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Abstract: Fog computing is used to expand Cloud comput-
ing services at the network edge. A key step in the process of
improving Fog services is the management of Fog resources.
Fog resources are usually dynamic, heterogeneous, latency-
constrained, and bandwidth-constrained as compared to Cloud
resources. Improving the performance of Fog systems requires
addressing Fog resource management. Also, in large-scale Fog
networks, resource management still faces more difficulties de-
spite these improvements. Towards this end, this paper pro-
poses a new resource allocation technique in a large-scale Fog
network to optimally serve the service requests generated by a
set of IoT objects. In this technique, we exploit the proven sta-
ble and efficient Gale Shapley matching algorithm in large-scale
Fog computing networks. IFogSIM is used to demonstrate the
effectiveness of this approach.
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1. Introduction

The growth of the Internet of Things (IoT) [1, 2, 3, 4, 5] is
increasingly being driven by this vision of a more comfort-
able everyday living, an effective economy and governance,
safe highway traffic, environmentally friendly energy supply,
and a healthier way of life. Impressive predictions have been
made regarding the effects of IoT on the internet and econ-
omy; some estimate that by 2025, there will be up to 100 bil-
lion linked IoT objects and an impact of more than 11 billion
on the global economy. However, the exponential increase
in the number of connected devices and the massive amount
of data they produce have brought to light some issues with
Cloud computing, specifically those with its centralized ar-
chitecture. Moreover, data created by IoT or user devices
in a smart city is typically sent to clouds located far away
from the user devices for processing and archiving. Because
it is expected to result in increased communication latencies
when billions of devices are connected to the Internet, this
computing model is not appropriate for the future [6].

An alternative processing paradigm to the Cloud model is
suggested to address the workload of users and [oT as well as
allow for the closer placement of computing resources. This

new emerging processing approach is called Fog Computing
[7]. This emerging concept creates an architecture between
IoT devices and the Cloud by offering data and resource man-
agement, processing, and storage capabilities close to the IoT
devices [8, 9, 10, 11, 12]. In order to satisfy the demands of
network-sensitive applications, the current research suggests
various ways to improve resource management, network per-
formance, reduce excessive surcharges, and reduce latency
[7, 8, 13, 14]. However, despite the significant advantages
provided by these solutions, the paradigm has limitations
such as: congestion-constrained, loT-Fog workload alloca-
tion problem. It is worth noting that these limitations are
particularly evident in large-scale Fog environments. This
makes thus resource management in large-scale Fog envi-
ronments extremely challenging. Moreover, a resource allo-
cation strategy for this environment becomes a difficult task
that requires additional effort. To enhance resource alloca-
tion techniques in such systems, clustering and profiling Fog
nodes are investigated. In part, this is due to the fact that most
IoT requests and data processing can be carried out within
clusters [15]. Profiling Fog nodes are also easily deployable
on large-scale systems that require more heterogeneous and
massive processing. Therefore, this paper proposes a new re-
source allocation technique in a large Fog environment, aim-
ing to efficiently serve massive data generated by IoT de-
vices. The proven stable and efficient Gale-Shapley match-
ing algorithm [16, 17] is used in this proposal to demonstrate
that our resource allocation technique is capable of dealing
with large-scale Fog networks.

The remainder of the paper is organized as follows: in Sec-
tion 2, we define the key concepts of the problem and present
the state of the art in this field. We will then describe
our technique, the execution scenarios, and the different ex-
changes between the entities in our environment in a third
section. The fourth section of the paper includes an imple-
mentation of this technique within the simulation environ-
ment IfogSim, as well as a discussion and analysis of the
results. Section 5 concludes with some concluding remarks
and perspectives.
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II. Backgrounds

Firstly, this section explains the relationship between Fog
computing and the Internet of Things. After discussing dif-
ferent Cloud migration strategies, we discuss Fog migration
strategies.

