
International Journal of Computer Information Systems and Industrial Management Applications.
ISSN 2150-7988 Volume 15(2023) pp. 87-96
© MIR Labs, www.mirlabs.net/ijcisim/index.html

Submitted: 28 Nov., 2022; Accepted: 3 April, 2023; Publish: 9 June, 2023

Microservices identification through a multi-model
approach

Malak saidi1, Anis Tissaoui2, and Sami Faiz6

1National School for Computer Science, Manouba, Tunisia
malaksaidi16@gmail.com

2VPNC Lab, University of Jendouba, Tunisia
anis.tissaoui@fsjegj.rnu.tn

3Higher Institute of Multimedia Arts, Manouba, Tunisia
sami.faiz@isamm.uma.tn

Abstract: The life cycle of the company is characterized today
by increasingly frequent phases of change induced by a contin-
uous search for competitiveness. As a result, and in order to
preserve their competitive advantages, companies must be able
to react quickly to market movements, changes in the needs of
their customers and business transformations of the various in-
terlocutors. In this context, business processes playing a major
role in the definition and management of information systems,
must be flexible to meet the requirements of users and govern-
ment regulations and all organizations must engage in the con-
tinuous maintenance of their business models.
However, these models are monolithic which makes the task of
maintenance difficult and very complicated
Partitioning the system into microservices is usually done intu-
itively, based on the experience of the system designers. But,
if the functionalities of a system are strongly interconnected, it
is difficult to decompose the system into appropriate microser-
vices.
To meet so this challenge, this paper proposes a multi-model
based on a set of business processes. This approach combines
two different independent dimensions: structural dependency
and data dependency. We will be based on three clustering
algorithm in order to automatically identify potential micro-
services. Keywords: monolithic architecture; microservices;
business processes;structural dependency;data dependency

I. Introduction

With globalization and its strong pressure on today’s com-
panies are experiencing multiple changes [8][9] both in the
forms of organization and in their way of designing and pro-
ducing. Indeed, the life cycles of increasingly short prod-
ucts, the increased requirement for flexibility and frequent
changes in technique and technology have forced companies
to be more seriously concerned about their modeling in order
to cope with all these complex factors.

Ensuring control of the evolution of each organization so be-
comes a crucial issue and requires rapid adjustment of the
information system to increase its agility and the ability of
teams to react easily.
In fact, despite the willingness of these organizations to re-
main proactive, the monolithic [10] nature of their informa-
tion systems puts them in front of challenges related to the
performance of its services, the cost of the technical infras-
tructure, development and maintenance. A monolithic appli-
cation is typically an application system in which all of the
relevant modules are packaged together as a single deploy-
able unit of execution. These systems start small but tend to
grow over time to meet business needs. At some point, as
new features are added, a monolithic application can begin
to suffer from the following problems:

• The individual parts of the system cannot be scaled in-
dependently, because they are tightly coupled.

• It is hard to maintain, because of tight coupling and hid-
den dependencies.

However, the micro-services architecture [4][8][22][23] was
invented to solve the problems cited such as tight coupling
and scalability because over time IT projects tend to grow
and little by little we extend the existing functionalities, with
many additions and few deletions, we ends up with a thou-
sand complicated and difficult to manage functional tasks.
The term micro-service[14][15] describes a set of small, in-
dependent, fine-grained, loosely coupled and highly cohesive
services. Each micro-service performs its business process
autonomously and communicates synchronously via an API
or asynchronously via a lightweight messaging bus [7].
So far, the micro-services discovery exercise is done intu-
itively based on the experience of system designers and do-
main experts, mainly due to missing formal approaches and
lack of automated tools support.
In this context, research work has been proposed recently

MIR Labs, USA

microservices identification tool 88

[13] [18] [19]. Although business process models are a rich
reservoir of many details like who does what, when, where,
and why, BPs seem almost neglected in the exercise of iden-
tifying micro-services. To our knowledge, Amiri [1], Daoud
et al. [3] and Saidi et al. [14] [15] are the only ones to have
adopted BPs in this discovery exercise.
A BP is defined as an orchestration of activities [6] that
includes an interaction between several actors in order to
achieve a well-defined organizational goal.
In this paper, we will propose a multi-model approach which
aims to deal with the case of several variants of business pro-
cesses in order to analyze the structural and data dependen-
cies at first and to calculate the final dependency matrix based
on our proposed formulas in a second step and finally gener-
ate the micro-services.
The rest of this paper is organized as follows. Section 2
presents the related work. Section 3 presents a case study,
gives an overview of our approach to automatically identify
micro-services from a set of BPs, and formalizes the control
and data dependency models. Section 4 presents the exper-
imentation of our proposed approach. Finally, we conclude
with some future work.

