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Abstract: Spectral imaging is a type of multi band imaging 

technique of the electromagnetic spectrum, used for gathering 

and analysis of information. Hyperspectral imaging is a 

technique that collects spectral information from a broad 

spectrum of wavelengths for the same spatial area of each pixel. 

Due to its multiple bands, and spectral and spatial redundancy, 

the image size is immense. Processing these images requires an 

enormous amount of memory. Our paper proposes a lossy 

technique to encode and compress the hyperspectral images by 

the help of deep convolutional networks, autoencoders and 

attention layers. The encoder uses convolutional and max 

pooling layers, connected to a singular attention layer to encode 

the data, and the decoder has a single dense layer preceding 

transpose convolutional and upsampling layers to decode the 

coded data back into the hyperspectral images. The method is 

tested on different images taken by the Airborne Visible/ 

Infrared Imaging Spectrometer (AVIRIS), Reflective Optics 

System Imaging Spectrometer (ROSIS), and NASA EO1 satellite. 

The method achieves superior results than existing work by up 

to a 5% increase in the PSNR and up to 200 times increase in the 

compression ratio. 

 
Keywords: Hyperspectral image processing, autoencoder, image 

compression, deep learning, neural network.  

I. Introduction 

Spectral imaging utilizes multiple bands over the 

electromagnetic spectrum. It denotes a group of analytic 

techniques using multiple bands from the spectrum, and 

collects both spectroscopic information and imaging 

information at the same time. The image data from few broad 

wavelengths (approx. 3 to 15 bands) are captured via 

Multispectral remote sensors. Comparatively, the image data 

from the numerous spectral band covering an extended range 

of wavelength from 400 to 2500nm is simultaneously 

collected via hyperspectral (HS) remote sensors [1]. 

Hyperspectral imaging is a technique based on spectroscopy. 

Multiple bands of image data are gathered at multiple 

wavelengths for each spatial area. This gathered data creates a 

hyperspectral cube, two of its dimensions signify spatial 

extent of the location and the third stands for spectral content. 

The spectral signature is the outcome of molecule absorption 

and particle scattering, and it allows for the differentiation of 

materials with various properties. Agriculture, environmental 

monitoring, weather prediction, military, food industry, 

medicinal, and forensic research are some examples of 

hyperspectral remote sensing applications. 

Hyperspectral images store a load of data which can be 

processed to obtain a large spectrum of meaningful 

information. Storing huge spectral dimensionality of multiple 

spectral channels requires enormous memory. A single HIS 

dataset can have a size of hundreds of megabytes (MBs), since 

each pixel holds 16-bit or 12-bit information, the range of the 

pixel numbers can vary from few hundreds to millions, and as 

high as 22 bands can be the band numbers. [2]. For example, 

the dataset of calibrated images of standard Consultative 

Committee for Space Data Systems (CCSDS) [3] has 224 

total spectral bands, 677 × 512 counts of  pixels per band , and 

16-bits of information is stored in each pixel. Thus, 677 × 512 

× 224 × 16 bits = 148 MB is the size of this standardized 

image [2]. 

The analysis of enormous HSI while keeping the necessary 

valuable information is a major issue. It is a primary problem 

for compression algorithms because data compression is 

performed to decrease data redundancy [1]. High data 

redundancy usually equates to high compression ratios, while 

poor redundancy equates to low compression ratios. In 

multi-spectral images such as HSI, there are four types of 

redundancy: 

I) Statistical redundancy - analysis of the probability of 

symbols. The methods used to analyse the probability of 

symbols are called entropy coding. 

II) Spatial redundancy - intraband correlation assumes that 

the pixel information could be partially obtained by 

neighboring pixels. It can be removed via transformation. 

III) Spectral redundancy - or interband correlation, based 

on the high correlation existing between neighboring bands in 

hyperspectral images. It can be removed by spatial 

decorrelation. 

IV) Visual redundancy - driven by the detail that human 

eyes are not overly sensitive to high frequencies, data 

quantization is used to achieve compression based on visual 

redundancy. The utilization of interband or intraband 

correlations allows compression techniques to be divided into 
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2D and 3D methods. 2D image compression methods 

typically employ intraband and interband correlations 

individually, while 3D techniques use both inter-and 

intraband correlations together [4]. 

Hyperspectral images are merged with many recent 

technologies for advancement in this domain. In the past few 

years, research in this discipline has increased with the aid of 

diverse kinds of neural networks and autoencoders. A neural 

network is a basically sequence of calculating units that 

endeavor to acknowledge inherent relationships among a 

group of data through a process that imitates the operation of 

the human brain, Therefore, neural networks are interlinked 

systems of neurons, either organic or artificial [5]. An 

autoencoder is a model implementing unsupervised deep 

learning that trains the network to disregard signal noise and 

generate efficient data representations, known as encoding. 

The primary goal of an autoencoder is to convert 

high-dimensional space data to lower dimensions.  

The paper proposes a modified lossy deep convolutional 

neural network autoencoder framework that includes an 

attention layer to encode and later decode hyperspectral image 

data. The proposed method uses convolutional layers and max 

pooling layers for the encoder along with an attention layer, 

and convolution transpose layers in the decoder. The task of 

the encoding convolutional and max pooling layers is to help 

decrease the size of the image data and also the overall space 

taken by the data. The major contributions of this work can be 

highlighted as: 

• Compression of hyperspectral images using customized 

autoencoder. 

• Greater accuracy achievement from other state of art 

architectures. 

• Fusion of convolutional network and autoencoder along 

with attention layer for better performance. 

The novelty of this paper can be encapsulated as: 

• The proposed autoencoder is an efficient model. 

• The results surpass state of the art architectures. 

• Overall, training time is highly effective. 