A. Internet of Things (IoT)

Internet of Things (IoT) describes a network of physical
devices - often heterogeneous - interconnected, and whose
main function is to collect, exchange, and interact with
external data [5]. An intelligent infrastructure can self-
organize, share information optimally, and react to environ-
mental changes [4, 18, 19]. The computing power and the en-
ergy consumption of IoT objects in this network are limited.
However, manufacturers in the field of communications and
networks are concentrating their efforts on the production of
sensors and IoT devices with different functionalities in order
to meet the needs of various industries. In recent years, smart
objects have become more accessible. Thus, IoT devices
are used in several domains, such as security, surveillance
systems, smart homes, autonomous car systems, and medi-
cal monitoring. IoT networks are composed of four layers,
namely: sensors, networks, management, and applications.
Layers utilize a variety of technologies and provide a variety
of services [5]. Internet of Things (IoT) devices produce a
large volume of data, challenging the traditional Cloud com-
puting infrastructure. With the increase in connected devices,
cyber-criminal attacks are becoming more diverse. The IoT
network architecture may be negatively affected by the injec-
tion of misinformation into an IoT network.

Additionally, most time-sensitive IoT applications require
adaptive behavior. The use of Cloud servers to process these
IoT applications may not be efficient [20, 18, 19].

B. Fog Computing

The Fog Computing approach has become one of the most
widely used methods for improving IoT-Cloud communica-
tions. It has been defined as a promising approach to address
the problem of managing the large data bandwidth require-
ments and fast response times of IoT devices [20, 21]. Ac-
cording to CISCO [9], Fog computing describes: “a highly
virtualized platform that provides computing, storage and
networking services between end-devices and data centers of
traditional Cloud computing, usually, but not exclusively, lo-
cated at the edge of the network”. The OpenFog Consortium
[12] also defines it as: ”Across the Cloud-to-1oT, it delivers
computing, storage, control, and networking functions closer
to IoT devices.” The term also refers to a distributed hardware
and application infrastructure that aims to store and process
data from different connected devices in order to replace the
Cloud for certain processing. The main idea of Fog comput-
ing is the instrumentalization of the various equipment which
consists of the network nodes (routers, switches, gateways,
etc.), a distributed data processing and storage center which
is both intermediate to the Cloud and at the same time near
the ends of the network. The ability to create a layer near the
data being processed reduces transfers entering and leaving
the Cloud, resulting in a reduction in latency and, therefore,
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Figure. 1: Architecture of Fog Computing

in the time it takes to perform different processing opera-
tions.

1) Architecture

Most of the literature follows the same architectural scheme
of Fog networks(see Figure 1), namely the three-layer model
[11] is presented as follows :

o JoT layer: This layer refers to all devices at the network
end, such as smart vehicles, smart-phones, drones, sen-
sors, etc. It is mainly composed of IoT devices, whose
role is the collection and transmission of data to the up-
per layer for storage or processing.

o Fog layer: This layer consists of Fog nodes, which are
defined as “’physical or logical elements that implement
Fog computing services” [11]. The set of nodes consti-
tutes a distributed processing and storage system con-
nected to both lower and upper layers through gateway
nodes.

o Cloud Layer: This layer represents a centralized Cloud
infrastructure. It is composed of high level hardware re-
sources and provides different services. Unlike a classic
Cloud architecture, some processing and services that
are offloaded from the Cloud layer to the Fog layer in
order to balance the workload and increase efficiency
and reliability.

2) Advantages

Fog Computing has many benefits which may be highlighted
as follows:

 Security and Privacy: In Fog networks, privacy and se-
curity are both crucial. Security is the defense against



99

threats or danger, whereas privacy is the ability to con-
trol how your information is viewed and used.

« Productivity: With the appropriate tools, developers can
easily create these Fog apps. It can be deployed at any
time after development is complete.

o Cognition: This comes from the fact that the Fog in-
frastructure is aware of the needs and requirements of
users. It thus distributes resources more finely accord-
ing to each user, unlike the Cloud.

o Agility: It refers to a capacity for quick adaptation to
technical changes.

o Latency: Because of its proximity to end users, the Fog
has the ability to handle applications that require short
and stable latencies and avoiding difficulties associated
with centralized systems.