II. Related work

A. Background

1) Business process

A business process model is an orchestration of activities that
takes an input (of any form) adds value to it using resources
and provides an output (product or service) that meets busi-
ness goals.
It determines the following characteristics:

• Describes a dynamic view of the organization

• It is composed of sub-processes, and these are com-
posed by atomic action elements.

• It represents a graph of activities that describes a se-
quence of activities necessary to achieve an organiza-
tional objective.

• It has a transaction function that controls the flow of the
process.

• It can involve several functional units.

2) Monolithic system

The monolithic architecture describes the ancestor of all soft-
ware architectures. Through this approach, the system was
consolidated into a single large file, in which the various
components were combined into a single, inseparable pro-
gram.
This monolithic system depends on a single database. It is
composed of four essential elements: A user interface, busi-
ness logics, a data interface and a database.
With this architecture, it is difficult to make improvements
without taking the risk of affecting other functionalities. It
takes time for maintenance and updates, which increases the
deployment cycle time.

3) Microservices

The year 2014 was considered to be a revolutionary year for
companies and the software architectures they use. Origi-
nally originating from Netflix and Amazon, they arise from
the strong need to partition both software development teams
and runtime components to foster agile development and hor-
izontal scalability.
The term microservice describes a set of small autonomous
services, each of which carries out its business process au-
tonomously and communicates synchronously via an API or
asynchronously through a lightweight messaging bus.
Microservices therefore can be deployed independently on
fully automated deployment machines around enterprise ca-
pabilities.
Eight aspects characterize a microservice:

• Unique feature.

• Technological flexibility.

• Reduced team

• Targeted deployment

• Scalability

• Easy to test

• Reusability

• Autonomy

4) Dependency

It makes it possible to model the inter-process links which
have a high impact on the maintenance and management of
an organization’s business processes.

5) Clustering

Data partitioning is a widely used technique in data analysis.
Its objective is to divide a set of data into different homo-
geneous clusters, in the sense that the data of each subset
share common characteristics, which most often correspond
to proximity criteria that are defined by introducing measures
and distance class between objects.
There is supervised clustering where the number of classes
is known in advance and unsupervised clustering where the
number of classes is unknown.

B. Related work

Compared to monolithic systems, microservices have
become the software architecture of choice for business
applications. There are a very large number of applications
that migrate to a micro-services architecture.
Since enterprise developers are faced with the challenges
of maintenance and scalability of increasingly complex
projects, in [5], Escobar et al. proposed a model-based
approach to analyze the current application structure and
the dependencies between business capability and data
capability. This approach aims to break down an application
developed in J2EE into micro-services through diagrams
resulting from the analysis of data belonging to each EJB

89 Saidi et al.

(Enterprise Java Beans) using the clustering technique.
In [4], Dojic et al. presented an approach allowing the
reconstruction of an integration platform that is based on an
SOA approach into a new microservices-oriented platform.
This new platform makes it possible to cover the gaps related
to the number of messages that must be processed as well
as the number of new integrations that must be supported
by the system. This new approach helps ensure flexibility
and agility in maintaining, upgrading and deploying finished
software products.
In [2], Chen et al. have proposed an approach that performs
top-down, microservice-driven analysis. This approach is
essentially based on data from the business logic. They
developed an algorithm that generates the decomposition of
the system into candidate microservices which will provide
more rational, objective and easy to understand results
afterward thanks to objective operations and data extracted
from the business logic.
In [8] , Baresi et al. have proposed a semi-automatic
approach allowing the discovery of microservices. Indeed,
a Restful API is proposed in order to receive as input a
business model components which describes the flow of
requirements with its inputs, and outputs and the microser-
vices are generated afterwards by the processing of this
model. This approach is based on the calculation of the
semantic similarity of the functionalities described through
the openAPI specifications. By leveraging a reference
vocabulary, the approach generates potential candidate
microservices as fine groups of cohesive operations.