The remaining paper is organized as follows. Section 2 

elaborates the recent related works in the domain of HSI 

compression. The technologies used by the proposed model 

are discussed in Section 3. In Section 4, the proposed 

convolutional autoencoder architecture is illustrated. The 

experimental setup and the obtained results of the experiments 

are shown in Section 5. The results achieved by the proposed 

model are explained and detailed in Section 6. Lastly, the 

conclusions along with future work are briefed in Section 7. 

II. Literature Review 

HSI compression is a prominent emerging topic of research 

for the space industry due to its immense memory size. There 

are several articles published in recent years for this 

specialized work. Many scientific communities are inclined 

towards lossless algorithms to preserve the required 

information as much as possible in compression.     However, 

in need of higher compression and to reduce the memory size, 

lossy compression algorithms are adopted.  

To improve the lossy compression performance of HSI, 

Ertem et al. (2020) [6] used an enhanced Spectral-Spatial 

Adaptive Sparse Representation (SSASR) known as modified 

SSASR. This uses a single PCA transformation in place of 

multiple transformations to enable compaction property. The 

model can eliminate the need for encoding super pixel maps 

with the aid of an ordering scheme of sparse coefficients. In 

addition, MSSASR preserved anomaly regions better than 

other algorithms. Barrios et al. (2020) [7] proposed a 

hardware implementation for lossy Multispectral and HSI 

compressors for onboard space missions. It extends the 

CCSDS 123.0-B-1 lossless standard. The High-Level 

Synthesis (HLS) techniques are used for algorithm 

implementation to increase productivity of design by raising 

the abstract level. The model is deployed onto ARTICo, and 

Xilinx Zynq Ultra Scale +Field-Programmable Gate Array 

(FPGA)-based MPSoC is used to test the compression 

solution. It gives improved results compared to the state of the 

art algorithms in terms of both computational cost and 

compression quality.  

In the field of lossless compression, Zhu et al. (2020) [8] 

presented an improved Conventional least square (CRLS) 

with adaptive predictor selection and adaptive band selection 

(CRLS-APS-ABS). It uses several strategies for improvement. 

In order to enhance the correlation among the reference bands 

and prediction bands, an adaptive band selection strategy is 

utilized. To attain better similarity of prediction context, an 

adaptive predictor selection strategy is employed. Then the 

k-means clustering technique uses the spectral vector 

correlation coefficient to measure similarity. The outcome of 

the prediction process is improved by the double snake scan 

mode and the recursive local average estimation method is 

utilized for accelerated calculation of the local average. 

Báscones et al. (2018) presented a compression algorithm that 

decorrelates the image spectrally by using Vector 

Quantization and Principal Component Analysis (VQPCA). 

The spatial correlations are then exploited for compression by 

applying JPEG2000 to the Principal Components [9]. The 

optimized choice of parameters maximized the 

distortion-ratio performance. They also proposed a formula to 

determine the algorithm’s configuration for obtaining a result 

ranging from heavily compressed-low SNR images to low 

compressed-near lossless images. 

Machine Learning strategies, especially in instances of 

Deep Learning, enhance the performance of compression 

techniques, as observed from literature. It is proven that the 

concept of autoencoder works much better for compression in 

every domain. Cheng et al. (2018) [10] presents an 

architecture for lossy image compression using Conventional 

autoencoder (CAE) to attain higher efficiency while coding. 

Initially they designed a new CAE architecture and trained the 

autoencoder using a loss function based on rate-distortion. 

Next, feature maps were rotated using principal components 

analysis (PCA) and quantization and entropy coder were 

applied to generate the codes, achieving a 13.7% BD-rate 

decrease on images from Kodak database as compared to 

images from JPEG2000. But the moderate complexity was 

similar to JPEG2000. In terms of compression in the medical 

domain, Mishra et al. (2020) [11] used a two-staged 

autoencoder for compressor-decompressor for the purpose of 

compressing malaria RBC cell image patches, which showed 

significant improvement over state-of-art algorithms. The 

proposed dual autoencoder model is a good ROI-based loss 

compression method with minimum information loss. 
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In the field of Hyperspectral image compression, Denge et 

al. (2020) [12] supplied a generative neural network to learn 

the probability distribution of data from random latent code. 

The proposed model stores the HSI, the random normal 

distribution that supplies the maximum entropy. As a result, 

both the compression quality and ratio are controlled directly 

through the model. It also uses the pruning technique to 

eliminate weights that do not affect the compression ratio. To 

minimize the time and memory complexities constraints, a 

complexity-reduced variational autoencoder was designed by 

Oliveira et al. (2021) [13]. They also put forward a simple 

entropy model that contained a single parameter to support the 

input image’s adaptability. It outperformed the CCSDS 

122.0-B and had a reasonable rate distortion performance. 

This model is able to identify the least global amount of filters 

for every rate due to its bottleneck size. A lossy compression 

scheme is proposed by Ouahioune et al. (2021) [14], a 

combination of 3D wavelet transforms and a super-resolution 

technique based on wavelet learning called wavelet 

learning-based super-resolution compression (WSRC). They 

down-sampled the image during encoding which reduced the 

loss of information and up-sampled it by a super-resolution 

strategy at the decoder, thus increasing the information 

compensation. The outcome of the algorithm supplies a 

prominent performance, preserves the spectral signature, and 

generates high-quality images. But with a better resolution 

(high-quality), compression is not much supported in terms of 

memory size. 

An extended work of Wang et al. (2019) [15] was proposed 

by Ayma et al. (2020) [16], a dimensional reduction 

implementation for hyperspectral imaging using orthogonal 

autoencoder (HOAE) to decrease the redundancy. This 

technique helped to learn orthogonal characteristics in a 

lower-dimensional vector space by including orthogonal 

constraints inside the loss function. The orthogonal features 

aided in achieving better classification rates as compared to 

ultramodern and typical autoencoders. A lossy Hyperspectral 

compression using the concept of the autoencoder was 

presented by Dua et al. (2021) [2]. It was represented by a 

combination of max-pooling layer and convolutional layer for 

dimensional reduction. The lossy original image is 

constructed again by utilizing the transpose of the convolution 

layer. An adaptive arithmetic coder was used to entropy code 

the compressed picture for transport or storage. A total 

improvement of 28% was achieved in PSNR and a 21 times 

increase in compression ratio was calculated using this model. 

