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Abstract: Being able to automatically identify the semantic
type of tabular data is a useful feature in many areas of the
data landscape. This information is especially important for
data integration, data science, and data cleaning. Traditional
semantic type detection tools based on dictionaries and regu-
lar expressions have recently been challenged by methods using
machine learning. These new methods are very efficient but re-
quire a large amount of data to learn, which limits the use of
these methods to semantic types and languages for which a large
amount of data is available. To overcome these drawbacks, we
introduce a data generation method to produce training data
with minimal real data. In addition, we propose several new
feature extraction methods that are less dependent on column
length, language independent (for a given alphabet) and robust
to errors in the data. Experiments conducted on synthetic and
real data indicate an accuracy higher than 0.9 which is equiva-
lent to classical methods.
Keywords: Type detection, Tabular data, Semantic types, Data
Profiling, Knowledge discovery, Machine learning

I. Introduction

Detecting the semantic type of tabular data is a crucial task,
as this information is widely used in many fields. For exam-
ple, for data integration, matching schemas requires precise
identification of the semantic type in order to find matches
between columns of several tables [1]. For automatic data
cleaning, the semantic type of the data is used to build rules
for data validation and transformation [2, 3]. Finally, in the
context of data mining, the semantic type of the data is used
to determine the most relevant results to a query.
First of all, we are interested in the semantic types of the
columns and not the atomic types. Atomic types are very
basic information about the content of the column and are
easily identifiable; for example binary, number or string
types. This article focuses on semantic types which are
complex information such as ”last name”, ”first name” or
”postal code”. The automatic detection of semantic types

is typically done using regular expressions and dictionary
lookups. Most commercial softwares such as Trifacta1,
Tableau2, or Microsoft Power Bi3 search for the semantic
type of data in this way. However, they can only identify
a limited number of semantic types. The method they use
requires that the data do not contain noise and that the
semantic type follows a repetitive pattern (e.g., zip codes).
For semantic data types that are outside of the most common
types, an expert is needed to determine the method to use to
detect the type, which is limiting and expensive.

To overcome these drawbacks, new approaches using ma-
chine learning have appeared over the last few years [4, 5, 6].
One of the best-known methods is Sherlock [7], which treats
the problem of detecting the semantic type of data as a multi-
class classification problem. Out of each column, Sherlock
extracts 1588 features divided into 4 main types. The ”Global
statistics” type features which describe how the values are
distributed in the column, the ”Character Distribution” fea-
tures that describe how the characters are distributed in the
columns, and finally, the ”Word embeddings” and ”Para-
graph vectors” features that use two word embedding tech-
niques to describe the columns in two different ways. This
method is more robust to errors in the data and performs bet-
ter than conventional methods.
Sherlock’s method has led to refinements, including Sato [8],
which considers the problem as a multi-column prediction
problem. This means that it predicts the semantic types
of all columns in a table at once. This is done in order to
improve the predictions by learning the relationships (e.g. a
column of first names is often accompanied by a column of
last names) that may exist between the columns.

1https://www.trifacta.com/fr/
2https://www.tableau.com
3https://powerbi.microsoft.com
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In the following, we present the contribution proposed
in section II, first introducing a data generation process and
then feature extraction methods. The experimental results
obtained are then discussed in section III, before concluding
in section IV. The overall process is summarized in the
diagram 1.

