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Abstract: A fundamental challenge in evolutionary theory is
explaining the evolution of cooperative (or altruistic) tenden-
cies despite local competition among agents can limit cooper-
ative benefits. In this paper, an agent-based model is devel-
oped that combines network evolution strategies with conflict-
ing pressures to induce cooperation as an emergent behavior.
Thoroughly, we define a model of two agents able to evolve co-
operative actions in a mixed competitive-cooperative environ-
ment. Specifically, two simulated E-puck robots are put inside
an arena filled with diverse kinds of food items (i.e., individual,
social). The goal is to survive as long as possible by eating food
to contrast energy consumption. Robot controllers, which de-
termine the agent’s interaction with other agents, are evolved
by using a genetic algorithm. Simulation results suggest that by
side with expected behaviors, a new strategy emerges without
any external pressure. Outcomes allow conclusions about the
feasible cooperation choices individuals should make when par-
ticipating in complex mixed cooperative-competitive scenarios.
In particular, we observe a natural emergence of opportunistic
behaviors in agents when such strategies can lead to the team’s
success.
Keywords: Agent-based model, Multi-agent systems, Genetic al-
gorithm, Competition, Cooperation

I. Introduction

Agent-based modeling (ABM) [1] is a method of computa-
tional simulation technique with many applications. It works
at a microscopic level, that is it concerns the control and the
interactions of single autonomous agents. In the last decades,
simulation modeling techniques have been largely applied in
many disciplines, including social sciences research [2, 3].
Typically, ABM is mainly focused on exploring insight into
the collective behavior of agents, which emerges from simple
rules, such as in natural systems. Alongside this aspect, the
multi-agent systems (MAS) [4] paradigm represents an in-
terdisciplinary approach and a fruitful ground for interaction
between different disciplines [5], such as Robotics [6], Game
Theory [7] and Artificial Intelligence [8]. MAS are systems
that intrinsically contain two levels: a “microscopic” level
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(i.e., the agent’s point of view) and a “macroscopic” level
(i.e., the system as a whole). Differently from ABM, the goal
of multi-agent systems is to design agents able to solve prob-
lems for specific applications [9]. Despite the large amount
of work in this field, MAS still present several challenges,
like coordination control and fault detection [10]. A possible
solution to address some of them is the use of genetic al-
gorithms [11, 12], namely techniques mimicking biological
evolution according to Darwin’s theory of adaptation and sur-
vival of the fittest. Genetic algorithms have been widely em-
ployed to evolve controllers for MAS [13, 14, 15, 16, 17, 18].
For example, in [19] a genetic algorithm is applied in a satel-
lite formation flying. The authors show how this technique
allows to effectively solve the task and, at the same time,
deal with the consensus issue. In [20], a genetic algorithm
to evolve controllers for MAS is proposed, in which agents
must accomplish an object-sorting task requiring coordina-
tion between robots. In [21], swarm robotics is used to per-
form marine environmental monitoring missions. The au-
thors employed a genetic algorithm and demonstrated the ca-
pability of the swarm to solve the problem in terms of cov-
erage. Furthermore, they proved the swarm’s robustness to
faults of single units.
Scientific research in multi-agent systems primarily focuses
on modeling agents that are able to interact so that they
achieve specific goals. In designing such systems, the most
challenging problem is how to induce the agents to cooper-
ate in order to get the best strategy for the whole system. In
that respect, the concept of individual rewards has been re-
placed by a more complex global function that includes other
agents’ actions. In particular, an asymmetric environment
(e.g., a common-pool resource dilemma) and time pressures
could lead to promoting agents’ opportunistic propensity.
Opportunism, in fact, can be seen as an intentional choice
that takes advantage of self-interest and relevant knowledge
asymmetry [22]. Generally, it is crucial to minimize such
behaviors, as they produce undesirable results. Conversely,
in the presented work it might be the preferred solution. In
multi-agent systems, the knowledge is shared among partici-
pants and this aspect may create an opportunistic propensity.
In contrast, here agents have only partial knowledge about
the environment and other agents’ actions, but the imposed
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task rules raise pressure on selfish strategies, so the ability to
behave opportunistically might be crucial to guarantee effi-
cient solutions. We state that individuals in our population
have a higher chance to be selected in the evolutionary cy-
cle when a cooperation strategy has been performed by the
participants, which causes their behavior to spread to future
generations. This assumption takes inspiration from Evolu-
tionary ethics [23, 24], which aims to blend natural sciences
with philosophy and states that individuals in a society will
have a higher survival rate when their actions are based upon
good morals. Moreover, according to the theory of evolu-
tion, the primary goal of an organism is to enhance its own
fitness in order to guarantee its survival. Curiously, in situa-
tions where an organism has to select between a selfish or an
altruistic choice, often organisms try to enhance the fitness of
the whole group, especially if members are similar (i.e., same
species). This is a famous paradox (i.e., paradox of altruism),
a long-contested problem, extensively studied by Evolution-
ary ethics and proved by empirical studies [25, 26]. In this
regard, agent-based modeling and multi-agent systems gave
a significant contribution to the growth of these ideas. Aim-
ing at verifying our assumptions, we allowed the population
to evolve in certain coordinated behaviors and diverse gen-
erations were examined. Thus, the resulting behaviors can
have an egoistic or altruistic nature, but there might be a spe-
cific combination of them allowing the agents to survive. We
interpreted the different behavioral strategies by using some
adjusted metrics.
In particular, we focus both on the local interactions be-
tween evolving agents at a microscopic level and the quality
of the final population. Specifically, we investigate whether
and how external contingencies may drive agents toward co-
operation or competition. The goal of this paper is to ex-
plore the impact of environmental constraints (i.e., competi-
tive vs. cooperative) on influencing the emergence of inter-
dependency strategies among individuals. Simulations pro-
duce consistent results regarding the adherence to reality, in
terms of plausible social behaviors, and reveal the complex-
ity of cooperative scenarios where agents operate under op-
posing rules.

