 

D. Back Propagation Neural Network with ARMA 

The expression of the zero mean stationary sequence for 

ARMA (p,q) method is: 

𝜑(𝐵)𝑥𝑡 = 𝜃(𝐵)𝑎𝑡  (8) 

Where ᵠi, ᶿi, I = 1, ..., p and j = 1, ..., q. 

The autoregressive polynomial is 

𝜑(𝐵) = 1 − 𝜑1(𝐵) − ⋯ − 𝜑𝑝(𝐵)          (9) 

The moving average polynomial is 

𝜑(𝐵) = 1 − 𝜃1(𝐵) − ⋯ − 𝜃𝑝(𝐵)         (10) 

In the study a BP Neural Network residual correction is 

combined with the ARMA method. The data is from a wind 

farm with a total installed capacity of 17.56 MW. Once the 

data is submitted the ARMA model is applied. Secondly, the 

BP neural network and the prediction value or ARMA is 

superimposed on the output of the network. Time series model 

flow chart of BP neural network residual correction is 

represented in Figure 11 [6]. 

 

Figure 11 - Time series model flow chart of BP neural network 

residual correction [6]. 

To compare the results of these techniques, a side-by-side 

analysis was conducted between the full model and ARMA 

method. As shown in Table 4, MAE and MSE errors are 

0,1880 and 0,0468 respectively for the complete method, 

which are an improvement of 26.83%, 27.02% and 1.42%, for 

MAE, MSE and MAPE respectively, over the ARMA method 

[6].  

Error Índex Arma (4,5) BP-ARMA 

MAE 0.4563 0.1880 

MSE 0.3170 0.0468 

MAPE 0.0154 0.0012 

Table 4. Table with the model errors [6] 
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V. THE GREY MODEL -WIND SPEED-WIND 

POWER FITTED CURVE 

The power curve of wind turbines can reflect the power 

generation performance under different wind speeds. At 

present, there are two kinds of power characteristic curves: 

theoretical power curve and actual operation curve. The 

theoretical wind speed power curve can be expressed as P=1 

2 CpAρv3, where P is wind turbine output power, Cp is wind 

energy utilization coefficient, A = πR2 is the area swept by the 

wind turbine, R is hub radius, ρ is air density, v is wind speed. 

The power curve is obtained by simulation under ideal 

condition. However, the wind turbine power is often affected 

by turbulence, wind shear and other factors in the environment. 

The measured power curve is obtained from wind speed 

recorded in SCADA. However, in practical application, the 

part of the measured scatter points is disorderly and highly 

dispersed.  

 
Figure 12 - Power prediction model [12] 

The forecasting model shown in Figure 12 is supported by the 

Grey Model. The Grey Model is used for systems were with 

high uncertainty and poor information quality. It is ideally 

suited for wind speed forecasting. A disadvantage is its low 

prediction accuracy. For this study, an improved Grey Model, 

a discrete Grey Model and fractional Grey Model are 

presented [8]. 

Since the Grey Model lends itself well to self-adaptation and self-

learning, a Neural Network architecture was developed to include 

these improvements. The results of the study were bench-

marked through a comparison with the Auto-Regressive 

Integrated Moving Average (ARIMA). 

The error of the improved Grey Model for wind power 

prediction are shown in Figure 13. 

 
Figure 13 Results for power prediction model [12] 

 

 MAE (kW) MAPE RMSE (kW) 

Improved GM 76.9 15.7% 109.4 

DGM 89.4 18.2% 129.6 

1/ 2 order 106.6 21.1% 143.7 

1/4 order 101.2 19.7% 142.3 

2/3 order 104.6 20.8% 139.7 

combination 43.4 9.7% 54.2 

ARIMA 69.7 14.9% 82.6 

Table 5. Wind speed prediction error of different models 

based on the power prediction model [8]. 

Table 5 shows that the “combination” has great results when 

compared with the results of ARIMA. The improvement of 

the power output prediction over MAE, MAPE and RMSE 

was 37.7%, 34.9% and 34.4%, respectively [8]. 