Figure. 1: Diagram summarizing the global functioning of
the method

A. Machine Learning for semantic type detection

The approach proposed in this work differs from the liter-
ature in several points. Indeed, our method is designed to
be accessible and reusable in any activity domain, indepen-
dently of semantic categories. Moreover, it is designed to
overcome several shortcomings of the leading algorithm in
the field: Sherlock [7]. The first obstacle to the use of Sher-
lock as well as all other methods using machine learning for
this task is the volume of data used [9].
The method presented in Sherlock (for 78 semantic cate-
gories) requires 60% of a dataset containing 686765 columns
(from VizNet [10]). It is therefore difficult to use the Sher-
lock approach with other semantic categories than those used
in the original article [9]. Indeed, it’s hard to get enough ex-
amples to use Sherlock on customized semantic categories.
Especially since it is shown in Sato [8] that the accuracy
rate of Sherlock depends strongly on the number of examples
present for the class (i.e. unbalanced classes). Actually, the
classes with a low number of examples are the least recog-
nized. To cope with this problem, we introduced a synthetic
data generation algorithm. Unlike the classical oversampling
in machine learning, in the proposed generation algorithm,
the data are created in the same initial feature space (mixed
variables). The latter uses a set containing the largest possi-
ble number of elements of the targeted semantic domain (the
data used were manually collected), to generate the desired
number of columns containing these elements using Dirich-
let’s law (to generate pseudorandom vectors), see (II).
The second limitation is Sherlock’s use of two word embed-
ding models during the extraction of column features. This
limits the use of the algorithm to one language at a time.
Furthermore, not all languages have pre-trained models for
these algorithms. To avoid this problem, we did not use the
features from word embedding so that our method can be
used in multiple languages. The last point to discuss is the
number of rows in the columns used. In Sherlock, the num-
ber of rows in a column is an important information for the
model. This number is used both directly and indirectly in

the calculation of several features. This results in a reduction
of the model’s accuracy when confronted with data not com-
ing from the database used in the article (where the columns
do not have the same length). Thus Khurana and Galhotra
show that the average accuracy rate observed on 9 datasets
is 26.6% for Sherlock and 26% for Sato [11] (which is very
low). In order to solve this problem, features that could grow
infinitely with the number of lines will not be used.

II. Data generation

In this section, we present the proposed approach for data
generation and augmentation. Starting from a data set D de-
scribing a semantic type with Card(D) = K, z multisets of
cardinal l will be generated (our synthetic columns of length
l). This will be done by associating a probability to each ele-
ment of E.
These probabilities are created from a random vector
[x1 . . . xK] respecting a Dirichlet distribution of parame-
ters α1, . . . , αK [12]. The probability density function of
the Dirichlet distribution of order K ≥ 2 of parameters
α1, . . . , αK is defined as follows:

f(x1, . . . , xK ;α1, . . . , αK) =
1

B(α)

K∏
i=1

xαi−1
i (1)

B(α) =

∏K
i=1 Γ(αi)

Γ
(∑K

i=1 αi

) , α = (α1, . . . , αK). (2)

with

K∑
i=1

xi = 1 and xi ≥ 0 for all i ∈ {1, . . . ,K} (3)

The vectors respecting the Dirichlet distribution are obtained
using a gamma distribution.

f(y;αi, θ) =
yαi−1e−

y
θ

Γ(αi)θαi
(4)

By drawing K independent variables of following gamma
distribution:

f(αi, 1) =
yαi−1e−y

Γ(αi)
(5)

Finally each dimension of the vector is calculated using the
following sum.

xi =
yi∑K
q=1 yq

(6)

The vectors generated this way have a sum equal to 1.
Moreover, the distribution of the values in the vector can be
modified by changing the parameters α. In the following,
the parameters α1, . . . , αK will be referred as α because we
use the same value for all dimensions.

To summarize in order to generate a data vector of
size l from a real data vector [d1 . . . dK] of size K (describ-
ing a semantic type), first, we need to generate a vector
[x1 . . . xK] following a Dirichlet Distribution. Then draw l
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Figure. 2: Example of a Gamma distribution for various α
and θ=1

elements in [d1 . . . dK] by using as probability of drawing
for each di the value xi.
The smaller the value of α, the more likely it is that the
distribution of values in [x1 . . . xK] is unbalanced (this will
change the distribution of the gamma distribution that is used
to generate each dimension of the vector).
The algorithm 1 presents a method to generate nbr elem ex-
amples (columns) from a vector of real data D for a given α
value.
This method allows to generate data of all types (numerical,
alphanumerical). We have chosen to use the Dirichlet
distribution because it allows to generate ”customized”
examples by modifying the α parameter vector; we can thus
generate a larger variety of examples, as the real distribution
of the data is unknown.