II. Background

A. Agent-based modeling of social behaviors

Agent-based modeling (ABM) [1] is used as a computational
approach to study complex systems, including social behav-
iors. It represents individuals (referred to as agents) and their
interactions as the basis for understanding and predicting col-
lective behavior. Creating agent-based modeling systems to
simulate real systems – partially or in whole – in order to
investigate emergent behaviors is a challenging problem. In
that respect, agent-based modeling has become increasingly
popular because it permits to model the individual hetero-
geneity by focusing on agents’ interactions and decisions
[27]. Thus, these models can help analyze the emergent
dynamics, arising from strict interactions between agents,
by using a bottom-up approach and incorporating individual
variability or stochastic events. In such a sense, multi-agent
systems (MAS) [28] can be seen as a specific type of ABM,
where the agents are implemented as simulated units that in-

teract in a predefined environment. Truly, there is no general
agreement on the definition of what an agent is and, for this
reason, the ideas about the origins of agent-based modeling
differ in the specialists’ community [28, 29]. Specifically,
here, ABM enhances our capacity to model competitive and
cooperative behaviors at both the individual and population
levels of analysis. In this study, in fact, we show how compe-
tition and cooperation may generate populations that manage
different strategies at both the group and individual levels.
Indeed, mixed cooperative-competitive environments can be
hard for optimization problems because each agent needs to
coordinate with others (seen as teammates) while compet-
ing with others for resources (seen as opponents). With our
simulated model, we aim to investigate what kind of behav-
iors agents – acting in a resources dilemma problem – will
develop to allow the team to thrive. We are particularly in-
terested in the analysis of cooperative emergent behaviors.

B. Cooperation vs. Competition

Cooperation and competition are two important concepts in
the context of agent-based models and multi-agent systems.
They describe the ways in which agents can interact with
each other and, usually, the interplay between these two be-
haviors can have a significant impact on the emergent dy-
namics of the system. Specifically, Cooperation refers to
the behavior of agents working together to achieve a com-
mon goal. In this scenario, the agents coordinate their ac-
tions and share resources in order to achieve the desired out-
come. It can be beneficial in situations where the agents can
achieve more together than they could individually, such as
in collective problem-solving, resource-sharing, or decision-
making tasks. Conversely, Competition refers to the behavior
of agents working against each other to achieve their individ-
ual goals. In these scenarios, the agents compete for limited
resources or strive to be the best at a task or goal.
The study of cooperative and competitive behaviors is one of
the most fascinating and debated topics in research commu-
nities, like psychology and social sciences [30, 31, 32, 33,
34, 35], economics [36, 37] and sports [38]. Cooperation
and competition are typically the results of social interac-
tions between at least two elements, no matter whether they
are individuals, groups or companies. Generally, they can
be observed in groups of individuals. Broad research about
the group dynamics was conducted by Kurt Lewin. In [39],
Lewin stated that the group has properties differing from both
the characteristics of single individuals/entities and the sum
of them. According to [39], the group is considered the result
of the interdependence among its members. In this respect,
cooperative and competitive behaviors are tightly dependent
on the individual’s inclinations.
A pioneering work in this area is that of Deutsch [32], where
a new theory of cooperation and competition was proposed.
Specifically, the proposed model distinguishes the two types
of behavior based on the different goal regions. In a cooper-
ative situation, an agent obtains the goal if all other individu-
als get the goal too. Instead, in a competitive situation, when
one or few individuals obtain the goal, others cannot (see also
[40]). In other words, competition is characterized by posi-
tively interdependent goals between individuals, whereas in-
dividual goals conflict with each other in competition.
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However, it has been observed how competition between
groups can foster the development of cooperative behaviors
within group members under specific conditions [41].
Usually, cooperation and competition have been studied by
observing behaviors in human subjects [42, 43, 44, 45]. In
[46], an analysis of cooperation and competition with rela-
tives is reported. Authors claim that competition can delete
the natural tendency to altruism towards relatives when part
of them see a benefit increase that is achieved by damaging
other relatives. These results contrasted with Hamilton’s the-
ory of genetic evolution of social behavior [47, 48, 49]. Co-
herently with the previous outcomes, a study on coalitions of
male lions [50] demonstrated that the emergence of coopera-
tion cannot be ascribed to genetic similarity.
A different approach is the one reported in [51], in which the
authors analyzed competition in a Human-Robot Interaction
framework. Their findings seem to indicate that groups of
humans compete with robots more than single individuals.
Moreover, the level of competition increases when the size
of the robot’s group matches that of the human’s one.
Cooperative and competitive behaviors might also display
macroscopic differences at the level of individual action.
A study on the kinematic patterns of reach-to-grasp move-
ment revealed correlations between the prior intention of the
subjects and the sequence of movements they perform [52].
Hence, the authors concluded that there could exist motor
patterns associated with social behavior.
Despite the cross-cutting interest in different research fields,
identifying the emergent dynamics of a system in a mixed
cooperative/competitive framework is far from trivial. At-
tempting to shed the light on this issue, our model aims at
providing insights into the agent’s adaptation to environmen-
tal pressures. Moreover, we investigate the importance of
situational circumstances (e.g., the nearby availability of re-
sources) and to what extent these affect the individual’s be-
havioral strategies.