VI. COMBINATION RECURRENT NEURAL 

NETWORKS WITH GENETIC ALGORITHMS  

A combination of Recurrent Neural Networks (RNN) with Genetic 

Algorithms (GA) was implemented in [13] to predict short- and 

medium-term wind speed. 

A Recurrent Neural Network takes as an input the present and the 

recent past, responding the data in different ways for each feedback 

loop. This methodology is memory based where the weight of each 

loop changes with the new loop inputs [13]. 

A more complex RNN is Long Short-Term Model where the error 

is preserved, it maintains a more constant error as they learn with a 

goal of linking causes and effects remotely [13]. 

A. Recurrent Neural Network 

A Recurrent Neural Network (RNN) is a type of ANN that 

uses sequential data or time series data. These deep learning 

techniques are commonly used for ordinal or temporal 

problems such as language translation, Natural Language 

Processing (NLP), speech recognition, and image captioning. 

They are built into popular apps like Siri, voice search and 

Google Translate. Like feedforward and CNNs, RNNs use 

training data to learn. They are distinguished by “memory” as 

they distinguish their information from inputs and outputs. 

While traditional deep neural networks assume inputs and 

outputs as independent of each other, the output of RNN 
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depend on the previous elements of the sequence. Although 

future events are also useful to determine an output of a given 

sequence, since unidirectional RNN may not explain these 

events in their determinations [19]. Figure 14 shows the 

comparison of recurrent Neural Networks and the 

Feedforward Neural Networks 

 
Figure 14 - Comparison of Recurrent Neural Networks (on 

the left) and Feedforward Neural Networks (on the right) 

Recurrent Neural network inputs are the present and the recent 

past, feedback loop. All three combine to determine how RNN 

respond to new data. RNN are memory based and preserve a 

sequential information spanning many time steps in the hidden 

state as the network cascades forward finding correlation 

between events.  

 
Figure 15 - Basic configuration of a GRU [19] 

Figure 15 show the basic configuration of a Gated Recurrent 

Unit (GRU), where z and r refer to the update and reset gates, 

respectively. Whereas h and ℎ ̃refer to the activation function 

and the candidate activation function, respectively. 

Decomposing wind power time series using various Wavelet 

Decomposition (WD) [19] techniques can reduce the volatility 

of the signal by dividing it into simple parts, making it easier 

for prediction models to process. Recurrent Neural Networks 

(RNN), such as the Long Short-Term Memory (LSTM) with 

wavelet activation functions focus 

B. Long short-term memory 

Long Short-Term Memory (LSTM) is a form of RNN that is 

initiated by changing the structure of its recurrent connections [14]. 

As a self-connected unit, the LSTM acts essentially as a Constant 

Error Carousel (CEC), that considers and adapts to the flow of errors 

over time. It incorporates input, output, and forget gates to maintain 

and adapt to the content of the memory stored as part of its CEC 

function. This protects the other components of the LSTM from 

unrelated memory contents. It also enables the CEC memory to be 

periodically reconstructed once its contents become ineffective and 

superseded by updated information.  

Figure 16 is a diagrammatic illustration of a signal LSTM cell.[19]. 

The black circles depict the three-component states: input it, 

output ot, and forget gate ft, and the current memory cell state 

C and new candidate values for cell along �̃� along with the Ψ 

(tanh activation function) are learned by considering 

information at the previous, current, and next time steps, that 

is, t -1, t and t+1. 

 

 
Figure 16 - Basic configuration of an LSTM model [19].  

 

The architecture of the LSTM model comprises three gates 

named input, forget, and output gates by applying modulation 

functions to the input and output. The information at the gates 

typically involves current and recurrent inputs adapted 

through sigmoid functions (σ). On the other hand, the 

modulation process usually applies a hyperbolic tangent 

activation function (tanh Ψ). 

 

For many applications, the prediction performances of Gated 

Recurrent Unit (GRU) and LSTM models are similar, 

although LSTM is computationally more time-consuming. 