Algorithm 1: Data generation
input : D:list, nbr elem:int, α:int, max col size:int,
min col size:int

initialization : x← [],
prb← nbr elem samples of dimension length(D)
from a Dirichlet distribution of parameter α* ”vector
of ones” of size length(D)

for i← 0 to nbr elem - 1 do
n elem← random value between min col size
and max col size
x[i]← n elem elements of D chosen according

to the distribution prb[i]
end
return x

A. Feature extraction process

The transformation of columns of different lengths into vec-
tors of fixed size is an essential pre-requisite for the use of
most machine learning models. The method described in this
article is inspired by the one presented by Sherlock [7] how-
ever only a subset of the features presented in Sherlock is
used 4.

4https://github.com/mitmedialab/sherlock-project

First, features that depend directly on the language of the
words in the column are not used, so features such as ”Word
embeddings” and ”Paragraph vectors” (which use classical
text vectorization methods) are not reused. Additionally, the
characters within the columns are transformed to lowercase.
The 512 features extracted from the columns are divided into
two main types. The so-called general features are com-
posed of two subcategories. The first one consists of gen-
eral statistics (22 features) on the column: entropy, presence
or absence of null value, percentage of each type of val-
ues (numeric, textual, null). This grouping also contains the
mean and standard deviation of the number of cells contain-
ing characters of the following types: alphabetic, numeric
and special or the mean and standard deviation of the num-
ber of words in each cell. The second subcategory of features
is created by using statistics (Mean, Min, Max, Var, Median)
on the length of the strings in the column.
The second type of features is centered on the characters, it
consists of statistics calculated on the number of occurrences
of each character in each cell. We have chosen to treat the
following characters: {’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’,
’9’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’,
’o’, ’p’, ’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’, ’x’, ’y’, ’z’, ’é’, ’è’,’ ! ’,
’”’, ’#’, ’$’, ’%’, ’&’, ”’”, ’(’, ’)’, ’*’, ’+’, ’,’, ’-’, ’.’, ’/’, ’:’,
’;’, ’¡’, ’=’, ’¿’, ’ ? ’, ’@’, ’[’, ’]’, ’ ’, ’‘’, ’{’, ’|’, ’}’, ’˜’, ’́,
’\x0c’}.
We use the characters of the Latin alphabet because we tar-
get columns using this alphabet, but this approach can be
customized for other alphabets by modifying the characters
employed. The computed statistics are: Min, Max, Mean,
Median, Variance, presence or absence of the character and
presence or absence of the character in all rows of the col-
umn. This gives a total of 490 features. The whole feature
extraction process is summarized in figure 3.

Figure. 3: Process for creating the feature vector
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B. Robust features and Bigram

Real data are usually noisy, the subject of noise in labels has
already been studied using a method reusing Sherlock fea-
tures [13]. However, while these features are effective they
are not robust to some kind of error in the data. For example
the feature based on the presence of a letter in all the ele-
ments of the column or those based on the total absence of
a letter in the column are not robust [14]. Indeed, changing
a single element of the column, regardless of its length, can
change these characteristics from true to false.
In addition, most of the statistics used are not robust, so the
mean, minimum, maximum and variance are very sensitive
to outliers in the data. This can lead to poor prediction if
there is only one outlier in the column.
We therefore decided to propose a new method of feature ex-
traction more robust to outliers. To do this we removed the
features based on the presence or absence of a letter and in-
troduced robust statistics instead of the old statistics in the
feature vector.
First the minimum and maximum are replaced by the 15th
and 85th percentile. Then the central tendency statistics
(mean and median) are replaced by the trimean denoted here
TRI [15].

TRI =
Q1 + 2 ∗Med+Q3

4
(7)

Finally the variance is replaced by the biweight midvari-
ance [16] denoted BWMV.

BWMV = n ∗
∑

|ui|<1(xi −Med)2(1− u2
i )

4

(
∑

|ui|<1(1− u2
i )(1− 5u2

i ))
2

(8)

ui =
(xi −Med)

c ∗MAD
(9)

with c = 9 and MAD is the median absolute deviation.