C. Genetic algorithm

Genetic algorithms (GAs) [11, 12, 53] have been developed
in the early 70s by Holland and colleagues. The original aim
was to study and reproduce adaptation as it occurs in natural
organisms [12]. However, these techniques were success-
fully used in many domains [54, 55, 56, 57, 58]. Examples
of application include robot navigation [59, 60, 61, 62, 63],
swarm robotics [64, 65, 66, 67], optimization problems
[68, 69, 70, 71], classic control problems such as the pole
balancing task [72, 73], computer games [74, 75, 76], path
planning for robotic arms [77, 78, 79], multi-objective opti-
mization [80, 81, 82], game theory problems like the Pris-
oner’s dilemma [53, 83, 84], analysis of the emergence of
basic emotions in virtual agents [85] and combinatorial prob-
lems like the Traveling Salesman problem [54, 55] and the
Knapsack problem [55]. Genetic algorithms were also ap-
plied in completely distant fields of research like economics
[86, 87], medicine [88] and cosmology [89].
From the 90s onwards, genetic algorithms have been widely
employed in combination with neural networks [62, 63, 90].
There are many examples demonstrating how GAs have been
successfully used to evolve neural network controllers for au-
tonomous robots [62, 63, 91, 92, 93, 94]. The success of

GAs paved the way to the development of a wide variety of
methods attempting to outperform the classic version of the
genetic algorithm [72, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106]. As a consequence, a huge amount of com-
parative studies was produced [72, 76, 97, 104, 107, 108],
which aimed at identifying those features resulting in the su-
periority of one technique over the others. However, these
algorithms are generally not biologically plausible and quite
distant from the original aim of Holland and colleagues. Put
in other words, these techniques lack any interest in model-
ing biological aspects of evolution and adaptation.
The operation of a genetic algorithm can be sketched in the
next steps:

1. an initial population is created and its members (termed
as chromosomes or genotypes) are typically filled with
random values. Each individual is a possible solution
for the problem;

2. individuals are evaluated and a score (usually called fit-
ness) is assigned to them;

3. selection takes place and the best individuals are al-
lowed to reproduce;

4. new individuals are generated through mutation and/or
recombination operators;

5. the process iterates until a certain number of genera-
tions is reached or an optimal solution to the problem is
found.

Genetic algorithms operate at a generation level, thus deter-
mining changes in the long term. The key elements are the
evaluation, the selection and the reproduction processes. The
way they work allows discriminating between different im-
plementations of the algorithm [56, 109, 110, 111, 112]. An-
other worthwhile feature is the genetic encoding, i.e., how
genes define the properties of the evolving individuals. The
NEAT algorithm [104] allows to vary the controller of the
evolving agents. To do this, genes encode structures defin-
ing neurons and connections (with associated weight val-
ues), along with other information useful for the operation
of the whole method. In [98] a cellular encoding is intro-
duced, where genes represent possible neural networks able
to solve boolean functions. Other techniques evolve geno-
types whose genes simply encode the connection weights of
the neural network controller [72, 99, 105].
The approach here presented follows a phylogenetic evo-
lution strategy, but there are different approaches adopting
more ontogenetic paradigms. The latter implies that modi-
fications in the genetic structure are applied to the specific
agent and learning improves the agent’s capabilities through
changes in its neural network. This strategy is mostly used
to obtain an optimized adaptation and task specialization in
groups of robots with no starting knowledge, as shown in
[113, 114, 115, 116].
In this work, we used the Generational Genetic Algorithm
(GGA) [117, 118, 119], which constitutes a variant of the
genetic algorithm developed by Holland. In the version
used to run the experiments, no crossover is possible be-
tween the population members. Moreover, we kept the best-
reproducing individuals in the population in order to re-
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Figure. 1: Pseudo-code of the Generational Genetic Algo-
rithm.

tain adaptive traits that might be beneficial for the discov-
ery of effective solutions. We refer to this feature as elitism
[120, 121, 122, 123]. In our GGA, genotypes encode the
connection weights of neural network controllers as integer
values. The mapping between genes and connection weights
is provided in Eq. 1:

w = wrange −
g

MAXG
∗ wrange ∗ 2.0 (1)

where g is the generic gene value (integer), MAXG is
the maximum gene value and wrange represents the weight
range. As described in section III, the variable wrange is set
to 5.0, while the value of MAXG is set to 255. Therefore, in
our GGA the mapping is quite trivial.
The GGA works as follows:

1. a population of individuals is randomly initialized;

2. each individual is evaluated and receives a fitness score
indicating its ability in solving the task;

3. after all individuals have been evaluated, the best indi-
viduals are selected for reproduction;

4. each selected individual generates a given number of
offspring, which represent mutated copies;

5. the process is repeated until the total number of genera-
tions has been reached.