In [13], Gysel et al. proposed a semi-automated service
identification model according to predefined categories,
based mainly on requirements artefacts. Through approx-
imation algorithms and through the use of weights, the
determined services would be directed to a specific category.
This approach defines the concept of coupling criteria maps
using 16 different instances grouped into four categories:
Cohesion, Compatibility, Constraints and Communications.
Munezaro et al. in [20] uses domain-driven design (DDD)
patterns as input to determine potential microservices. First,
developers determine a domain using a pervasive language.
Domain experts break down the boundaries of each system
responsibility and represent it as a business capability, where
a business capability is something a system does to achieve
a specific business goal. Each business feature represents a
micro-service.
In [21], Sellami et al. have proposed a method for identifying
candidate micro-services from the source code of a given
application. This approach is based on the calculation of
similarity and dependence between the different classes of
the system according to the interactions and the terminology
of the domain used in the code and to do this, the authors
have thought of an algorithm which is based on the density
in order to determine recommended micro-services by
identifying potential classes.

Despite the business process is a central and crucial element
in the evolution of the company, only four works that took
the business process as an input system to discover the ap-

propriate micro-services.
In [1], Amiri proposed a technique to discover potential
micro-services from a set of BPs. To this end, they consid-
ered two aspects of structural dependency and data depen-
dency.
The approach is essentially based on three steps: First, a TP
relationship that shows the structural dependence of activities
within a business process. Next, a TD relationship is defined
to show the dependency of activities based on their used data
objects.
Recently in [3],Daoud et al. was proposed to remove and
deal with the limits of the approach of Amiri already men-
tioned in their work [1]. The essential goal of the approach
is to automatically identify micro-services based on two de-
pendency models (control and data) and using collaborative
clustering. To do this Daoud et al. proposed formulas for
calculating direct and indirect control dependencies as well
as proposed two strategies for calculating data dependency.
In [15], Saidi and al. proposed an extension of the control
model of Daoud and al.[3] They proposed four calculation
formulas to calculate the dependence taking into account the
case of loopsequence, loopAnd, loopXor, loopOr in order to
calculate the dependence matrix of control to subsequently
generate the appropriate micro-services. In [14], Saidi et al.
presented an approach based on association rules to calculate
the correlation between the attributes of the set of activities
and to determine a dependency matrix based on the strong
and weak associations.
The only paper that addressed the problem of identifying
micro-servives from a set of business processes is the ap-
proach of Amiri and al. [1].
For this reason, our main objective in this paper is to take
several independent business processes as system input and
identify the candidate micro-services using three different
clustering algorithms. The authors in [17] described an ap-
proach which is based on global K-means algorithm. This
incremental approach makes it possible to add one center
cluster through a deterministic search technique made up of
N execution of the algorithm starting from the appropriate
initial position.

III. Our approach for identifying microser-
vices

A. Our case study

The post-production process involves a huge number of pro-
fessionals - editors, sound engineers, etc. It includes the raw
video editing process, sound mixing, visual effects, color
correction and grading, and final soundtrack development
and placement.
Post-production refers to all the tasks associated with cutting
out raw footage, assembling that footage, adding music, dub-
bing, sound effects, to name a few.
Indeed, the post-production process is described as being a
collaborative system, over a few months or even a year, de-
pending on the size and requirements of the project.
Figure 1 shows a set of independent image post-production
processes.
A Business process is a series of logically linked activities in
order to achieve a well-determined organizational goal.

microservices identification tool 90

Figure. 1: Three independent BP of the picture post-
production process

”Logically linked” means that there is some dependency be-
tween these activities: either a structural dependency, or a
data dependency... Indeed, the business process model in
general takes as input data of any form, adds value to it by
using resources (human, material,) in order to achieve
an objective by providing an output (product or service).
Structurally, a process model structurally is a graph com-
posed of nodes of type activity, gateway and arcs which are
based on these elements. Activities describe the tasks per-
formed in the process. Gateways are used to represent alter-
nate and parallel branches and merges. They can be of type
OR or XOR (inclusive execution, exclusive execution) and
AND.
Our example in figure 1 is represented in BPMN.