Another improvement we propose is the addition of bigrams
to the list of counted characters (while removing the char-
acters ‘, ˜and \0c). In order to avoid that these bigrams are
dependent on a single language. We have used the top 10
most found bigrams within the following 6 languages: Pol-
ish, French, German, Spanish, English, Italian. The bigrams
thus chosen are: ’an’, ’en’, ’es’, ’er’, ’re’, ’ar’, ’de’, ’el’, ’he’
’in’.
The new robust vectors lengths are 287 for the normal ver-
sion and 327 for the extended version. The extended version
of the standard feature vector is 582.
In order to illustrate the difference between the feature ex-
traction methods (Sherlock, standard version, robust ver-
sion), we will use a column of 30000 elements containing
French movie titles (FILM-FRENCH). We will then draw
randomly 500 subsets of sizes {5, 10, 20, 30, 50, 100, 200,
500, 1000, 2000, 5000}. We will then extract from each
of these subsets the features using the 3 methods (depriving
Sherlock of the features ”Word embeddings” and ”Paragraph
vectors”), then compute the Euclidean norm of the feature
vector. The average of the norms for each size for both meth-
ods is shown in the figures 4 and 5.
These representations allow us to observe that our methods
create feature vectors whose values do not tend to infinity as

Figure. 4: Average of the Euclidean norm of the Sherlock
feature vector for several vector sizes (for a column of se-
mantic type FILM-FRENCH)

Figure. 5: Average of the Euclidean norm of standard and
robust vectors for several vector sizes (for a column of se-
mantic type FILM-FRENCH)

the size of the target column increases, while several features
from Sherlock’s method grow indefinitely.

size std Sherlock std Standard std Robust
5 34 35 40
10 27 26 27
20 34 20 20
30 43 17 16
50 55 14 12

100 74 11 9
200 106 8 6
500 159 5 4

1000 231 3 3
2000 374 2 2
5000 559 1 1

Table 1: Standard deviation of the Euclidean norm of the
Sherlock feature vector for several vector sizes (for a column
of semantic type FILM-FRENCH) for both methods part a.

The table 1,2 represents the standard deviation and coeffi-
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size cv Standard cv Robust
5 0.54 0.61
10 0.37 0.39
20 0.27 0.28
30 0.23 0.22
50 0.19 0.17

100 0.14 0.12
200 0.1 0.08
500 0.06 0.05

1000 0.04 0.04
2000 0.02 0.02
5000 0.01 0.01

Table 2: Standard deviation of the Euclidean norm of the
Sherlock feature vector for several vector sizes (for a column
of semantic type FILM-FRENCH) for both methods part b.

cient of variation of the results from the previous experiment.
We can see that our feature vectors have a high standard de-
viation when the number of rows in the column is low. This
observation will lead us to use two different machine learn-
ing models.

C. Method for learning

The proposed method uses two classifiers, one for columns
containing many rows named ”high”, the other for columns
containing few rows named ”low”. For each case, we chose
to try two types of classifiers, a random forest (RF) [17] as it
is shown in Sherlock that this algorithm performs well in this
task and Catboost [18] whose results exceed those of RF for
other tasks using similar features [19, 20, 21, 22, 23].
Each model is calibrated using the isotonic method with 5
cross-validations (the final probability is the average of the
predictions of the 5 classifiers) [24]. The two RF use two dif-
ferent datasets as training data. One is generated with small
column sizes ranging from 5 to 30 rows and the other with
a number of rows ranging from 31 to 1000. Each of these
datasets is composed of 57 classes (one part of the classes
is in French and the other in English, all data and their de-
scriptions are available on github 5), each class has 21000
examples. Among these 21000 examples generated with the
algorithm 1, 7000 are generated with an α equal to 0.00001
, 7000 with an α equal to 0.001 and finally 7000 with an α
equal to 1. We have thus at the end two data sets of 1197000
examples each.

III. Experimental results and discussions

This section will present all the results and experiments that
have been performed. The experiments are performed on
a Colab instance with a Xeon 2.30GHz 4-core, 25GB of
Ram and a Tesla P100 (16GB). The parameters used for the
RF are: a maximum depth of 18 and 200 estimators. The
parameters used for Catboost are: 1500 iterations, a depth of
9 and a learning rate of 0.04.