The compression result is evaluated through classification 

using ultramodern classification algorithms. The proposed 

algorithm proved to be amazingly effective due to its 

negligible difference in classification accuracy. A technique 

of compressing hyperspectral data using a 1D-Convolutional 

Autoencoder was introduced by Kuester et al. (2021) [17]. 

The spatial domain is not utilized during compression in order 

to avoid the falsification of the relationship between the 

spectral dimensions and therefore affect the accuracy of 

reconstruction by the model. The given approach locates and 

extracts compression-relevant characteristics in an efficient 

manner. The 1D-Convolutional Autoencoder surpasses the 

Nonlinear Principal Component Analysis (NPCA) and the 

Deep Autoencoder in terms of reconstruction accuracy. 

For compression of images, there exist several techniques, 

but those techniques cannot be used for HSI compression due 

to their spatial and spectral features. Commonly seen 

drawback is the splitting of the dataset [2], [6], [8], [13]. On 

splitting the data, the number of neighbors decreases. As a 

result, the prediction is limited and affects compression (for 

learning, input data is less), and apart from poor predictions, 

the gradient loss also gets affected. Pre-processing of images 

before feeding them to models provides better results [9], [14], 

[16], [17]. In recent years, many architectures have presented 

for HSI compression. Few of them are discussed earlier, and 

the main intuition used behind HSI compression is the 

property of dimension reduction [6]-[8]. In the growing era of 

artificial intelligence, one can compress images effectively 

with significantly lower computational power [10]-[12]. In 

this paper, we tried to overcome a few of these drawbacks by 

avoiding data splitting followed by modified machine 

learning architecture  utilization for better comparison results 

and experimenting with reshaping and normalization 

techniques for pre-processing. 

III. Basic Concepts 

The different techniques used for the proposed Hyperspectral 

Image compression are discussed in this section [18]. This 

section is organized as: A. Convolutional Neural Network 

(CNN) B. Convolutional Autoencoder, C.  Entropy Coding. 

 

A. Convolutional Neural Network (CNN) 

Convolutional Neural Networks (CNNs) are a version of 

traditional Artificial Neural Networks (ANNs), consisting of 

self-optimized neurons [19]. A CNN, also known as ConvNet, 

is a specialized Deep Learning model, a sub type of ANN that 

uses an image based input and applies importance-based 

learnable weights and biases on various aspects of the grid 

pattern data, like images and can distinguish between each of 

them. The CNN algorithms with some slight modifications 

are used for uncountable purposes. Few of the most common 

uses of CNN are food detection [20], hate-speech 

identification system [22], in numbers of medicine purposes 

[18], [22], image classification [23], and recognition [24], 

texture synthesis [25], facial analysis [26], [27] and many 

more. CNNs have many forthcoming spectra as improvement 

in the application within radiology, the study of vulnerability 

in deep neural networks like adversarial examples [28], 

pre-trained networks for large required datasets like medical 

datasets can be proposed. The principal function of CNN is 

extracting features from the input with the help of 

back-propagation using multiple rudimentary steps like 

convolution layers, pooling layers, and fully connected or 

dense layers [29]. 

The concept of CNN came from the convolution theorem 

based on the mathematical operator which is anointed 

convolution, a specialized category of linear operation. So, 

mathematically using the convolution theorem, the 

convolutional layer can be explained and defined as: 

(𝑢 ∗ 𝑣)(𝛼) ≜
∫ 𝑢(𝜓)𝑣(𝛼−𝜓)𝑑𝜓

∞
−∞

𝑢(𝛼)∗𝑣(𝛼)
                                  (1) 

Mathematically, in equation 1, convolution is the integral 

of all the space present in one function, u at α time of another 

function, v at α of the continuous variable. The integration is 

from minus infinity to plus infinity over all the dimensions of 
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the variable α (can be 1D or 3D variable). The crossed circle 

operation writes down the convolution operation. Figure 1 

represents a typical convolutional neural network with its 

hidden layers. 

 
Figure 1. Convolutional Neural Networks (CNN) 

B. Convolutional Autoencoder 

Autoencoder (AE) is a self-taught learning unsupervised 

neural network framework, composed of encoding stages and 

decoding stages to reconstruct the given input patterns by 

dropping the noises and data dimension reduction. AE takes a 

fragment of input patterns and produces a discrete latent code 

[30]. They execute by representing the input in a latent-space 

after its compression (encoding the data) of a 1-D vector, 

known as the bottleneck, and reconstructing the output from 

this generated representation (decoding the data) [31]. The 

higher level of network hardwiring by adding convolutional 

operation in the existing autoencoder network is understood 

as Convolutional Autoencoder (CAE) [46]. Figure. 2 

illustrates the structural framework of a convolutional 

autoencoder.  

 

 

 
Figure 2. Convolutional Auto Encoder 

 

AE is used for de-noising and dimension reduction 

purposes. AE is applicable for a wide range of purposes in the 

modern world in remote sensing [32], classification [33], 

deception detection [34], medicines [35], removal of noise [36] 

and watermark [37], image reconstruction [38] and generation 

[39]. The greater the accuracy of the autoencoder, the more 

similar the generated and the original data are [40]. Therefore, 

AE is divided into two parts: 1. Encoder and 2. Decoder. 