B. Foundations

Compared to the work presented in the related work section,
business process models will be our main source for iden-
tifying candidate microservices. These processes (like our
example in figure 1) are representative processes of the tasks
[6] of the company independently of the human and techni-
cal means. The microservices we aim to determine from a set
of business processes should be fine-grained, strongly cohe-
sive (explains how the activities that build a given microser-
vice go together) and loosely coupled (describes how the
microservices can be replaced without affecting the proper
functioning of the overall system). According to our pro-
posed approach, we were able to identify two types of de-
pendencies which are given below.

• Structural Dependency: This dependency refers to the
structure of our business model. Indeed, if 2 activities
are linked via a structural dependency, they will form a
fine-grained micro-service with a loose coupling. Oth-
erwise, they form separate microservices.[1]

• Data Dependency: Technological development contin-
ues to grow, the multitude of data sources is increasingly
diverse and varied. The representation and presentation
of information become even more abstract. The need

to equip oneself with tools for analyzing and extracting
these colossal collections of data becomes more than
vital. The goal is to discover interesting associations
or correlations between items in these large collections
and databases. These elements can be: attributes, ob-
jects, individuals, Items ... etc.
An association rule takes the form X⇒Y, X in associ-
ation with Y, which means that transactions or queries
that contain the set of objects X tend to include the ob-
jects of the set Y Finding association rules is an impor-
tant process in data mining.
This dimension so is based on association rules to deter-
mine the low and high correlation between the different
attributes of a given pair of activities[14].

C. The main steps of our approach

We identify three essential steps in our proposed architecture
(Figure 2)

Figure. 2: Our architecture

• Dependency analysis: This first step allows us to
identify the specifications of each BP model taken as
input to the system and allows us to determine the
dependence, according to two dimensions: A structural
dimension (by analyzing the structure of the model)

91 Saidi et al.

and a given dimension (by using the technique of
association rules in order to determine the strong and
weak associations between attributes of each activity of
our BP). Indeed, we will determine for each BP its own
structural dependency matrix. So we will treat each
BP as an undirected graph and we will determine the
adjacency matrix linked to each model.
In the same way, we extract the matrices of each busi-
ness process according to the second dimension (data)
and by analyzing the model in terms of correlation
between the shared attributes of each activity.
We can say that for n processes, we will have 2n
dependency matrices.

• Global dependency matrix generation: In this
second step, we will base ourselves on all the matrices
calculated in the previous step so that we can determine
our global dependency matrix.
To do this, formulas have been proposed for the aggre-
gation of these matrices. This part will be described in
detail below.

• Clustering and micro-services identification: We
will base ourselves in this last step on three clustering
algorithms which take as input the global dependency
matrix generated so that we can determine the poten-
tial micro-services. Each cluster is formed by a set of
activities that form a candidate microservice.

D. Micro-services identification

1) A. Matrix aggregation formula

• Control dependency formula
Let G be an undirected graph generated from a BP rep-
resented in BPMN. This graph has a set of K vertices
(as shown in figure 3, figure 4 and figure 5).
M=(aij) where aij describes the number of arcs that
connect vertex i to vertex j.
For graphs with at most one edge or edge between two
vertices, we have aij ∈ {0, 1}.
To therefore evaluate a structural dependence between
two given activities (ai, aj), if there is a direct arc or a
logical connector that directly links these two activities,
we will assign the value 1 otherwise the value will be 0.
In the end, by applying this calculation method we can
generate the adjacency matrix of each model separately
(in our case we will have three adjacency matrices) and
then we add up to generate a single output matrix by ag-
gregating these three adjacency matrices.
red Note: black By aggregating if there are two or more
different dependency values in all of our three models,
we apply the formula below:
Dep(ai, aj)= Max (val1,val2..valn).
If we take the case of our first BP already represented
previously in our motivation example in figure 1 and try
to analyze the dependence in terms of structural depen-
dence, the first adjacency matrix generated for the first

BP is calculated in the figure 3.
The other two matrices of BP2 and BP3 are shown in

Figure. 3: BP1’s structural dependency

Figure 4 and Figure5.