5https://github.com/Marc-Chevallier/SOCPAR22

A. Experiments and results with standard features

Our first experiment aims at evaluating the accuracy and the
F1-score of our two classifiers on data that we will generate
again with the Algorithm 1. Two test data sets are then cre-
ated for each of the two models. One will be generated with
columns whose size varies from 5 to 30 rows, the other with
a number of rows between 31 and 9000. The α values vary
from 10−7 to 100 and are modified by power of 10. For each
α value, 50 examples are generated per class, so we have a
total of 28500 examples for each test dataset. The results of
these first experiments are presented in table 3.
In almost all configurations, Catboost outperforms RF with
an overall accuracy rate of 0.9413 vs. 0.9310 (for the ”high”
version, the ”low” version being less interesting due to the
instability of the characteristics). This is not surprising since
Catboost is considered a more powerful classifier than RF in
this kind of problems. Both models show excellent results for
α values above 10−3. Below this value, the results decrease
sharply, despite training examples generated with α equal to
10−5. This phenomenon can be explained by the data gen-
eration process. Indeed, the lower α is, the more we obtain
columns that will be unbalanced (having an extremely over-
represented value compared to the others). This imbalance
does not uniformly reduce the accuracy rate of all classes.
Semantic types containing a large number of different values
as well as a large number of possible characters are the most
affected (e.g. first names). On the contrary, those with few
different values and few different characters are not affected
(e.g. genders).
The tables 4, 5, 6 and 7 show the most important features
for both models and both classifiers, they are sorted in de-
scending order. Although they represent only a small por-
tion of the total features, the ”global statistics” are highly
represented (in particular, features related to string length).
Using the mean, maximum and minimum string size, it is
easy to separate many classes. For example, gender or blood
type columns will have shorter strings on average, as well
as smaller maximum sizes than phone number or URL col-
umn strings. Another important type of feature is the num-
ber of characters (or cells) containing numeric or alphabetic
values. Indeed, with this information, it is possible to sepa-
rate classes containing only alphabetical characters, such as
names and surnames, from classes containing only numbers,
such as postal codes or the insee code. Finally, at the level
of the characteristics concerning the characters, we find sep-
aration characters such as ’ ’ ’,’ or ’-’. It is likely that the ’ ’
character is used to separate classes containing several words
like university names from classes containing only one word
like continent names. The ’-’ character is probably used to
distinguish several types of dates from each other.

B. Experiments and results with robust and extended fea-
tures

In this section, the tests focus on the robust and extended
features using the same metodology as before (the results
presented are only for the high version). However, during
the generation of the synthetic test data, we generated an
alternative test dataset. In this alternative dataset, 10% of
the columns are polluted. The pollution rate of the polluted
columns is randomly chosen between 1 and 3% (uniformly).
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α RF H Catb H Rf L Catb L
10−7 0.8032 0.8217 0.8169 0.8306
10−6 0.8379 0.8689 0.8521 0.8306
10−5 0.8515 0.8978 0.8620 0.8696
10−4 0.8800 0.9211 0.9024 0.8996
10−3 0.9585 0.9762 0.9448 0.9593
10−2 0.9397 0.9684 0.9466 0.9607
10−1 0.9969 0.9989 0.9683 0.9759

1 0.9996 1 0.9716 0.9806
10 1 1 0.9755 0.9810
100 0.9996 0.9996 0.9775 0.9830

Table 3: F1-score ’macro’ of the models (H stands for high
and L stands for low).

Catboost ”high”
Mean value length
Mean number of ’-’
Mean number of ’c’

Max value length
Mean number of ’,’
Mean number of ’f’
Mean number of ’m’

Min value length
Fraction of cells with num chars

Mean number of ’0’

Table 4: Top 10 features for catboost models, ranked in de-
scending order by their gini impurity score part a.

Catboost ”low”
Mean value length
Mean number of ’-’

Min value length
Mean of alphabetic chars in cells

Mean number of ’,’
Mean number of ’c’

Max value length
Mean number of ’m’
Mean number of ’t’

Fraction of cells with num chars

Table 5: Top 10 features for catboost models, ranked in de-
scending order by their gini impurity score part b.

RF ”high”
Mean value length
Max value length

Mean of alphabetic chars in cells
Median value length

Min value length
Mean of numeric chars in cells

Mean of words in cells
Mean number of ’ ’
Mean number of ’-’
Mean number of ’e’

Table 6: Top 10 features for RF models, ranked in descend-
ing order by their gini impurity score part a.