 

1) Encoder 

An encoder is a fully connected network that uses a 

feed-forward system to compress an input by encoding the 

input image in a reduced dimension and representing it in a 

latent space. The mapping functions are non-linear. The 

standard form is: 

𝑚𝑖 = 𝑓(𝑦𝑖) =  
1

1+exp (−𝑤1𝑦𝑖+𝑣1)
                                     (2) 

In equation 2, is a function w1 and is the encoding weight. 

Its biased vector is v1.  

An encoder is a self-learning forward propagating 

convolutional neural network consisting of many building 

blocks of contrasting functions as its layer. The blocks used 

for the layers in the encoder of the proposed framework are: a) 

Convolutional layers, b) Activation function, c) Pooling, d. 

Attention layers, and e) Flattening layers. 

a) Convolutional layers  

The convolution layer is the initial layer of CNN that extracts 

the features from the input. It has sets of filters known as 

kernels. Convolutional layers using learnable weights and 

bias forward propagate on the training dataset. As shown in 

equation 3 it follows the convolutional theorem that is the 

product of Fourier transform, F(k), G(k) in Fourier space of 

two function,  f(r), g(r) is same as the convolution of both 

functions, i.e., 

𝑓(𝑟) ⊗⊗ 𝑔(𝑟) ⟺ 𝐹(𝑘)𝐺(𝑘)                                          (3) 

b) Activation function 

The activation or threshold function is a mathematical 

function of a node applied to a given set of inputs. In 

simplified terms, it is a feature to decide the activation of a 

given neuron in the exact way biological neurons get activated 

using simulation. It is a function used in the neural network to 

help the network learn complex features in the input data, 

represented in Figure 3. The task of this function is to use the 

weighted sum of input nodes and generate an output in the 

given layer of the neural network and fed to another layer or as 

output [44]. 

 
Figure 3. Activation Function 

 

Several activation functions, diverged in terms of linear 

activation function and non-linear activation functions like 

sigmoid, Hyperbolic Tangent (tanh), exponential linear units 

(ELUs), etc. are used in neural networks. The proposed 

method made use of two activation functions. ReLU 

(Rectified Linear Unit) is used which supplies a linear 

function impression. It utilizes a derivative function and 

permits back-propagation with computational efficiency 

simultaneously. The ReLU function only works for positive 

input, which can be understood by equation 4 where F(y) is 

the function. The mathematical representation of the ReLU 

function is: 

𝑓(𝑦) = max(0, 𝑦)                                                                       (4) 

Another activation function used is an identity function, 

also called a linear function. The activation is proportional to 

the given input and represented in equation 5. 

𝑓(𝑦) =  𝑦                                                                                        (5) 

c) Pooling 

Pooling layers are the next layer after the convolutional layers 

and are operated for spatial dimension reduction of feature 
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maps, i.e., they reduce the amount of learning parameters. A 

pooling layer down-samples the data size using spatial 

variances. Max pooling selects a maximum element from the 

region of the filtered feature map as represented in equation 6. 

 

𝑜𝑢𝑡𝑝𝑢𝑡 =  [1 +
𝑖𝑛𝑝𝑢𝑡+2×𝑝𝑎𝑑𝑑𝑖𝑛𝑔[0]−𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛[0]×(𝑘𝑒𝑟𝑛𝑒𝑙𝑠𝑖𝑧𝑒[0]−1)−1

𝑠𝑡𝑟𝑖𝑑𝑒[0]
]   (6) 

d) Attention layers 

In conventional neural networks, cognitive attention can be 

imitated using a technique called attention. The attention 

mechanism is the mechanism that helps the neural network to 

memorize a long sequence of data. The attention layer is a 

conduit between the encoder and the decoder that transfers 

information from hidden states of encoder to the decoder. It 

aids a neural network in the memorization of a large series of 

data. The model can focus selectively on significant parts of 

the input sequence, and hence identify the relationship 

between them. The attention layer is built to permit the use of 

the most relevant parts of the input sequence flexibly to 

decoder by accumulation of all encoded input vectors to a 

weighted combination, with the greatest weights received by 

the most relevant vectors [42]. Normalization of the output 

score of a feed-forward neural network is represented by a 

function that preserves the congruence between input at j and 

output at i generates the attention weights. 

𝛽𝑖𝑗 =
exp (𝑎𝑖𝑗)

∑ exp (𝑎𝑖𝑟)
𝜏𝑦
𝑟=1

                                                                        (7) 

βij are the weights, τy is window size, and the sum of all 

weights within one window is equal to 1 in equation 7. 

e) Flattening layer. 

Flattening is the process of converting multiple-dimension 

input to a single-dimension array. The output generated by the 

convolutional layers is flattened to a single 1-D feature tensor. 

In simple terms, a flattening layer merges all the input layers 

into a single layer. The flattening layer adds an extra channel 

dimension to the input shape without a feature axis [43]. The 

use of flattening layers is to permit changes to the input shape 

from a vector of n-D matrixes to the correct shape for 

interpretation of dense layer. It collapses an input spatial 

dimension to a channel dimension. For example, if the output 

given by a convolutional layer is a 3D array of shapes, 

32x16x8 then after flattening the shape will be 32*16*8=4096 

units. The encoder architecture elaborated is represented in 

the figure. 4. 