That additional computation time enables LSTM to create 

deeper networks that can exploit more complex relationships 

between the variables and spanning more time points. 

The vanishing and exploding gradient problems in machine 

learning models can cause consequential variations from one 

iteration to the next as the model weights changed by a large 

magnitude, leading to model instability and inefficient 

learning. The vanishing gradient problem can also impact 

RNN models. It refers to the inefficient transfer of gradient 

information from the model output to update the weights 

applied to the layers at the input end for subsequent model 

iterations. Careful selection of activation functions based on 

trial and error is required to overcome this problem in GRU 

and LSTM models. 

 

C. Methodology of LSTM-GA 

The methodology for the study started with the division of the data 

set in previous values and future values. The window selection 

involves decoding using a Genetic Algorithm based on the selection 

of parents, crossover, mutation, and fitness function as we can be 

seen in the figure 17. 

In the beginning, the wind power data is separated from future 

wind power data over time (t). Having the data set ready, the 

LSTM (Long Short-Term Model) is used for training and compared 

with the validation set. Figure 17 shows forecast results using the GA 

optimized window and LSTM model for weekly variations [12]. 

https://www.sciencedirect.com/science/article/pii/S1364032122005895#bib49
https://www.sciencedirect.com/topics/engineering/gradient-information
https://www.sciencedirect.com/topics/engineering/gradient-information
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Figure 17 Steps in the GA process  

For data preparation and training used the wind energy data set of 
the wind forecasting track a Global Energy Forecasting 
competition 2012 (GEFCom2012) collected for three years 
duration. The author of this paper [12] divided the data into 
training and testing in the ration 80:20. The last 20 percent 
of the data is retained for validation while the 80 percent of 
data is used for training. The temporal order of observations 
is maintained throughout. Test data is used for evaluating 
the accuracy of the proposed forecasting model. The fitness 
value of the window size is obtained for each data string 
corresponding to the Root Mean Square Error (RMSE). The 
GA operations on the dataset are-reproduction, crossover, 
and mutation to generate a new data. The new data is 
checked for the convergence. The process is repeated until 
the convergence criterion is satisfied and the process is 
stopped [12]. 

Figure 18 shows the wind pattern variation predicted using 
the GA optimized LSTM model. For the benefit of 
comparison, the actual data is also plotted in the same graph. 
There is a better fit of the data as the time is increased. A 
RMSE of 0.0957993 and 0.0929905 is obtained for the short 
term (week) and medium predictions (one month) 
indicating the effectiveness of the LSTM model with 
optimum window size[12]. 

 
Figure 18. Results of wind speed tolerance intervals 

prediction with 90% confidence level 1 [12] 

VII. EMPIRICAL MODE DECOMPOSITION OF 

WIND POWER 

In [14], the authors, to make full use of the effective 

information in historical data to further improve the prediction 

accuracy of wind power generation. They proposed a model 

of Empirical Mode Decomposition (EMD) and Deep Long-

Term Memory (DLSTM), constructing a multi-scale 

combined prediction model (EMD-DLSTM). In the process of 

model construction, firstly, the EMD method is used to 

decompose the wind power sequence into Intrinsic Mode 

Function (IMF) of different scales to weaken the volatility of 

the wind power sequence and obtain more regular components. 

Then, the DLSTM network is used to model the decomposed 

wind power sequence and its features, and then weights the 

predicted values of each component to obtain the true 

predicted wind power. The empirical analysis of a wind farm 

data in Laizhou [14] shows that the EMD-DLSTM method has 

better prediction ability than the existing forecasting methods. 

The study proposes prediction method that combines EMD 

and DLSTM model. The EMD method is used to decompose 

the wind power sequence into different Intrinsic Mode 

Functions (IMFs) and a trend term; the IMFs and the 

corresponding time feature are combined into a new vector; 

the DLSTM neural network is used to construct each feature 

vector. The modulo is finally weighted by the component 

prediction values to obtain the predicted value of the wind 

power. The forecasting process is shown in Fig.19. 