RF ”low”
Mean value length

Mean of alphabetic chars in cells
Max value length

Median value length
Min value length

Mean of numeric chars in cells
Mean number of ’m’
Mean number of ’ ’
Mean number of ’e’
Mean number of ’-’

Table 7: Top 10 features for RF models, ranked in descend-
ing order by their gini impurity score part b.

The pollution is of two types, either the creation of a
new element in the column containing a random character
repeated p times (p chosen randomly between 0 and 100
according to a uniform distribution), or the creation of a new
element containing p randomly picked characters (p chosen
randomly between 0 and 100 following a uniform law).

Tables 8, 9, 10, 11, 14, 15, 12, 13 as well as figures 6 and
7 summarize all the results of experiments using robust and
or extended features. The F1-score is used to evaluate the
performance of the models.

Figure. 6: F1-Score ”macro” for RF on test datasets for var-
ious α values

The results vary depending on the model used. First with
the RF on unpolluted data : in this configuration the only
notable difference is that the robust features over-perform
when the columns are very unbalanced and under-perform
when the columns are balanced compared to the standard
features. This result is to be expected, as robust features
have the disadvantage of being less efficient than non-robust
statistics on noiseless data.

The addition of features from the bigram counting has
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Figure. 7: F1-Score ”macro” for Catboost on test datasets
for various α values

α RF robust RF robust extend
10−7 0.8176 0.8344
10−6 0.8414 0.8463
10−5 0.8651 0.8659
10−4 0.8899 0.8885
10−3 0.9557 0.9598
10−2 0.9399 0.9426
10−1 0.9891 0.9895

1 1 1
10 1 1
100 1 1

mean 0.8998 0.9038

Table 8: F1-score ’macro’ of the RF part a.

α RF RF extend
10−7 0.7873 0.8227
10−6 0.8489 0.8706
10−5 0.8727 0.8965
10−4 0.8916 0.9038
10−3 0.9666 0.9673
10−2 0.9299 0.9234
10−1 0.994 0.9933

1 1 1
10 1 1

100 1 1
mean 0.8987 0.9377

Table 9: F1-score ’macro’ of the RF part b.

little effect on the robust features, but improves the results
obtained with the standard features, the results are particu-
larly improved for low alpha values. However, the features
depending on the bigram counts have no real importance in
the decision making of the model. It seems therefore that
the performance improvement is due to the increase of the
number of features that can be used at each split [25].
When the data are polluted, we observe a drastic decrease
of the F1 score of the models using the standard features.

α RF robust Rf robust extend
10−7 0.8177 0.8346
10−6 0.8425 0.8463
10−5 0.8651 0.8669
10−4 0.8887 0.8885
10−3 0.9544 0.9581
10−2 0.94 0.9427
10−1 0.9891 0.9895

1 1 1
10 1 1
100 1 1

mean 0.8996 0.9038

Table 10: F1-score ’macro’ of RF classifier on polluted data
part a.

α RF RF extend
10−7 0.7423 0.7722
10−6 0.7931 0.8154
10−5 0.8138 0.8341
10−4 0.8306 0.8405
10−3 0.9068 0.9074
10−2 0.8631 0.8566
10−1 0.9279 0.9266

1 0.9333 0.9325
10 0.9377 0.9362

100 0.9283 0.9284
mean 0.8396 0.8504

Table 11: F1-score ’macro’ of RF classifier on polluted data
part b.

α Catb robust Catb robust extend
10−7 0.8403 0.8434
10−6 0.8671 0.8678
10−5 0.8851 0.8868
10−4 0.9079 0.9092
10−3 0.9669 0.96773
10−2 0.9572 0.96
10−1 0.9885 0.9896

1 1 1
10 1 1
100 1 1

mean 0.9413 0.94245

Table 12: F1-score ’macro’ of Catboost classifier part a.

Indeed, to perform the classification, the RF relies a lot on
statistics based on the length of the strings. But the addition
of a single outlier in the column leads to a large modification
of the values of some of these statistics. Models using
simple and extended robust features are not affected by data
pollution.