Figure. 4: BP2’s structural dependency

Our global structural dependency matrix of the three
Bps is represented by the table 1

• Data dependency formula:
The activities of our BPs, which are interdependent, rep-
resent a strong dependence in terms of structural and
logical relations which control the routing and the order
of execution of these activities and in terms of associa-
tion between attributes.
Indeed, to migrate towards an architecture based on
microservices, we must guarantee strong cohesion and
loose coupling.

microservices identification tool 92

Figure. 5: BP3’s structural dependency

a1 a2 a3 a4 a5 a6 a7 a8
a1 - 1 0 1 0 0 0 0
a2 1 - 1 0 0 0 0 0
a3 0 1 - 0 0 0 0 1
a4 1 0 0 - 1 0 0 0
a5 0 0 0 1 - 1 1 0
a6 0 0 0 0 1 - 0 0
a7 0 0 0 0 1 0 - 1
a8 0 0 1 0 0 0 1 -

Table 1: Global structural dependency matrix

The association rules technique will allow us to iden-
tify weak and strong associations. In other words, we
will determine the data dependency between activities
via the correlation between the different attributes of our
system.
Indeed, the relationships discovered can be modeled in
the form of association rules or a set of frequent ele-
ments.
Let I = (i1, i2, ... in) be a set of binary attributes distinct
from the database, and A = (a1, a2, .. an) be a set of
activities.
An activity being a subset of elements I such that A⊆ I .
Let D be the database containing all the activities. Each
activity a is represented by a binary vector with a[i]=1
if the activity shares the attribute, otherwise a[i]=0.
A non-empty subset X = {i1, i2, ...} of A is called item-
sets, and we denote it I.
The length of I is given by the value of k corresponds
to the number of items contained in X, it is noted: K-
itemsets.
An association rule is a set of 2-tuple elements (X, Y)
of A representing an implication of the form X → Y
with X ⊂ I , Y ⊂ I .
It is generally expressed by: if (x1, x2, xn) then (y1,
y2, .. yn).
Through this dimension, each microservice has its own

database to minimize communication. This is because
activities that share attributes will most likely be cate-
gorized into the same microservice.
In this dimension, so we will reuse what we have done
in [14] in order to measure the dependence of data be-
tween a couple of given activities.
For each pair of activities ai and aj the value of Dep
(ai, aj) is same in all the processes (if the process has
both activities), because an activity even in different
processes use the same set of attributes, therefore we
will use a single binary representation containing all the
activities of our process models and we will apply the
algorithm for generating the final dependency matrix
proposed in [14].

The table 2 analyzes the three BP models in terms of data.
To generate the data dependency matrix described in table 2,

a1 a2 a3 a4 a5 a6 a7 a8
a1 - 4.44 6.57 38.03 20.05 37.18 44.43 38.03
a2 4.44 - 6.57 38.03 44.43 37.18 44.43 38.03
a3 6.57 6.57 - 38.03 22.18 44.43 44.43 38.03
a4 38.03 38.03 38.03 - 44.43 44.43 44.43 44.43
a5 20.05 44.43 22.18 44.43 - 44.43 44.43 44.43
a6 37.18 37.18 44.43 44.43 44.43 - 44.43 44.43
a7 44.43 44.43 44.43 44.43 44.43 44.43 - 44.43
a8 38.03 38.03 38.03 44.43 44.43 44.43 44.43 -

Table 2: Data dependency matrix

we used the a priori algorithm implemented in [14]. Indeed,
we set the minimum support value to 0.5 and the minimum
confidence value of 0.7 to generate the set of association rules
that will be used later by the dependency calculation algo-
rithm [14].

2) B. Micro-services generation :

After calculating the two matrices across the two dimensions
(structural and data), we will use an aggregation formula so
that we can determine the final dependency matrix of our ex-
ample.
DepG= Sum (Mi (ai, aj) ,Mj (ai, aj))
Our final dependency matrix is shown in Table 3 . After cal-

a1 a2 a3 a4 a5 a6 a7 a8
a1 - 5.44 6.57 39.03 20.05 37.18 44.43 38.03
a2 5.44 - 6.57 38.03 44.43 37.18 44.43 38.03
a3 6.57 6.57 - 38.03 22.18 44.43 44.43 39.03
a4 39.03 38.03 38.03 - 45.43 44.43 44.43 44.43
a5 20.05 44.43 22.18 45.43 - 45.43 45.43 44.43
a6 37.18 37.18 44.43 44.43 45.43 - 44.43 44.43
a7 44.43 44.43 44.43 44.43 45.43 44.43 - 45.43
a8 38.03 38.03 39.03 44.43 44.43 44.43 45.43 -

Table 3: Final dependency matrix

culating the final matrix, we will use three different cluster-
ing algorithms (partitional clustering, hierarchical clustering,
and distribution-based clustering) to generate our potential
microservices.
Table 4 summarizes the microservices generation results for
each algorithm used. Each cluster describes a candidate
micro-services.