 

 
 

Figure 4. Encoder 

 

2) Decoder 

A decoder is the second component of an autoencoder that 

maps the code to reconstruct the compressed version of the 

in)-1put. A decoder is the inverse CNN structure, which 

produces output using the 1D vector. The goal of the AE is to 

produce an identical copy of the input. Thus, the decoder 

architecture has to be a mirror image of the encoder. The basis 

of the architecture of a decoder is that the input and output 

dimensionalities must be equal. The decoder takes the encoder 

output with the bottleneck layer, and recreates/regenerates the 

input. The decoder network consists of 3 layers: a) Dense 

layer, b) Deconvolution, c) Upsampling as shown in figure. 5. 

a) Dense layer 

A dense layer is the most basic layer in neural networks that 

feeds its neurons all the output of the preceding layer, 

supplying one output for every neuron to the next layer. It is a 

regular deep fully connected neural network, a frequently 

implemented layer. The dense layer mainly performs 

matrix-vector multiplication, where the used values are the 

self-trained parameters that can be updated through 

back-propagation. It applies several operations like scaling, 

rotation and translation on a vector, but primarily they change 

the vector dimensions, generating an output of an m-D vector. 

b) Deconvolution 

Deconvolution is a mathematical operator that transposes 

convolution. It is an unsupervised technique for convolutional 

decomposition based on a sparsity constraint [44]. Its main 

application is for those networks which reconstruct the input. 

In deconvolution, the dimension of output is more than that of 

input. As deconvolution is the transpose of convolution, it can 

be mathematically expressed in the form of linear system as 

shown in equation 8. 

[𝑜] = [𝐾] ⋅ [𝑦] + [𝑒]                                                                      (8) 

Where, [y] is the matrix of unknown signals, [o] is a vector 

of observations, [K] is a known matrix, and [e] a vector of 

random errors. 

c) Upsampling 

Upsampling is a technique used to raise the sampling rate by 

insertion of zero-valued samples in between the original 

samples. Upsampling is the manipulation of signals for the 

artificial increment of the sampling rate. Upsampling 

improves resolution, anti-aliasing filter performance and 

reduces errors. In simple words upsampling is a simple 

scaling up of input image using nearest neighbours (bi-linear 

upsampling). Considering s is the factor for upsampling 

operation, then the (i, j)th element of the upsampling matrix 

ua,b in equation 9. 

{𝑢𝑎,𝑏}𝑖,𝑗 =↑ 𝑠(𝛽[𝑖 − 𝑗]) = 𝛽 [
𝑖

𝑠
− 𝑗] = 𝑏[𝑖 − 𝑠𝑗]             (9) 
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Figure 5. Decoder 

IV. Proposed Method 

First, normalization of HSI images is done to avoid input 

shape errors followed by optimization of the neural network. 

An Adam optimizer is applied with its parameters, the 

learning rate of 0.0009, default for both the exponential decay, 

with beta_1=0.9 and beta_2=0.999 [45], followed by model 

implementation. 

This paper uses the dimension reduction property of the 

autoencoder for HSI compression. The illustration of the 

proposed autoencoder architecture is shown in algorithm 1. 

Elaborating the framework, both encoder and decoder have a 

set of convolutional, max-pooling, and dense layers. As the 

first step, input fed to three convolutional layers paired with 

max-pooling layers, a padding size of kernel = 2, 2 was used. 

The first convolutional layer has 128 filters and a ReLU 

activation function if the number of bands is greater than 128. 

The second layer with 64 filters is included, followed by the 

third convolutional layer of 32 kernels with the tanh activation 

function. Every convolutional layer is connected to a max 

pool layer for the reduction of pixels from earlier 

convolutional layers, to reduce input Dimensionality. Lastly, 

after the third convolutional layer, an attention layer is added 

followed by a flattening layer of 8192 units. 

 
ALGORITHM 1: MODIFIED AUTOENCODER ALGORITHM FOR 

COMPRESSION 

   Result: Decoded bit streams of the compressed image 

   Input: Hyperspectral Image,  his, of dimension  

(rw x cl x b), Here rw = number of rows,  

cl = number of columns, b = number of bands 

   Attention Layer: Generate custom layer using keras  

Default layer Class. Four function as arguments for  

Keras custom layer generation rule. Function build ()  

To define weight and biases (w and B).  

The call () for multilayer perceptron (MLP) with tanh  

Followed by softmax layer. To return the shape of the  

built layer, a compute_output_shape () function is added,  

along with get_config () for gathering all the information  

About the custom model. 

   Initial Parameters: For optimized neural network  

Adam optimization algorithm is taken, with  

α = 0.0009, β1 = 0.9 and β2 = 0.999. Here α represents  

the learning rate of the model, and β1 and β2  

respectively are the exponential  

Decay rates of 1st and 2nd moment estimation. 

   Representation: The image is normalized using the z score  

And reshaped into a 4-D matrix, i.e. (1, rw, cl, b). 

   Algorithm: 

// Bitwise Normalization 

Normalize data using z- score normalization 

Reshape to 4-D array # reshaping into (1, rw, cl, and b). 

// Encoder Model 

Conv2D layer with 220 filters and ReLU function; 

Max pooling2D layer; 

Conv2D layer with 128  filters and ReLU function; 

Max pooling2D layer; 

Conv2D layer with 64 filters and ReLU function; 

Max pooling2D layer; 

Conv2D layer with 32  filters and ReLU function; 

Max pooling2D layer; 

Attention layer; 

Flattening layer; 

// Decode Model 

Dense layer with ReLU function; 

Layer reshape; 

Upsampling2D layer; 

Conv2DTranspose layer with 32 filters and ReLU function; 

Upsampling2D layer; 

Conv2DTranspose layer with 64 filters and ReLU function; 

Upsampling2D layer; 

Conv2DTranspose layer with 128 filters and ReLU function; 

Upsampling2D layer; 

Conv2DTranspose layer with 220 filters and ReLU function; 

Conv2DTranspose layer with 220 filters and Linear function; 

Resize to (rw, cl) 

 

The output obtained from the encoder is the input for the 

decoder. So, 8192 units are taken as the unit for the dense 

layer. It is followed by two deconvolutional layers, or 

transpose of convolutional layers, further followed by 

upsampling layers. Then again three deconvolutional layers 

are added. A regenerated image of a similar shape to that of 

the input image is obtained as the final output. To minimize 

loss as much as possible, 120 to 350 epochs are used for 

training. Figure 6 shows the pipeline of the proposed 

convolutional autoencoder. 