When the classifier used is Catboost, if the data are not pol-
luted, we see a slight advantage for standard features com-
pared to robust features. We can thus confirm that there is a
real cost (loss of f1-score on clean data) associated to the use
of these features which is not dependent on the classifier. We
can also note that for this classifier the use of features from
bigrams has no impact and should be avoided.
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α Catb Catb extend
10−7 0.8325 0.8347
10−6 0.8771 0.8788
10−5 0.9203 0.9178
10−4 0.9441 0.9424
10−3 0.9897 0.9873
10−2 0.9739 0.9703
10−1 0.9996 0.9982

1 1 1
10 1 1

100 1 1
mean 0.95372 0.95295

Table 13: F1-score ’macro’ of Catboost classifier part b.

α Catb robust Catb robust extend
10−7 0.8401 0.8431
10−6 0.8681 0.8675
10−5 0.8843 0.8854
10−4 0.9071 0.9084
10−3 0.9657 0.9663
10−2 0.9561 0.958
10−1 0.9885 0.9896

1 1 1
10 1 1

100 1 1
mean 0.9409 0.9418

Table 14: F1-score ’macro’ of Catboost classifier on polluted
data part a.

α Catb Catb extend
10−7 0.7947 0.7999
10−6 0.8324 0.8363
10−5 0.8692 0.8681
10−4 0.8956 0.8962
10−3 0.945 0.9448
10−2 0.9232 0.9219
10−1 0.9545 0.9553

1 0.9588 0.9608
10 0.9587 0.9625

100 0.9513 0.9557
mean 0.9083 0.9101

Table 15: F1-score ’macro’ of Catboost classifier on polluted
data part b.

When the data are polluted, we observe, as before, a decrease
in results for the models using the standard features. In the
same way, when the features used are robust, no decrease
in performance is observed. We can thus conclude that the
robust features allow to make the models resistant to some
types of outliers.

C. Experiments and results in the open set condition

In the following experiment, we tried to address an aspect
often neglected in the state of the art. The fact that the se-
mantic type detection problem is in most cases an open set
problem [26, 27]. Sherlock does not directly address this
problem but proposes to reject the 10% of examples with the

lowest exit probabilities in order to improve the performance
of the model [7].
We will reuse the characteristics (standard) and the method
described in the first experiment, adding to our datasets new
unknown examples to reject. These new examples to reject
come from two semantic types ”Cheese name” and ”Asso-
ciation name”. For each of these two types, 1000 examples
are generated following the same process as for the test data.
The class predicted by our models is the one with the highest
output probability. Since our models are calibrated, we will
consider these exit probabilities as a measure of the model’s
confidence in its prediction. By using a minimum confidence
threshold to make a prediction, we can reject examples.
In this experiment, we will consider in each case that we have
two data sets. One containing the data to be rejected (contain-
ing the unknown classes) and the other the test data (contain-
ing the known classes) to be classified. We will measure the
accuracy rate of the classifiers on each of the two datasets by
varying the rejection threshold. Thus, we will consider that
a member of a known class that is rejected is an error, and
that an unknown element predicted as belonging to a known
class is an error. The results of this experiment are presented
in Tables 16, 17, 18 and Figures 8 and 9.

Figure. 8: Accuracy rate of known and unknown classes for
different thresholds with the ’high’ RF classifier.

threshold 0.35 0.4 0.45 0.5 0.55
Catb know 0.95 0.95 0.95 0.94 0.94

Catb unknow 0.14 0.18 0.21 0.28 0.34
RF know 0.93 0.93 0.93 0.92 0.91

RF unknow 0.27 0.62 0.70 0.76 0.78

Table 16: Accuracy rate of known and unknown classes for
different thresholds with RF and Catboost classifiers classi-
fier part 1

We have presented the results only for the ”high” version of
the algorithm for both classifiers, the results being similar
for the ”low” versions.