93 Saidi et al.

Technique class number classified activities’s
number

largest class
size

k-means
algorithm 4 8 3

agglomerative
algorithm 2 8 4

GMM
algorithm 4 8 3

Table 4: classification result of the different clustering meth-
ods

IV. Experimentation

A. Implementation

Our proposed tool is based on five essential modules as it is
modeled on our proposed architecture (figure 6).

Figure. 6: Micro-services identification architecture

• Camunda modeler : It is the tool that will allow us
to model our system input and to generate two types of
output: either a graphic model of BP, or an XML file of
BP created and which will be used later as input in the
second module.

• Structural dependency generator: Based on the
XML file generated by Camunda modeler, the struc-
tural dependency module calculates the dependencies
between each pair of activities (ai, aj). These dependen-
cies are represented in the form of an adjacency matrix
using the method described above.

• data dependency generator: Each BP created is
essentially based on a set of artifacts and attributes.
Extracting frequent patterns is considered our first step
in generating association rules.
It allows us to extract the context of the set of binary
attributes (I). This step takes as input a database and
a minimal support to give as output a set of frequent

elements with their supports.
First, we calculate the support of the elements and
remove those that do not reach the minimum support.
Then, we calculate the support of the itemsets of level
(n + 1) and we remove those which have a support
lower than a minimal support. Therefore, frequent
patterns are iteratively computed in ascending order
according to their sizes.

Algorithm 1: Itemset generation
Input: Binary database BD, minimal support minsupp
Output: Frequent itemset Ki

begin
Ki=∅; i=0
L1= The condidate itemsets with size 1 in B
K1= The frequent itemsets of L1

if Ki+1= not empty then
Li+1= Candidate-gen (Ki);
Ki+1= frequent itemset of Li+1;
i++

return ∪ Ki

We have implemented Algorithm 1 to determine the
itemsets.
Since we are working on different BP models, this mod-
ule makes it possible to define the correlation deter-
mined between the attributes of the three proposed busi-
ness models in order to determine the activities which
will be classified in the same cluster and those which
will be classified in a different cluster. This module
is essentially based on the method already proposed in
[14].

• Final matrix generator: For a set of n BP, we will have
n matrices at the level of the first dimension (structural
dependency) and the second dimension, which is based
on the extraction of strong and weak associations be-
tween activities.
Therefore, we proposed to make an aggregation of n
matrices generated for the first dimension and suddenly
we will have in output a single matrix instead of n ma-
trices.
For the given dimension, if a given couple of activities
(ai, aj) is the same in the other variants of BP, then it will
be the same dependency value, otherwise, this value
is recalculated by applying the technique proposed by
Saidi and al in [14].
As a result, we will have two matrices. We proposed
to take the ”Sum” of the two dependencies calculated
for a couple of activities (ai, aj) in order to generate the
global dependency matrix.

• Micro-services generator: This module is essentially
based on the final matrix calculated in the previous mod-
ule ”Final matrix generator” by applying three different
clustering algorithms to determine our potential fine-
grained micro-services, with loose coupling and strong
cohesion.

B. Experiments

First, we chose to calculate the appropriate cluster number
using the ”Elbow” method: Elbow is the point where the rate

microservices identification tool 94

of decrease in average distance, i.e. SSE, will not change
significantly with increasing number of clusters.
According to Elbow result, the appropriate number of clus-
ters in our case is equal to 2 (figure7).

Figure. 7: Elbow

• Partitional clustering: There is a classic heuristic for
this problem, often referred to as kmaverage methods,
which is used for most applications. The problem is
also studied as a classical optimization problem, with
for example approximation algorithms. In particular,
kmeans is used in unsupervised learning where obser-
vations are divided into k partitions. Dynamic clusters
are a generalization of this principle, each partition be-
ing represented by a kernel which can be more complex
than the average. The classic kmeans algorithm is the
same as the LloydMax quantization algorithm.
From the implementation of the K-means algorithm
(figure 8), we were able to determine four microser-
vices.
The first microservice is formed by two activities
(a0,a6), the second is described by three activities
(a4,a5,a7), the penultimate is composed by a single ac-
tivity (a1) and the last microservice is described by two
activities (a2,a3).