 

 
Figure 6. Proposed Convolutional Autoencoder Architecture 

V. Implementation and Results  

To validate the proposed model simulation results are 

presented in this section. Here the details of the datasets used, 

the experimental configurations, and the obtained results are 

mentioned. The RGB images of the datasets are shown in 

Figure 7. The section is subdivided as: 

A. Dataset, B. Experimental setup, C. Comparison and 

Analysis of Algorithms 
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A. Dataset 

To assess the proposed compression technique, widely used 

Hyperspectral datasets are adopted. The framework is 

performed in four real-world datasets: Indian Pines, Kennedy 

Space Center (KSC), the Salinas Scene, and the University of 

Pavia datasets. For research purposes, these datasets are 

publicly available in [41]. Each dataset has multiple sets of a 

single image. Table 1 specifies the number of sets present in 

each dataset. We will briefly discuss each HSI dataset in its 

sub division: 1 Indian Pines, 2. Kennedy Space Center (KSC), 

3. Salinas Scene, and 4. University of Pavia 

 

Table 1. Hyperspectral Imaging Dataset Used 
 

DATASET PIXEL BAND CLASS IMAGE 

No. 

Indian 

Pines 

145*145 200 16 200 

Kennedy 

Space 

Center 

(KSC) 

512*614 176 13 126 

Salinas 

Scene 

512*217 204 16 204 

 

1) Indian Pines 

Indian Pines is the first dataset used for hyperspectral image 

compression in this paper. In June 1992, NASA used an 

AVIRIS sensor to gather the hyperspectral scene over Indian 

Pines, North-western Indiana test site. The images are of 

145X145 pixels and have 220 spectral reflectance bands in the 

wavelength range 0.4–2.5 10^ (-6) meters (µm). The 220 

wavebands of the image were continuously captured via 

AVIRIS on the specified wavelength and at approximately 

20m of spatial resolution. Recently, by removing the water 

absorption region covering bands ({104-108}, {150-163}, 

220), the dataset is corrected by reducing 220 bands to 200 

bands. The ground truth is categorized into sixteen classes, 

shown in table 1. 

 

2) Kennedy Space Center (KSC) 

The second real-world dataset used is the site of mixed 

vegetation over the Kennedy Space Center (KSC), Florida, 

and USA which was acquired in 1996 by the National 

Aeronautics and Space Administration (NASA) Airborne 

Visible/Infrared Imaging Spectrometer instrument. It had 224 

spectral bands when it was collected ranging from 0.4 to 

2.5μm wavelengths, with a spatial size of 512 × 614 pixels 

with 5211 labelled pixels, and 18m spatial resolution. Due to 

the low signal-to-noise ratio (SNR) and water absorption, 48 

bands are discarded during pre-processing. As a result, for the 

classification, 176 spectral bands are used. In the original 

dataset and the ground truth, 13 land cover types are 

represented in table 1. 

 

3) Salinas Scene 

The third dataset used in this paper is the Salina scene, 

acquired over Salinas Valley, California, USA, by 224 band 

AVIRIS Imagining spectrometer sensor, and characterized via 

high spatial resolution of 3.7-meter per pixel. The dimension 

of the Salinas scene was 512X217 pixels with 224 spectral 

bands, but 20 bands of water absorption region were discarded: 

{108-112}, {154,167}, 224. As shown in table 1, 16 classes 

are categorized on the ground truth. 

 

4) University of Pavia 

In this paper it is the fourth HSI dataset used for compression. 

The University of Pavia dataset is an HSI dataset acquired 

over Pavia, northern Italy in 2003 by an airborne reflectance 

optical spectrometer sensor, the Reflective Optics 

Spectrographic Imaging System, ROSIS-03. Initially, the 

Pavia University dataset was of 610*610 pixels with 115 

spectral bands, but some images on the sample had no 

information in it, so it was discarded to 610X340 pixels and 

due to the presence of noise, 15 wavebands were removed, so 

the corrected dataset consisted of 610X340 pixels and 103 

spectral bands. The ground truth is differentiated into 9 

classes shown in table 1. 

B. Experimental setup 

The proposed compression framework and all other 

architectures are implemented in the personal hardware 

workstation powered by windows 11 with Intel(R) Core (TM) 

i5-8250U 8th generation and CPU @ 1.80 GHz and 16GB 

Random Access Memory (RAM), and along with this, all the 

neural network libraries like Keras, TensorFlow used are 

coded in python 3.8.8. For the effectiveness evaluation of the 

proposed framework, two measurement metrics used are Peak 

Signal to Noise Ratio (PSNR), and Compression Ratio (CR).  

The ratio of maximum signal power possible and the 

corrupting noise power affecting the representative's fidelity 

is known as PSNR. PSNR is utilized for measuring quality of 

the reconstructed lossy compression codecs, also known as 

image  

    

Indian 

Pines 

Kennedy 

Space Center 

(KSC) 

Salinas Scene University of 

Pavia 

Figure 7. RGB image of the HSI Dataset used 

quality metric. Equation 10 expressed PSNR mathematically, 

where is the maximum pixel value possible and mse 

represents mean square error, which is a quantification of the 

error difference between the original and the reconstructed 

image. 

𝑃𝑆𝑁𝑅 =
𝑀𝑃𝑝

𝑚𝑠𝑒
                                                             (10)                                                                     

Compression Ratio (CR) also called Data Compression 

Ratio, and compression power is the measurement metric of 

relative reduction of data representation size achieved by 

compression techniques. In simple words, CR is the ratio of 

uncompressed to compressed size as shown in equation 11. 