« efficiency: Resulting from the integration of the many
devices in the network (with their processing and stor-
age capacity), this concept enhances the system’s capac-
ity and overall efficiency.

3) Challenges in Fog computing environments

Fog computing has many advantages, but it remains a rela-
tively new paradigm that must deal with energy management,
heterogeneity, security, and Fog resource management. The
latest is a crucial prerequisite in the enhancement process of
Fog services. Fog resources are frequently dynamic, hetero-
geneous, latency-constrained, and bandwidth-limited, com-
pared to Cloud resources.

4) Migration in Fog Computing environments

As aforementioned, addressing Fog resource management is
essential to optimizing the performance of large-scale Fog
systems. According to [22], managing resources on a large
scale while providing performance isolation (by using vir-
tual machine or container) and efficient use of the underly-
ing hardware is a key challenge for any resource manage-
ment software. Virtual Machines (VMs) are required to ef-
fectively manage multiple resources while providing differ-
entiated quality of service to VM groups. We can consider
them the key issues in building Fog-scale resource manage-
ment systems.

Virtualization introduces a layer of software abstraction be-
tween the hardware and the operating system or applications
running on it. By separating logical resources from underly-
ing physical resources, virtualization enables the flexible as-
signment of workloads between physical machines. Virtual
instance migration (Virtual Machine or Container) is consid-
ered as the process of copying and moving the state of the
latter from one physical host to another [23]. Virtual instance
migration plays an essential role in Fog environments since
it guarantees the continuity of services, regardless of the re-
quirements for mobility expressed by objects connected to
this environment.

There are two major software virtualization techniques used
in service-oriented architectures: virtual machines and con-
tainers. Their major differences are their scalability and
portability [23, 24, 25, 26] (see Figure 2).
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Figure. 2: Architecture of virtual machine and of container

C. Related Work

We present in this subsection a taxonomy of similar works
focusing on the resource management of Fog nodes, as well
as the various challenges encountered.

There are specific characteristics of Fog computing that make
it suitable for applications, which require low latency, mobil-
ity, real-time analysis, and interaction with the Cloud [27]. In
order to ensure a reliable Fog computing environment, it is
imperative to optimize the utilization of deployed resources.
This environment requires resource-constrained Fog nodes to
operate in a highly dynamic environment. As a result, they
require adaptive resource and task management. Literature
describes Fog resource management methods as “’latency” or
”workload enhancement” techniques [27, 6, 2, 7, 8]. In or-
der to improve their proposals, most of these methods use
heuristics or meta-heuristics, model-based techniques (e.g.,
approximation, Markov), Machine Learning, Deep Learning,
and Game-Theory.

According to [28, 29], Fog resource management provides
load balancing, dynamic provisioning, and auto-scaling ser-
vices via efficient node deployment techniques and virtual-
ization.

Fog environments also face a complex problem of resource
management. Consequently, it cannot be considered as a sin-
gle issue. To simplify the resource management problem, we
proposed to view it along six axes: application placement,
task scheduling, task offloading, load balancing, resource al-
location, and resource supply (see Figure 3).

Application placement: A problem of application placement
refers to finding a way to associate an [oT service with a Fog
node while meeting Quality of Service (QoS) requirements.
More formally let S be an IoT service with QoS requirements
@, and let NV be the set of Fog nodes. A solution to the appli-
cation placement problem consists in associating to the ser-
vice S a Fog node N; of N satisfying the QoS requirements
@, while optimizing a set of objective functions O. Multi-
valued relationships are possible, so an IoT service can be
placed on one or more nodes, and a node can host a variety
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Figure. 3: Resource management domains and their related
approaches

of services. Approaches based on Broker management can
be organized into 3 categories which are: centralized, decen-
tralized and hierarchical approach.

« In the centralized approach, the broker needs to have a
global view of the entire Fog environment in order to
make optimization decisions for the entire system. This
approach does not guarantee effective optimization due
to the difficulty of obtaining all the information from all
the entities of the Fog, as well as poor fault tolerance
due to its architecture centralized.

o While the decentralized approach, it consists of a set
of local optimization which makes it very interesting in
terms of scalability.

o As for the hierarchical approach, the idea is to link and
coordinate the various local managers so that they can
collaborate with each other and thus benefit from the
advantages of the previous two approaches.