 
Figure 19 Predict flow chart [14] 

In the case study presented in [14] the sample data was obtained 

from a wind farm in Laizhou from January to April in 2018. 

The installed capacity of the wind farm is 100MW. The data 

obtained is six different time series including wind direction, 

wind speed, temperature, atmospheric pressure, humidity, and 

wind power. Sampling time interval is 15min, the total data is 

6000 samples. In this study, the Keras Deep Learning 

Framework was used for experimental design. Among them, 

the sigmoid function is used as activation function of the 

LSTM network, and the model is optimized by the Adam 

Optimization Algorithm. Adam Optimization Algorithm has 

no smooth requirement for objective function, whose loss 

function can change with time, and can better process the 

noise samples, and naturally has an annealing effect.  

To verify the prediction accuracy of wind power, the average 

absolute percentage error ηMAPE and root mean square error 

ηRMSE are used as the basis for evaluation. In wind power ultra-

short-term prediction, the smaller ηMAPE and ηRMSE value are, 

the more accurate the prediction result is ηMAPE and ηRMSE are 

expressed as:  

η𝑀𝐴𝑃𝐸 =
100%

𝑛
∑

|�̂�𝑖 − 𝑦𝑖|
𝑦𝑖

⁄𝑛
𝑖=1   (11) 

η𝑀𝐴𝑃𝐸 = √
1

𝑛
∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖=1   (12) 

Where �̂�𝑖 and 𝑦𝑖 are the predicted and actual values of wind 

power respectively; n is the number of predicted verification 

data; i is the predicted point sequence number. 

To verify and explain the prediction performance of EMD-

DLSTM network, it was compared with LSTM, DLSTM, and 

EMD-LSTM network, with a prediction step size is 15 

minutes. The results show the prediction results of 192 time 
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points in two days, Table 6 and figure 20 below shows the results 

of the error analysis [14]. 

 

 
Figure 20 Error analysis 

The EMD-DLSTM model had the better results between the 

three techniques. The error index is reduced by 9.21% (86.91-

77.70) and (79.87-77.70) 2.17%, and RMSE is reduced by 

(31.68-19.07)12,61% and (26.40-19.07) 7,33% compared with 

the LSTM and EMD-LSTM network respectively [14].  

 

 LSTM EMD-LSTM EMD-DLSTM 

MAPE 86.91 79.87 77.70 

RMSE 31.68 26.40 19.07 

Table 6. Error Analysis [14] 

Briefly, the authors concluded that the EMD decomposition 

algorithm can significantly eliminate the negative effects of 

non-periodic and non-stationary wind power, thereby 

effectively improving the usability of training data and 

reducing the difficulty of establishing a model. Based on 

DLSTM network, the authors establish a wind power 

prediction model, which can be model for long-term time 

series, and then realize the ultra-short-term prediction of wind 

power. The proposed method can effectively utilize 

multivariate information and has higher prediction accuracy 

than conventional machine learning algorithms such as single-

layer LSTM networks. 

VIII. RANDOW THEORY-BASED ALGORITHMS 

The Inductive Confidence Machine (ICM) is based on the 

division of the dataset in the proper training set and the 

calibration set. The data from the training set is used to build 

a prediction rule, with the derived rule a strangeness measure 

is aligned with the data of the calibration set [1]. 

Support Vector Regression is the mapping of input into high 

dimensional space by nonlinear function [1]. 

For 1 hour mean wind velocity prediction using this method 

the results were very accurate as we can see in the figure 20. 

 
Figure 21 Results using GA-optimized window and the 

LSTM model for weekly variation [1]. 

The results of 50, 100,200, 500, 1000, 2000 and 5000 

samples test with three confidence levels are shown in 

Table 7. The results shown that the predictive region 

output by ICM can cover the real wind speed value with 

the given confidence level. 