• Hierarchical clustering: In the IT field, particularly
in the fields of automated data analysis and classifica-
tion, the notion of hierarchical grouping involves vari-
ous clustering techniques and comes in two main fami-
lies: ”bottom-up” and ”descendant” techniques. .
The so-called ”top-down” method starts from a general
solution to a more specific solution. The methods in this
category start with a single cluster, including the whole,
then divide at each step according to certain criteria un-
til a series of individual clusters is obtained. There are
two types of hierarchical clustering, Agglomerative and
Divisive.
Indeed, the agglomerative algorithm (figure 9) allowed

Figure. 8: K-means

us to identify only two microservices. The first mi-
croservice is formed by four activities (a0,a4,a6,a7), the
second is described by four activities also (a1,a2,a3,a5).

Figure. 9: agglomerative algorithm

• Distribution-Based Clustering: Gaussian mixture
models (GMM) assume that there are a number of Gaus-
sian distributions, and each of these distributions de-
scribes a microservice. Since, the implementation of
the GMM algorithm, we were able to determine four
microservices.
The first microservice is formed by three activities
(a4,a7,a5), the second is described by two activities
(a2,a3), the penultimate is composed by a single activity
(a1) and the last microservice is described by two activ-
ities (a0,a6). The following figure (figure 10) shows the
implementation of our GMM algorithm.

Figure. 10: GMM algorithm

95 Saidi et al.

According to the comparison we made (figure 11), we find
that the K-means algorithm gives better results of microser-
vices generation compared to the others.

According to Dunn index (figure12), it can be concluded

Figure. 11: Qualitative comparison

that for a given business process model, the given dimension
is always richer in information compared to our first struc-
tural dimension. Regarding the comparison result for the ag-
gregation of the two dimensions together, we notice that it is
much better and more informative and suddenly the quality
of generation of microservices will be better.

V. Conclusion

Unlike monolithic systems, microservices were defined to
overcome the shortcomings of monoliths and to evolve with
continuously changing market demands.
Indeed, these microservices break down a monolithic system
into a set of autonomous and independent services. This mi-
gration will allow us to optimize our resources, to improve
collaboration and above all to rationalize the business pro-
cesses of a company.
In this context, we thought about using a set of business pro-
cesses as a monolithic system and aimed to divide our sug-
gested system into small, self-contained services that can be
deployed and individualized separately.
This proposed approach calculates the dependence between
a given couple of activities taking into account the structural
and data aspect of a set of independent BPs. Subsequently,
and by implementing three different clustering algorithms,
we were able to determine our candidate micro-services.
As future work, we first aim to treat the dependence between

Figure. 12: Dunn index

a couple of activities taking into account other aspects such
as the semantic aspect and the security aspect with a set of
BPs and then we will try to adapt these dimensions with other
types of system input such as configurable process models.

References

[1] Amiri, M. J. (2018, July). Object-aware identification of
microservices. In 2018 IEEE International Conference
on Services Computing (SCC) (pp. 253-256). IEEE.

[2] Chen, R., S. Li, and Z. Li. ”From monolith to microser-
vices: a dataflow-driven approach. In 2017 24th Asia-
Pacific Software Engineering Conference (APSEC)(pp.
466–475).” (2017).

[3] Daoud, M., Mezouari, A.E., Faci, N., Benslimane, D.,
Maamar, Z., Fazziki, A.E. (2020). Automatic Microser-
vices Identification from a Set of Business Processes. In:
Hamlich, M., Bellatreche, L., Mondal, A., Ordonez, C.
(eds) Smart Applications and Data Analysis. SADASC
2020. Communications in Computer and Information
Science, vol 1207. Springer, Cham.

[4] Djogic, E., Ribic, S., and Donko, D. (2018). Mono-
lithic to microservices redesign of event driven integra-
tion platform. 2018 41st International Convention on In-
formation and Communication Technology, Electronics
and Microelectronics (MIPRO), 1411-1414.