𝐶𝑅 =  
𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 (𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙)𝑠𝑖𝑧𝑒 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒
                       (11) 

The intention of compression is to minimize the amount of 

input data, simultaneously preserving as much information as 

feasible. To put it another way, it means optimizing the lossy 

data with maximization of CR and PSNR. 
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A. Comparison and Analysis of Algorithms 

This section discusses the comparative comparison carried out 

to inspect the quantitative superiority of the proposed HIS 

compression framework including the state-of-art: NFTD + 

PCA, and 3D DWT+SVR. We explored and analysed the 

behaviour of AE for better performance on the basis of PSNR 

and CR.  

 
Figure 8. Model Loss 

1) Construction 

Initially, the proposed architecture’s performance is assessed 

via the calculation of the obtained loss against the number of 

epoch functions. Training and testing splitting was randomly 

distributed for better performance. The obtained graph of 

gained loss (y-axis) based on epochs (x-axis) is shown in 

Figure 8. From the graph we can suggest, in between 0 to 25 

epochs the training loss was immense with lots of fluctuations 

and after 25 epochs the loss gradually declined and in between 

300 to 350 it started attending consistency, due to its static 

level, the optimal number of epochs selected for the model 

was 350 epochs. Due to variation in dataset dimension, each 

filter size (kernel size) is tuned as per the input size. To avoid 

data loss and image splitting, we have not considered 

partitioning the datasets into the training and testing phase as 

it will result in the splitting of spectral dimensions that will 

cause image distortion. Initially, the proposed architecture 

comprised of three convolutional layers, with each being 

connected to a max-pooling layer, then bottleneck layers as 

encoders, and in the decoder, five de-convolutional layers 

(transposed convolution layers) along with upsampling. 

 

2) Filters 

The proposed CAE framework uses N input neurons with H 

hidden neurons, where N stands for the number of spectral 

bands in each dataset. As the framework is completely 

connected, every hidden layer is attached to every input 

neuron. Thus, on the whole, the N connection acts as a filter, 

since it filters out some information from the input 

representing wavelengths and simultaneously overemphasize 

others. For improvement in the model, we experimented with 

various hidden layers, such as the attention layer, flattening 

layer, and dense layer in both encoder and decoder. Six 

experimental models are compared in table 2. The size of 

every layer varies as per the dataset dimension. From the table, 

it can be understood that the autoencoder with attention layer 

followed by flattening and dense layer performs best 

compared to other architectures on the basis of CR and PSNR, 

and size of dense layer depends proportionally to the size of 

data. 

 

3) Comparison 

For efficiency evaluation of our proposed framework, we 

evaluated based on compression ratio and PSNR obtained 

from three state-of-art algorithms. We implemented the 

NFTD + PCA by taking principal components as 16, as the 

dataset consists of large spectral bands. Along with this, we 

implemented 3D DWT+SVR and CAE proposed in [2]. In 

table 3, a comparison of the average results is represented 

because of its stability. The experiment was executed 20 times 

so that it authenticates the coherence of the proposed 

architecture. Table 4 shows the top 10 achieved PSNR for the 

University of Pavia dataset. It is observed that the modified 

CAE outperforms all other algorithms on the basis of CR and 

PSNR. The proposed architecture performs incredibly well 

for the Salinas dataset. The reason for the better performance 

is its 3.7 m per pixel spatial resolution. In table 5, we compare 

the original size of each file to the obtained compressed file 

size in bytes. The compressed file size of the dataset obtained 

by the University of Pavia decreased the most, and the 

original file size decreased by 9655 times.  

The size of the original Salinas dataset undergoes around 

7950 times decrement and for the KSC dataset, the original 

file size is compressed by 1177 times, and 2713 times 

reduction is seen in Indian pines compressed file size. The 

results obtained from the modified CAE and other state-of-art 

algorithms are graphically represented in Figure 9. Figure 9a 

shows that in the 

 

Table 2. Filter comparison 

 

MODELS (M) ATTENTION 

LAYER 

DENSE LAYER CR PSNR 

ENCODER DECODER 

DIMENSION 
 

8192   

M1 ✔ ✖ ✖ 441.238 53.008 

M2 ✖ ✔ ✖ 389.043 51.917 

M3 ✖ ✖ ✔ 502.576 53.893 

M4 ✔ ✔ ✖ 1105.673 48.128 
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Table 3.   Comparison

 

 

Table 4. Top 10 achieved PSNR for the University of Pavia 

dataset 

University of Pavia 

EXPERIMENT NO. PSNR CR 

EXPERIMENT 1 52.06 6521.80 

EXPERIMENT 3 59.30 7049.02 

EXPERIMENT 4 51.00 8561.31 

EXPERIMENT 7 54.21 6958.42 

EXPERIMENT 8 52.69 4237.65 

EXPERIMENT 9 57.28 7562.60 

EXPERIMENT 11 55.13 6851.32 

EXPERIMENT 12 51.33 7963.14 

EXPERIMENT 15 50.3 6753.78 

EXPERIMENT 19 52.6 6025.36 

 

Table 5. Size Comparison 

DATASET ORIGINAL 

SIZE  

(in Bytes) 

COMPRESSED 

SIZE 

(in Bytes) 

Indian Pines 6296374 2320 

Kennedy Space 

Center (KSC) 

56824624 48272 

Salinas Scene 27605707 3472 

University of Pavia 95320136 9872 

 

proposed modified CAE, represented by yellow bar, CR is 

increased by approx. 18 times than the state-of-art CAE 

method, 200 times increment from 3D DWT+SVR, and 25 

times of NFTD+PCA. The CR for the Salinas dataset 

achieved is 355 times better in modified CAE than 3D 

DWT+SVR. 

Figure 9b compares the PSNR gained in the proposed 

architecture, signified by yellow bar, to other state-of-art 

compression architecture and confirms that the modified CAE 

performed better by around 5% in terms of PSNR. The 

estimation for only 0.23 unit increment in PSNR for the KSC 

dataset is that due to the larger dimension (512 x 614 x 176), 

the quality improvement is slighter during compression.  