Confidence 

 Level 
Number of Samples/result (%) 

 50 100 200 500 1000 2000 5000 

90 92 89 85 89,2 89.9 91,25 89.52 

95 100 94 91 94.4 94.2 95.8 94.34 

99 100 100 99.5 99 98.8 98.95 98.5 

Table 7. Results of high confidence intervals [1] 

ICM is a novel algorithm for wind speed prediction. The 

experimental results show that the predictive region output 

by ICM meet expected level of confidence. The approach 

is better than the Transitional Support Vector Regression 

Algorithm. Confidence information provided by ICM 

effectively reduces the risk of the decision-making and 

improves the availability of the prediction algorithms. 

Shortening the interval length of the predictive is a way to 

improve the prediction method. 

IX. COMPUTATIONAL FLUID DYNAMICS 

METHOD-BASED ALGORITHMS 

The Computational Fluid Dynamics (CFD) is a well-

established field of engineering where numerical techniques 

based on fundamentals of fluid flow are applied to analyze 

fluid flow through or around objects. For this study, a CFD-

based algorithm was combined with the geological 

characteristics of a wind farm to achieve an accurate 

assessment of the wind power generation.  

CFD simulated studies by State Key Laboratory of North 

China Electric [15], provide a day-ahead forecast for 15-

minute interval. The results shown in Table 8 exhibit good 

accuracy with an annual mean absolute error (MAE) at less 

than 1.0 m/s. The absolute error for more than 85% of the 

forecasts is less than 2.5 m/s. It is important to note that these 

simulations were conducted for stable wind speeds. 

It must be taken into consideration that the prediction, in the 

case of high variation of wind speed in a short period, would 

not have enough quality for energy production estimations. 
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Fan 

Num

ber 

Measure 

average Wind 

speed (m/s) 

Predicted 

average wind 

speed (m/s) 

Annual 

MAE 

(m/s) 

Annual 

RMSE 

(m/s) 

3# 6.85 7.22 1.90 2.70 

43# 7.15 7.39 1.75 2.28 

76# 7.08 7.15 1.76 2.35 

117# 7.67 7.11 1.88 2.49 

Table 8. Results of wind speed for 4 wind turbines [15] 

X. SUPPORT VECTOR MACHINE METHOD-

BASED ALGORITHMS 

The prediction of the wind speed for this study was based on 

Ensemble Empirical Mode Decomposition (EEMD) of the 

original wind speed sequence, each sub-sequence with similar 

Sample Entropy (SE) are merged to improve the prediction 

efficiency. Secondly the method Least Square Support Vector 

Machine (LSSVM) is applied and optimized with the Particle 

Swarm Optimization (PSO) algorithm [16] Figure 21 shows 

the Structure of the prediction model. 

 

 
Figure 22. The Architecture of the Model [16] 

 

 

The model is based on EEMD-SE-PSO-LSSVM, combined 

with the advantages of several methods, as shown in Fig. 21. 

The steps are as follows: use EEMD to decompose the 

original wind speed sequence to obtain the IMF components 

of wind speed; calculate the entropy of each series to improve 

the prediction efficiency; establish the PSO-LSSVM model 

for each sequence, and obtain the predictive values; then 

superimpose the predictive values of wind speed components 

and obtain the final wind speed predictive value; finally 

compare the results with actual wind speed data, and calculate 

the error index through error analysis [16]. 

EEMD is an improvement to the EMD method that adds 

Gaussian white noise to the original signal. It has less 

parameters to be selected and replace the inequality constraints 

with the equation constraints resulting in a reduced number of 

uncertain factors [16] 

Figure 22 shows the prediction result of the combined model, 

namely the absolute error of the results. 

 
Figure 23. The results of the combined Model 

Figure 23 shows the prediction result of LSSVM model [16] 

 
Figure 24. LSSVM prediction result [16] 

 
Figure 25. PSO-LSSVM prediction result [16] 

 

Figure 24 shows the forecast results of PSO-LSSVM model. 

The RMSE and the MAE values for the three models, LSSVM 

method, PSO-LSSVM, and the proposed combined model 

(EEMD-SE-PSO-LSSVM) are shown in Table 9 [16]. 