We can see that the method works and that the threshold
needed to reject the majority of the unknown elements is
lower for the random tree forest than with Catboost despite
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Figure. 9: Accuracy of recognition of known and unknown
classes for different thresholds with the Catboost ’high’ clas-
sifier

threshold 0.6 0.65 0.7 0.75 0.8
Catb know 0.93 0.92 0.91 0.91 0.90

Catb unknow 0.40 0.5 0.70 0.83 0.88
RF know 0.91 0.89 0.88 0.87 0.86

RF unknow 0.89 0.93 0.96 0.98 0.98

Table 17: Accuracy rate of known and unknown classes for
different thresholds with RF and Catboost classifiers part 2

threshold 0.85 0.9 0.95 0.97
Catb know 0.89 0.87 0.85 0.83

Catb unknow 0.93 0.96 0.98 1
RF know 0.84 0.82 0.78 0.75

RF unknow 0.99 0.99 0.99 1

Table 18: Accuracy rate of known and unknown classes for
different thresholds with RF and Catboost classifiers part 3

the calibration. It is interesting to note that depending on the
objective we set, the classifier to use is not the same. Indeed,
if we want to find the best compromise between the accuracy
on the unknown classes and the known classes, we have to
choose the RF with a threshold of 0.75, which allows to re-
ject 98% of the unknown individuals while keeping 87% of
accuracy. On the other hand, if we want to reject the max-
imum number of unknown individuals, we have to choose
Catboost with a threshold of 0.97. Finally, it should be noted
that the rejection performance depends on the data to be re-
jected; the more similar they are to the learned classes the
more difficult it is to reject them efficiently. A possible im-
provement is to define a threshold for each class and not a
global threshold for all the classes [28].

D. Experiments and results on real data

Our next experiment aims at testing our model with new data
and evaluating its performance against another algorithm.
The new data consist of 32 semantic types belonging to the
57 types we used in training. These data come from other
real data sources than those used for training and were not
generated with our method.

For each semantic type we have 20 individuals for a total
of 640 columns each containing several hundred rows. The
algorithm we use for the comparison is an algorithm using
dictionaries and regular expressions.
Thus, for the semantic types where it is possible, a human ex-
pert has defined the regular expressions. For semantic types
that cannot be defined using a regular expression (e.g., first
and last names), dictionaries were defined using the same
data that was used to generate the training data for our ma-
chine learning models. The search using the dictionaries is
first performed in an exact manner and in case of failure in
an approximate manner using the Jaro-Winkler [29, 30] dis-
tance. To make a prediction, the algorithm associates a class
to each element of the column. This class is determined by
searching first among the regular expressions, then in case of
failure in the dictionaries. The final predicted class for the
column is the one that is in the majority among the elements
of the column. On this new dataset, the accuracy rate for RF
is 0.97 and 0.98 for Catboost versus 0.91 for the model us-
ing regular expressions and dictionaries. The method using
machine learning shows a perfect score for semantic types
only composed of alphabetic characters but is in trouble with
numeric types, in particular with phone numbers which are
confused with currencies. Indeed, the features used are not
perfectly adapted to numeric type [11]. Moreover, we were
able to confirm the efficiency of the method on an internal
database of the company Synaltic containing noisy data. We
tested the model using a RF on two tables that contained 41
and 52 columns with each more than one million rows. The
accuracy rate was respectively 0.93 and 0.88.

IV. Conclusion

In this study, we introduced the topic of automatic annota-
tion of semantic types. Semantic types detection is a critical
task because they are used by many other algorithms. One
obstacle to the industrial use of machine learning algorithms
to perform this task is the need for too much data to train
the algorithms. In order to facilitate the access to this type
of algorithms as well as the use of custom semantic types
(not being in the most common datasets), we have proposed
a method to generate training data using only a small number
of real examples. In addition, we proposed a simplification
of the extracted features to make them more versatile without
compromising the efficiency of the method. As real data of-
ten contain outliers we have introduced an alternative feature
set that is robust to certain types of outliers. Since the prob-
lem of automatic semantic type detection can be an ”open
set” problem, we have introduced a method to handle this
scenario.
More research needs to be conducted to improve the accu-
racy of the method. First of all, the impact of new features
specifically defined for the detection of numerical semantic
types or using multilingual transformers [31, 32] should be
studied. Furthermore, to improve the results in the ”open
set” context, further studies should be conducted on the use
of classifiers specialized for this task [33].
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