 
 

 

 

 

 

 

 

 

 

 
 

Figure 9a. Comparison of CR of proposed model with 

state-of-art algorithms 

 

 
 

 Figure 9b. Comparison of PSNR of proposed model with 

state-of-art algorithms  

 

Figure 9. Comparison graph for CR, PSNR 

The absolute difference between modified CAE and CAE 

in PSNR achieved for the Salinas dataset is 3.67 units. The 

reason behind the improvement in CR and PSNR is the 

addition of the attention layer in the encoder that memorizes 

large sequences of spatial features, which consequently 

improves the compression rate after decoding. The illustration 

of the original image along with the image reconstructed by 

the modified CAE is shown in Figure 10.  

XI. Discussion 

The main problem with hyperspectral image, apart from its 

high cost, is the large storage requirement due to its multiple 

bands and spectral and spatial redundancy. As compared to 

RGB images (3 band imagery), usually HSI consists of more 

than 100 bands, for storage of spectral information from each 

band. As a result, the data size is immense. 

The main innovation and the primary goal of this work is to 

compress the data with as less loss of information as possible 

DATASET NFTD+PCA 3D DWT+SVR CAE MODIFIED CAE 

PSNR CR PSNR CR PSNR CR PSNR CR 

Indian Pines 49.68 130.25 44.19 27.02 55.19 128.33 55.89 2713.95 

Kennedy Space 

Center (KSC) 

47.06 235.12 41.56 26.35 53.32 371.67 53.55 5756.14 

Salinas Scene 46.47 272.23 42.28 21.53 54.46 447.42 58.13 7950.95 

University of 

Pavia 

47.11 137.51 43.59 25.95 55.26 157.71 56.74 3194.47 
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utilizing the strength of an unsupervised artificial neural 

network, autoencoder, i.e., reconstruction of compression data 

from the reduced encoded representation as similar to the 

original input as possible by extracting key features of the 

hyperspectral Images and storing it into a 3D tensor. The 

depressed version can be reconstructed in its original using 

the decoder, as using transpose convolutional layers reverses 

the steps of CNN. 

 
Figure 10. Original image (left) and reconstructed image 

(right) 

However, [2] used entropy coding as the bottleneck to 

minimize the number of its bits for a unique representation of 

input data. It is a lossless coding technique that uses code 

words for decoding, and even a corrupted single bit in the 

code word can make the entire message corrupted. Along with 

this drawback, another one, is its limitation on the precision of 

the encoded number, thus limiting the number of symbols 

within the code word to be encoded. The experiments show 

that the architecture proposed in the paper outperforms 

state-of-art compression techniques, using the following 

configuration: input of size according to its data dimension is 

fed to three consecutive convolutional layers accompanied by 

a max-pooling layer of each, further connected to an attention 

layer as encoder and flattening layer as the bottleneck, and the 

decoder consists of a dense layer followed by five 

deconvolutional layers along with upsampling layers for 

reconstructing the compressed image. The baseline of image 

compression is compressing the data and then reconstructing 

the image by decompression for compression of data encoder 

is required, and for decompression of data decoder is needed.  

An autoencoder is the sole composition of encoder and 

decoder. In general, the efficient neural network for dealing 

with an image is a convolutional neural network without CNN 

computational time, and computational power required will 

be immense and along with this, the neighborhood 

information of each pixel will be lost, so considering both the 

intuition, the combination of autoencoder with CNN is the 

most coherent architecture for image compression. The 

advantages of the proposed architecture, modified CAE are as 

follows: 

• Convolutional Autoencoder: Autoencoders are data 

compression models, used to encode input data to smaller 

dimension representatives. The dimension reduction 

attribute of autoencoder in addition to the feature 

extraction attribute of CNN results in an efficient image 

compression technique. 

• Attention mechanism: The ability to identify the 

information most relevant to accomplishing the given task 

from input makes the attention mechanism incredibly 

suitable for identifying features and providing it to CNN 

that performs feature extraction. The method confirms that 

the addition of the attention layer and flattening layer to 

the autoencoder assist better image compression than 

state-of-art algorithms. 

XII. Conclusion & Future Work 

In this work, we employ a modified convolutional 

autoencoder for compression of hyperspectral images. Along 

with a fundamental convolutional autoencoder framework, a 

few modifications are made like an attention layer is added to 

the encoder, a flattening layer as the bottleneck, and a dense 

layer is connected in the decoder. The algorithm is tested for 

its compression performance on four benchmark 

hyperspectral datasets that are Kennedy Space Center, Indian 

Pines, Salinas Scene, and the University of Pavia dataset. The 

achieved results depict that the proposed algorithm is able to 

perform significantly better than the compared work with 

respect to both compression ratio and peak-signal-to-noise 

ratio. As the properties of each used image differ from others, 

the obtained result varies for each dataset. From the 

state-of-art, CAE CR increased by around 18 times and a 5% 

gain is obtained in PSNR for the proposed architecture, and 

apart from this, a maximum of 7950 times drop is seen in the 

compressed file size to that of the original file size. 

In terms of future work on compression of hyperspectral 

images, a variety of autoencoders can be trained for 

compression other than convolutional autoencoders, and 

neural network architectures like recurrent neural networks, 

and many other approaches can be implemented. The 

architectures can be further modified by fine-tuning and 

pre-processing the hyperspectral images, and the model can 

be better optimized with Stochastic Gradient Descent (SGD) 

as a parameter followed by cross-entropy for loss function. 

Keeping in mind the dimension of each image, better 

performance can be achieved with complex neural networks 

with higher computational power and powerful GPU. By the 

usage of higher computing power and with improved and 

modified hardware, the computational time can be decreased. 
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