The pseudo-code of the GGA is provided in Fig. 1. We chose
the GGA algorithm since we are mainly interested in analyz-
ing the behavioral strategies discovered by evolving agents
rather than finding optimal solutions to the problem. More-
over, the evolutionary task (see Section III) can be efficiently
solved with no need for more sophisticated strategies like
CMA-ES [99, 124], OpenAI-ES [103, 108, 125] or xNES
[105, 126]. Finally, as we already discussed above, we want
our method to maintain some form of biological plausibility.

III. Materials and Methods

A. Experimental setup

We design a cooperative/competitive simulated task in which
two E-puck robots [127] are put inside a squared arena of 2m
x 2m, surrounded by walls, filled with 5 food items. The goal
is to survive as long as possible. To do this, robots should
learn to eat food tokens. We define two food classes:

1. Individual food: it can be eaten by a single robot by
itself;

2. Social food: only two robots together may eat this food
item.

The environment contains 4 individual foods and only 1 so-
cial food. An example of environmental setup is displayed

Figure. 2: Environmental setup. Both robots and food items
are randomly placed within the arena. Green cylinders rep-
resent the individual food items, while the red object is the
social food item.

in Fig. 2. Agents have an energy tank that can be increased
by eating food items. The tank is set to 5.0. Robots start
with an energy of 1.0 (corresponding to the 20% of the tank
capacity), which constantly decreases during an evaluation
episode. The energy loss is constant and set to 0.005 at each
step of an episode. Once the robot’s energy is 0, the robot
cannot move anymore and “dies”. Depending on the type of
food, the robot receives different amounts of energy: the in-
dividual food item provides the robot with an energy equal
to 1.0, while the social food item gives each robot an amount
of energy equal to 4.0, i.e., four times the energy of the indi-
vidual food item. This implies that, from the robot’s point of
view, there exist two equivalent alternative strategies:

1. eating all the individual food items individually, without
caring about the other agent (Egoistic behavior);

2. eating the social food item with the other peer (Altruistic
behavior).

It is worth noting that, once a food item is eaten, it disappears
from the environment. Moreover, when the social food item
is eaten, also the individual food items are removed from the
arena, while the contrary is not true. In fact, eating the social
food item is sufficient to stay alive until the end of the evalu-
ation episode. This particular setup creates a group dilemma
(or tragedy of the commons) in agents since they could work
together to obtain higher performance (i.e., the higher energy
of social food), despite a built-in incentive to be selfish (i.e.,
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Figure. 3: The neural network used as robot’s controller. The Input layer contains colored receptors neurons, respectively,
Red (R1...R6), Green (G1...G6) and Blue (B1...B6) vision sensor signals for a total of 18 neurons; E is the Energy control
neuron. The Inner level contains 8 inter-neurons (I1...I8) that act on the motor neurons (i.e., left and right motor speed,
LM/RM) and on the LED output sensor.

energy consumption). Thus, if an agent is fully egoistic, it
can maximize its own energy, but the couple (including it-
self) will be penalized in terms of long-term survival.
The evolutionary task has been simulated by using FARSA
[128, 129], an open-software tool that has been successfully
used in various experimental settings [130, 131, 132].

B. Evolutionary parameters

The experiments have been repeated 30 times. Robot con-
trollers have been evolved by using the GGA, previously de-
scribed in Section II-C. Specifically, we set the number of
generations to 400, the population size to 100 and the number
of reproducing individuals to 10. According to elitism, the
best-reproducing individuals are retained in the population
for the next generation, and each one generates 9 offspring.
In addition, the mutation rate has been set to 0.01. Individ-
uals in the population are randomly initialized with genes
drawn from a uniform distribution in the range [0, 255]. The
full list of experimental parameters is summarized in Table 1.

C. Robot controller and Performance measures

As pointed out in Section II-C, a worthwhile component of a
genetic algorithm is the evaluation of the individuals. This is
made by assigning them a fitness value rating to what extent
agents are able to cope with the evolutionary task.
In our experiments, robots are rewarded with the following
fitness function (Eq. 2):

Experimental parameter Value
# of replications 30
# of evaluation Episodes 5
# of episode Steps 2000
# of generations 400
Population size 100
# of reproducing individuals 10
# of offspring 9
Mutation rate 0.01
Gene range [0, 255]

Table 1: Experimental parameter settings.

F =
1

Nepisodes

Nepisodes∑
i=1

NSsteps

Nsteps
(2)

where NSsteps represents the number of steps a robot sur-
vives, Nsteps is the number of steps of each evaluation
episode and Nepisodes is the number of evaluation episodes.
In our setting, agents are evaluated in 5 episodes, each one
lasting 2000 steps (see Table 1).
Robots are equipped with a linear camera, whose field of
view (FOV) is set to 90 degrees, which permits them to de-
tect colored objects. The camera’s FOV is split into 6 sectors
of 15 degrees each, and each sector has a receptor for 3 basic
colors (i.e., red, blue and green). Furthermore, agents have
an additional sensor to control the energy level. Motors in-
clude the two speeds of the robot wheels and an additional
output allowing robots to turn on/off a colored LED. In this
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way, robots can create a communication mechanism similar
to those found in [76, 133, 134].
The robot’s controller is a feed-forward neural network with
19 inputs, 8 internal units and 3 outputs (see Fig. 3). The
activation function of the neural network is the logistic func-
tion. The connection weights of the network are bounded in
the range [−5.0, 5.0] and are derived from the corresponding
genotypes.