 

MODEL RMSE MAE 

LSSVM 0.2087 0.1736 

PSO-LSSVM 0.1770 0.1439 

Combine model 0.0941 0.0748 

Table 9. Comparison of prediction errors of the three models  

 

The Combined Model has a high practical value, with a 

mean square error and the average absolute error of 0.0941 

and 0.0748 respectively. 
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XI. COMPARATIVE ANALYSIS OF THE MODELS 

In this section a comparative analysis of the prediction models 

is presented. A summary of the results is presented in table 10.  

 

  Fluid dynamic Fuzzy logic 

Max measure 14.0 m/s 800 kW 

RMSE 2.0 m/s 14.86 kW 

Ratio 17.86 % 1.86 % 

Table 10. Not Neural Network Results 

Table 10 shows the great differences between Fluid Dynamics 

and Fuzzy Logic are Fluid Dynamics: Fuzzy Logic theory has 

shorter range prediction.  

 Back Propagation 

NN ARMA 

ARMA Grey 

Model 

Max 

measure 
700 kW 21 m/s 1200 kW 

RMSE 34.32 kW 
0.216 

m/s 
54.2 kW 

Ratio 4.62% 1.03% 4.52% 

Table 11. Neural Network Results 

Table 11 shows the results of three models: BPNN with 

ARMA, ARMA and Grey Model for the Neural Network. 

ARMA presents the best Ratio (1.03%) as compared with 

similarly poor results by the other 2 methods (4.62%, 4.52%). 

  
Empirical Mode 

Decomposition 

Support Vector 

Machine 

Max 

measure 
14 kW 5.5 m/s 

RMSE 19.07 kW 0.0941 m/s 

Ratio 0.14 % 1.71 % 

Table 12. Neural Network Results 

Table 12 shows the clear advantage of the Empirical Mode 

Decomposition over the Support Vector Machine with a 

relative error of only 0.14%, an order of magnitude 

improvement. 

XII. CONCLUSION  

In the current context, its importance in the production of 

energy using renewable energy is undeniable. However, this 

importance sometimes misunderstood by politicians. No one 

doubts that a country's economic independence is related with 

energy independence. Countries are not only the obligation to 

comply with the Kyoto treaty for climate change, but the war 

in Ukraine and its energy implications, made the need for 

energy independence more visible.  

Renewable energies are weather dependent, and their 

prediction is not easy. Namely the wind forecast to produce 

wind energy. Many researchers apply different models and 

mathematical forecasting techniques to predict wind 

characteristics, such as: wind speed, direction etc. 

This paper made a brief compilation of wind prediction 

techniques. 

A wide range of fuzzy logic-based algorithms were introduced 

and discussed in this paper. A proposed new hybrid approach 

for short-term wind power forecasting was implemented using 

ANFIS with two hierarchical stages. The results were 

compared with the Mean Absolute Percentage Error (MAPE), 

the Sum Squared Error (SSE), the Root Mean Squared Error 

(RMSE), and the Standard Deviation Error (SDE) for every 

season of the year. The average MAPE for this approach at 

8.1133% for a day-ahead prediction, is a promising 

improvement. 

In another approach, the wavelet theory aligned with an 

artificial neuronal network-based and phase-space 

reconstruction method was used to predict the power output. 

The results achieved are better than the ARMA method.  

We can also conclude that a combination of the Grey Model, 

along with the discrete-Grey Model, and the fraction-Grey 

Model show improved results. Specifically, when compared 

with ARMIA as the benchmark, power output prediction 

compared with MAE, MAPE and RMSE was 37.7%, 34.9% 

and 34.4%, respectively. 

The wind power forecasting has been modeled using the 

Recurrent Neural Networks, but the difficulties are learning 

long range dependencies [13]. LSTM networks have been 

used to overcome the limitations of RNN networks. In section 

IX a Support Vector Machine Method Based Algorithms was 

presented. It obtained the best results to prediction.  

We can finally conclude that, adding a storage energy unit in 

combination with a good prevision power forecasting 

algorithm, provides an optimal solution for a stable and 

continuous power supply from the wind farm system to the 

power grid. 
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