[5] Escobar, D., Cárdenas, D., Amarillo, R., Castro, E.,
Garcés, K., Parra, C., and Casallas, R. (2016, October).
Towards the understanding and evolution of monolithic
applications as microservices. In XLII Latin American
computing conference (CLEI) (pp. 1-11). 2016 .

[6] Ferchichi, A., Bourey, J.P., Bigand, M.: Contribution à
l’integration des processus metier:application a la mise
en place d’un referentiel qualite multi-vues. Ph.D. thesis,
Ecole Centralede Lille; Ecole Centrale Paris (2008)

microservices identification tool 96

[7] Indrasiri, K., and Siriwardena, P. (2018). Microservices
for the Enterprise. Apress, Berkeley.

[8] Baresi, L., Garriga, M., and Renzis, A. D. : Microser-
vices identification through interface analysis. In Euro-
pean Conference on Service-Oriented and Cloud Com-
puting (pp. 19-33). Springer, Cham.2017.

[9] Kherbouche, M. O. : Contribution à la gestion de
l’évolution des processus métiers (Doctoral dissertation,
Université du Littoral Côté d’Opale).2013.

[10] PPonce, F., Márquez, G., and Astudillo, H. (2019,
November). Migrating from monolithic architecture to
microservices: A Rapid Review. In 38th International
Conference of the Chilean Computer Science Society
(SCCC) (pp. 1-7). IEEE. 2019.

[11] Richardson, C.: Pattern: monolithic architec-
ture. Dosegljivo: https://microservices. io/pattern-
s/monolithic. html (2018)

[12] Estanol, Montserrat. ”Artifact-centric business process
models in UML: specification and reasoning.” (2016).

[13] Gysel, M., Kölbener, L., Giersche, W., Zimmermann,
O. (2016, September). Service cutter: A systematic ap-
proach to service decomposition. In European Confer-
ence on Service-Oriented and Cloud Computing (pp.
185-200). Springer, Cham.

[14] Saidi, M., Daoud, M., Tissaoui, A., Sabri, A., Bensli-
mane, D., Faiz, S. (2022). Automatic Microservices
Identification from Association Rules of Business Pro-
cess. In: Abraham, A., Gandhi, N., Hanne, T., Hong, TP.,
Nogueira Rios, T., Ding, W. (eds) Intelligent Systems
Design and Applications. ISDA 2021. Lecture Notes in
Networks and Systems, vol 418. Springer, Cham.

[15] Saidi, M., Tissaoui, A., Benslimane, D., Faiz, S. (2022).
Automatic Microservices Identification Across Struc-
tural Dependency. In: , et al. Hybrid Intelligent Systems.
HIS 2021. Lecture Notes in Networks and Systems, vol
420. Springer, Cham.

[16] Cheung, Yiu-Ming. ”k-Means: A new generalized k-
means clustering algorithm.” Pattern Recognition Letters
24.15 (2003): 2883-2893.

[17] Likas, Aristidis, Nikos Vlassis, and Jakob J. Ver-
beek. ”The global k-means clustering algorithm.” Pattern
recognition 36.2 (2003): 451-461.

[18] Levcovitz, A., Terra, R., and Valente, M. T.
(2016). Towards a technique for extracting microser-
vices from monolithic enterprise systems. arXiv preprint
arXiv:1605.03175.

[19] Mazlami, G., Cito, J., and Leitner, P. : Extraction of
microservices from monolithic software architectures. In
2017 IEEE International Conference on Web Services
(ICWS) (pp. 524-531). IEEE.2017.

[20] Josélyne, M. I., Tuheirwe-Mukasa, D., Kanagwa, B.,
and Balikuddembe, J. (2018, May). Partitioning mi-
croservices: A domain engineering approach. In Pro-
ceedings of the 2018 International Conference on Soft-
ware Engineering in Africa (pp. 43-49).

[21] Sellami, K., Saied, M. A., and Ouni, A. (2022, June). A
hierarchical dbscan method for extracting microservices
from monolithic applications. In Proceedings of the In-
ternational Conference on Evaluation and Assessment in
Software Engineering 2022 (pp. 201-210).

[22] Heinonen, Riku. ”Algorithmic Identification of Mi-
croservice Candidates.” (2023).

[23] Qian, Lifeng, et al. ”Microservice extraction using
graph deep clustering based on dual view fusion.” Infor-
mation and Software Technology 158 (2023): 107171.