D. Emergent Behaviors

Emergent behavior can be defined as a behavior that is not di-
rectly programmed in individuals but emerges from agents’
interaction with each other and with the environment. In
this scenario, the mixed cooperative-competitive setup might
cause instability in cooperative strategies since individual re-
wards induce agents to act in a selfish way, opposite to the
collective good. Thus, we expected that evolved agents can
be split into three main behavioral classes:

1. unable: robots that do not learn the evolutionary task;

2. egoistic: robots solving the problem by eating individ-
ual food items and ignoring the other peers;

3. altruistic: robots addressing the problem by cooperating
with others, thus eating the social food token.

The presence of unable robots in the final population is not
surprising given the operation of the GGA. Indeed, it is not
guaranteed that the offspring derived from the best-selected
individuals represent effective solutions to the problem. Mu-
tations are stochastic and can generate poor individuals.

E. Metrics

Hamming metric [135] is widely used in information the-
ory to measure how two strings of symbols differ from each
other. The Hamming distance generally counts the number
of symbols that must be changed to produce two identical
strings.
For example, if we consider the following two bit-strings: a
= [1 0 0 1 0 1] and b = [1 1 0 1 0 0], the Hamming distance is
2 since we must change two symbols in string b to obtain the
string a. This simple metric can be adapted to take into ac-
count the genetic diversity among individuals in a population
[136, 137]. In particular, the Hamming distance – here seen
as a chromosome distance – counts the population diversity
and it can be defined as the sum of the Hamming distances
between all possible pairs of chromosomes.
Following this definition, we compute the average Hamming
distance between all pairs of individuals in the population
using the Eq. 3:

H =
1

Npairs

Npairs∑
j=i+1

Npairs−1∑
i=1

Ndiffgenes

Ngenes
(3)

where Ndiffgenes indicates the number of different genes
between two individuals, Ngenes represents the number of
genes encoding the individuals and Npairs is the number of
pairs of individuals to be evaluated (Eq. 4):

Npairs =
Nindividuals ∗ (Nindividuals − 1)

2
(4)

Figure. 4: Performance of the evolved controllers during
evolution. Purple curve indicates the average performance of
the population. Light blue curve represents the performance
of the best controller within the population. Data have been
obtained by averaging 30 replications of the experiment.

In the above formula, Nindividuals corresponds to the num-
ber of individuals in the population. Thus, the distance H is a
quantity bounded in the range [0,1], where 0 means identical
individuals, while 1 indicates completely different ones.
A second metric we used is Cooperation Efficiency (CE),
which inspires by the Collaboration Efficiency measure de-
fined in [138]. Specifically, CE is defined as:

CE(sp) =
Ncooperative interactions(sp)

Ninteractions
(5)

The variable Ncooperative interactions indicates the number
of times an agent cooperates with a peer altruistically, while
Ninteractions refers to the overall number of interactions. A
noteworthy aspect is that the number of interactions is com-
puted at a population level, whereas the number of coopera-
tive interactions is calculated at species (sp) level (i.e., ego-
istic, altruistic, etc.).

IV. Results and Discussion

A. Data Analysis

Data analysis allowed us to assert that evolved controllers
are able to effectively solve the problem. The average fitness
over the 30 replications is 0.733 (Fig. 4, purple curve) with a
standard deviation of 0.032. The best fitness is 0.999 (Fig. 4,
light blue curve).
By analyzing the evolved strategies, we see that evolution
discovered a fourth behavior: the opportunism. It consists in
eating at least one individual food item, in order to extend
the agent’s chance to survive, and then cooperating with the
other peer and eating the social food item. This emergent
property becomes predominant in the population as shown in
figures (Fig. 5, Fig. 6 and Fig. 7).

B. Behavioral Analysis

Fig. 5 displays the individual preference, defined as the prob-
ability of belonging to a specific behavioral class. At the be-
ginning of the evolutionary process, the population mainly
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Figure. 5: Preference of the evolved controllers defined as
the probability of belonging to a specific behavioral class.
The probability is calculated by measuring the number of
times a specific strategy (i.e., egoism, altruism, opportunism)
is performed by an agent. The value is averaged over the 5
evaluation episodes. Curves are the mean values over the 30
replications.

consists of unable individuals and only a few ones manage
to eat the individual food item, which represents the easiest
solution to the problem and can be done independently of the
peer. The probability to eat the social food item is around 0%
since this behavior requires either the coordination between
the two robots or the tendency to reach the social food alone
and wait for the other peer. Consequently, in the early gen-
erations, egoistic individuals are more likely to reproduce.
This in turn triggers competition between agents, which is
not effective in the long term. Indeed, fighting for resources
significantly reduces the chance of survival. The presence of
an energy level constantly decreasing during an evaluation
episode produces a switch in the behavioral attitude of the
agents, where selfish strategies are no longer efficient. This
is why some sort of cooperation emerges, because the robots
start going towards social food. Differently from what we
expected, the most widespread strategy consists in eating at
least one individual food, so to increase the robot’s survival
possibility, and only later moving toward social food.
Indeed, the presence of individual foods creates a common
pool resource dilemma because these foods disappear when
eaten, thus inducing agents to limit their selfish tendencies
and to consume social food with others by reaching team-
optimal behaviors.
If we examine the preferences of the best-reproducing indi-
viduals (see Fig. 6), it is clear how the opportunistic strat-
egy emerges in the very early stages of the evolutionary pro-
cess (approximately at generation 20). Interestingly, we ob-
serve a similar number of egoistic and altruistic individuals
among the best-reproducing ones starting from around gener-
ation 70. Nevertheless, this does not correspond to a similar
amount of egoistic and altruistic individuals in the population
(see Fig. 5).
This can be explained by considering that opportunism is
characterized by a selfish initial behavior. The gap between

Figure. 6: Preference of the best reproducing individuals de-
fined as the probability of belonging to a specific behavioral
class. Curves are the mean values over the 30 replications.

these two strategies is quite low, as can be seen by looking
at the following examples (see Box 1) in which we indicate
the sequence of food items eaten by an egoistic and an
opportunistic individual (the 0 indicates the individual food
item, while the 1 indicate the social food item):

Example 1 Example 2
egoistic: [ 0 0 0 ] egoistic: [ 0 0 ]
opportunistic: [ 0 0 1 ] opportunistic: [ 0 0 1 ]

Box 1: Two examples of egoistic and opportunistic behav-
iors. The values indicate the type of eaten food item (0: in-
dividual; 1: social).

These two simple examples demonstrate that egoistic and op-
portunistic behaviors differ only for the last food item eaten.
Consequently, opportunistic individuals are more likely to
produce egoistic offspring rather than altruistic ones, which
simply go towards and eat the social food item.
The prevalence of opportunism is even clearer if we look
at Fig. 7(b). Indeed, almost half of the evolved individuals
display an opportunistic tendency. Egoistic agents represent
around a quarter of the entire populations. Noticeably, a sig-
nificant part of individuals does not exhibit any specific pref-
erence (Fig. 7(b), yellow slice). These agents belong to the
class indifferent. Put in other words, indifferent individuals
can arbitrarily behave as either egoistic or altruistic or op-
portunistic. Finally, the altruistic class is the smallest one
(Fig. 7(b), red slice).
In order to quantify the similarity in the evolved popula-
tion, we analyze the genetic difference among the evolved
controllers by computing the Hamming distance (see Eq. 3).
Fig. 8 shows how individuals vary among themselves during
evolution.
At the beginning of the evolutionary process, individuals are
randomly initialized, thus the Hamming distance is around
1.0. As stated in Section III, this means that individuals are
completely different from each other. The Hamming distance
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(a)
(b)

Figure. 7: (a) - Probability of belonging to a specific behavioral class. Box represents the inter-quartile range of the data
and the horizontal line inside the box marks the median value. The whiskers extend to the most extreme data points within
1.5 times the inter-quartile range from the box. Data are obtained by replicating the experiment 30 times. (b) - Percentage of
individuals belonging to each behavioral class. Data refer to the individuals, evolved in 30 replications of the experiment.

then reduces across generations since the best individuals re-
produce, generating offspring that are very similar to their
parents. The Hamming distance stabilizes around 0.5, which
represents an intermediate value of genetic difference, from
generation 50 and reaches a final value of 0.492.

Figure. 8: Hamming distance (genetic diversity) of the
evolving population measured during evolution. Data are the
mean value over the 30 replications.

We also measured the Cooperation Efficiency (CE) of the dif-
ferent groups/species we identified in the experiments. This
allows us to estimate the percentage of altruistic interactions
within each species. Fig. 9 shows the CE during evolution.
As we pointed out in Section III, CE computes the number
of altruistic interactions within a species normalized by the
overall number of interactions at a population level. If we
look at the different curves, we can see that opportunistic in-
dividuals are those involved in the highest number of cooper-
ative interactions, followed by indifferent ones. The limited
number of altruistic individuals in the population (see Fig. 5
and Fig. 7) explains why they are involved in very few inter-
actions (red curve in Fig. 9).
The way input signals propagate through the agent’s net-
work controllers has been investigated by analyzing the size
of weights connecting camera inputs (Fig. 3, inputs R1-R6,

Figure. 9: Cooperation Efficiency (CE) during evolution.
Data are the mean value over the 30 replications.

G1-G6 and B1-B6) with the inner neurons (Fig. 3, neurons
I1-I8). Data have been collected for each behavioral class.
Results are reported in Fig. 10. Noticeably, there are no clear
differences among the evolved controllers. This is not sur-
prising given the operation of our GGA (see Section III). In
fact, only 10 individuals reproduce in each generation. More-
over, the mutation rate has been set to 0.01 (i.e., 1%). This
implies that the genetic diversity of the population is mod-
erate, as we already showed in Fig. 8. Despite these lim-
itations, altruistic individuals are characterized by a higher
size of weights connecting blue inputs with internal neurons
(Fig. 10, top-right colormap). The difference is statistically
significant (Kruskal-Wallis H test, p < 0.05).
In order to have a better idea of the behavioral strategies dis-
covered by the evolved agents, we analyzed the percentage
of times a specific food item (either individual or social) is
chosen. Specifically, in Fig. 11 we plot how many times a
food item is eaten as i-th item, with i = 1, ..., 5. As it can be
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Figure. 10: Connection weights between the input and hidden layer. Colormaps represent the average value of weights
connecting camera inputs with inner neurons for each behavioral class. Data have been obtained by replicating the experiment
30 times.

Figure. 11: Percentage of times a food item is chosen. The
green bars refer to the individual food items, whereas the red
bars to the social ones. Average data obtained by replicating
the experiment 30 times.

observed, the individual food item is eaten as the first item
more than 70% of times, whereas the social food item is
chosen only around 10% of times. The ratio between the
two types of food decreases to 2 − 2.5 when we look at the
percentage of times a food item is eaten as a second item.
Then, the two values become almost identical. The figure
clearly demonstrates how opportunistic behavior is the most
widespread strategy in the population. Indeed, typically indi-
viduals eat at least one individual food item before eventually
moving to the social food item. This behavioral strategy en-
hances the agents’ ability to survive and increases the chance
to cooperate with peers. We want to underline that, given the
experimental setting, only the social food can be eaten as the
fifth item (see description of the experiment in Section III).
Nonetheless, this happens very rarely. Overall, this analy-
sis reveals that opportunistic individuals typically eat at most
one/two individual food items before moving to the social
food item.
Finally, aiming at investigating the role of communication
between robots, we analyzed the average LEDs activation.
Fig. 12 shows the trend of LEDs activation during evolu-
tion, which starts at an intermediate value of 0.5. This is
due to the random initialization of the population. Indeed,
controllers consisting of random uniform weights are more
likely to make half of the individuals turn their LED on, on
average. Soon after the first generation, the LEDs activation
suddenly decreases reaching a minimum of around 0.3 and
later raises and oscillates around a value of 0.55 starting from
generation 100. The initial fall of the LEDs activation can be
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Figure. 12: LEDs Activation rate. Average data obtained by
replicating the experiment 30 times.

explained by considering that, during the early generations,
most of the individuals in the population are egoistic, i.e.,
they do not care about the other agent and are not interested
in communicating with it. Consequently, they do not need
to turn their LED on. In order to develop effective strategies
in the long term, an initial phase (around 100 generations,
see Fig. 12) is required to make robots understand the im-
portance of interacting with the other peer so as to increase
the chance of survival. Overall, the curve demonstrates that
robots do communicate with each other as similarly reported
in [76, 133, 134].
The role of LEDs has been further investigated by analyzing
the correlation between the number of individuals evolving a
specific behavioral strategy and the average LEDs activation.
We found a strong positive correlation in the case of altru-
istic individuals (Pearson correlation, r = 0.936763 signifi-
cant at p < 0.01) and a positive correlation regarding the op-
portunistic individuals (Pearson correlation, r = 0.487229
significant at p < 0.01). Conversely, there is no correla-
tion with respect to egoistic individuals (Pearson correlation,
r = −0.027907). These outcomes imply that altruistic (and,
to a lesser degree, opportunistic) individuals turn their LED
on in order to become visible to their peers. On the contrary,
egoistic individuals are not interested in communicating with
others. These results are coherent with previous analyses of
the evolved strategies.
Fig. 13 displays the average LEDs activation of each behav-
ioral class. As can be seen, altruistic individuals tend to turn
their LED on in order to be perceived by their peers more fre-
quently than other groups (Kruskal-Wallis H test, p < 0.05).
Instead, the LEDs activation of egoistic individuals is inferior
to that of other classes (Kruskal-Wallis H test, p < 0.05).
Finally, similar trends can be observed for unable, oppor-
tunistic and indifferent individuals (Kruskal-Wallis H test,
p > 0.05).
The individual propensity to be either egoistic, altruistic, or
opportunistic has been further analyzed in a post-evaluation
phase, in which we placed two agents of the same species
(for example, two altruistic individuals) in a laboratory envi-
ronment filled with one individual food item and one social
food item. The goal is to investigate whether the agent’s at-
titude changes when it interacts with a similar peer. Put in
other words, we are interested in identifying the effect of sit-
uational circumstances on the agent’s strategy and whether

Figure. 13: Average LEDs activation of the individuals be-
longing to a specific behavioral class. Average data obtained
by replicating the experiment 30 times.

particular conditions might produce behavioral changes. The
post-evaluation test consists of 4 evaluation episodes in
which robots experience different relative positions of the
other elements. An example of a test episode is provided
in Fig. 14.
At each evaluation episode, we measured the item(s) reached
by each agent, so to quantify the robot’s propensity. The
results of the post-evaluation test are provided in Fig. 15,
Fig. 16 and Fig. 17. Now, it should be mentioned that the
low number of altruistic individuals, belonging to the evolved
population, remarkably limits the number of tests compared
to the other two species.

Figure. 14: Example of test episode. Robots are initially
placed in front of each other and both of them see food items.

As it can be seen, the test reveals that individuals adapt their
strategy to both their peer’s behavior and the environmen-
tal circumstances. In fact, altruistic individuals might some-
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times behave either egoistically (Fig. 15, bars 3, 13 and 14)
or opportunistically (Fig. 15, bars 1, 18 and 23). Similar
tendencies can be observed by considering some of the test
outcomes about opportunistic (see Fig. 16) and egoistic in-
dividuals (see Fig. 17). We can argue that situational con-
ditions affect the agent’s propensity and drive towards be-
havioral modifications with respect to the evolved strategies.
Namely, the individual’s behavioral strategies are situational
responses rather than intentional actions.
Overall, these data indicate that robots exhibit a tendency to
behave in a preferred way, but they are capable of adjust-
ing their strategy to fit better with the specific environmental
condition they experience. However, there are some differ-
ences between evolved species: opportunistic and egoistic
individuals preferentially behave according to their tendency
as can be seen by looking at Fig. 16 and Fig. 17, respectively.
This can be explained by considering that these two species
become predominant since the early generations of the evolu-
tionary process. The strategies adopted during the test phase
do not differ from those observed during evolution, where
the chance to be evaluated with a peer of the same species is
high. The little variability in some replications may be as-
cribed to specific counter-behaviors performed as a result of
the interaction with the peers. In addition, as we stated above,
agents are reactive and adapt to both the particular environ-
mental condition and the strategy of other peers. Conversely,
altruistic individuals change their behaviors very frequently
across the different replications. This result is only partially
surprising: first, the number of evolved altruistic individuals
is significantly inferior to the other species (Kruskal-Wallis H
test, p < 0.05). Furthermore, it is highly unlikely that an al-
truistic individual has been evaluated with a peer of the same
species during evolution. Consequently, altruistic agents are
tested under not experienced environmental circumstances,
and the exhibited behaviors are unpredictable a priori.

V. Conclusions

Cooperation and competition are two well studied behaviors
that can be observed in a wide range of real-life situations,
including human relationships, economics, games, etc. One
does not exclude the other. Instead, their interplay can result
in the emergence of complex strategies, whose identification
is far from trivial. In general, competitive scenarios may in-
volve either two groups competing against each other (for
example, a predator-prey scenario) or members of a group
fighting for limited resources. On the other hand, coopera-
tion emerges when individuals cannot cope with a specific
situation by themselves or share a common goal.
In this work, we investigated the emergence of coopera-
tion and/or competition in a group of two robots. From a
robot’s point of view, alternative behaviors are equivalent
since they represent identical suitable solutions to the evo-
lutionary problem. In this scenario, a higher level of coop-
eration is required. Indeed, the presence of diverse possi-
ble strategies could induce agents to select an optimal policy
where a fully altruistic behavior should be combined with a
more egoistic one to produce the best strategy for their com-
mon goals. Nonetheless, evolved agents discovered another
behavioral strategy, the opportunism, which is the most dif-
fused behavior in the population evolved with the GGA. This

Figure. 15: Post-evaluation test of altruistic individuals.
Missing replications depend on the few numbers (< 2) of
altruistic individuals in the final population. Colors code
the two possible types of items reached by agents during the
episode: (green) individual food, (red) social food. The ob-
tained color map depicts the type of action: from an egois-
tic choice (light green) to an altruistic propensity (light red)
passing through an opportunistic behaviour (violet). The ad-
jacent bars represent, for each agent in the tested couple, the
mean color obtained from the sequence of reached items fol-
lowing the just defined color map.

Figure. 16: Post-evaluation test of opportunistic individuals.
Colors code the two possible types of items: (green) indi-
vidual food, (red) social food. Each comparison’s color is
obtained by averaging the sequence of reached items. Here,
the prevalence of violet confirms the opportunistic tendency
of the agents.
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Figure. 17: Post-evaluation test of egoistic individuals. Col-
ors code the two possible types of items: (green) individual
food, (red) social food. The mean value tends to green color
combinations, which attests to a greater egoistic tendency of
the couple.

emergent property permits the robots to stay alive longer and
adapts better to external constraints. Noticeably, the spread
of such behavior in the population comes only from the evo-
lutionary process. In fact, the experimental setup we choose
does not drive agents toward a preferred solution, since there
is no global incentive to cooperate or compete. Instead,
robots are left free to explore and behave according to the
environmental conditions they experience. As we showed in
the post-evaluation test, agents adapt to situational circum-
stances and may change their propensity depending on the
particular situation. This demonstrates that the designed sce-
nario does not limit individual choices, but rather fosters the
emergence of a wide variety of behavioral opportunities that
cannot be predicted. In particular, we show that cooperative
behaviors can be naturally evolved in a population of agents
when such behaviors can lead to the team’s success.
Emerged strategy implicitly includes selfish sub-tasks if the
coordination within a team proves complex. As we stated
above, opportunistic behavior has not been explicitly induced
but can arise if highly beneficial to the system.
The setup we define is challenging since robots are endowed
with a limited amount of energy at the beginning of an eval-
uation episode. Indeed, their energy level is only 20% of the
tank capacity. Moreover, energy constantly decreases dur-
ing the episode, regardless of the agent’s behavior. Conse-
quently, robots must explore the environment as quickly as
possible so as to have a chance to eat food items and live
longer. Cooperation and competition mechanisms arise, and
opportunism becomes prevalent in the evolved population.
However, we cannot guarantee that similar results still hold
when initial conditions vary. For example, evaluating robots
with a full initial energy level may result in a completely dif-
ferent system dynamic, with unpredictable behavioral strate-
gies. Alternatively, changing the number of foods – indi-
vidual or social – and/or the ratio between the energy they
provide to the robots might generate different outcomes. Fu-
ture analysis will be devoted to investigating the impact of

different environmental conditions on the agent’s behaviors
and interactions.
Lastly, as future research directions, we plan to investigate
what kind of behavioral strategies emerge when the number
of robots increases and, in particular, to extend the analy-
sis to swarms of agents that should take a collective deci-
sion, as shown in [133, 134]. In these scenarios, agents must
work in conjunction with teammates and compete against the
other teams’ members, so challenges get increasingly com-
plex. The larger the size of the group, the higher the number
of possible interactions.
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