Resource planning: In Fog environments, an IoT service
can be placed on multiple nodes, and each service can be
divided into several sub-services. Let a set of sub-services
S = {S1,...,Sn} (with different requirements in terms of
QoS) to place on a set of nodes N = {N1,..., Nm} (having
different processing capacities). Resource planning consists
in finding an optimal assignment of the different sub-services
S; to the different nodes INV; according to the objectives con-
sidered by the scheduling policy (for example, minimizing
the execution time).

The following approaches are used in resource scheduling:

« Static: This approach allocates nodes to the various sub-
services in a static manner, that is, the decision is al-
ready made even before the request is submitted, which
implies prior knowledge of all the relevant information.

o Dynamic: unlike the previous one, the allocation pro-
cess is not fixed in advance, decisions are made once
the requests have been formulated.
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o Hybrid: it consists of a combination of the two previous
approaches in order to respond to the diversity of types
of application.

Task Offloading: In task offloading, tasks that cannot be
executed locally due to lack of resources are transferred to
nodes with the necessary capabilities. Considering IoT de-
vices have limited hardware and energy resources, resource-
intensive tasks such as graphics calculations, augmented re-
ality, etc., often require external entities, such as the Fog or
the Cloud.

There are three main components to task offloading:

o IoT devices: whose role is to specify how applications
should be partitioned, then determine which part should
be run locally, and which part should be discharged.

o Communication links: they make it possible to ensure
the transfer of tasks, and therefore the quality of the
transfers depends on the physical capacities of the links.

o Fog nodes: these have a lower capacity than the Cloud,
but greater than IoT devices.

Task offloading may also occur to provide load balancing,
minimize latency, power efficiency, etc.

Load balancing: Load balancing [30] consists in distribut-
ing the excessive loads on the different Fog nodes accord-
ing to a certain strategy, in order to ensure that no Fog node
is overloaded or underloaded, improving thereby the overall
performance of the system. However, in reality the load bal-
ancing mechanisms encounter many challenges, mainly the
problem of latency which is due to the continuous migration
of different processes. Balancing strategies are implemented
according to either a centralized or a decentralized architec-
ture:

o The centralized approach relies on a central controller,
thus requiring global and real-time knowledge of the
status of the various nodes. This approach is therefore
difficult to implement due to the difficulty of continu-
ously knowing the states of the various nodes of the sys-
tem, besides its low tolerance to faults of its centralized
architecture.

o In the decentralized approach, a decentralized con-
troller coordinates the various local controllers, ensur-
ing greater scalability.

Allocation of resources: The resource allocation problem in
Fog environments can be considered as a double matching
(mapping) problem because Cloud Servers and Fog Nodes
are paired for users whereas the user and Fog Nodes are
paired for Cloud Servers. In other words, the users must
take into consideration the relationship between Fog nodes
and Cloud servers, and Cloud servers must take into con-
sideration the relationship between nodes and users. Tech-
niques for allocating resources can be categorized into two
categories:

« “auction-based” technique: clients submit their requests
for resources to the broker with a request pricing sys-
tem, and the resources will be allocated at most bid-
ding, using auction mechanisms calculated using vari-
ous mathematical techniques.



101

« “optimization-Based” technique: it consists of finding
the optimal combination (Cloud servers, Fog Node,
user) for each user by performing optimizations of ob-
jectives function, such as minimizing response time,
maximizing QoS, etc.

Resource supply: Since the workloads of various appli-
cations fluctuate constantly, the risk of resources over-
provisioning or under-provisioning is high. The over-
provisioning problem consists in allocating an amount of
resources greater than the actual workload of an applica-
tion. (And vice-versa for the problem of under supply). Dy-
namic resource provisioning is essential to allowing contin-
uous adaptation to workloads in a constantly changing envi-
ronment. Dynamic sourcing policies are categorized into 3
policy kinds:

« Reactive policy: it consists of responding only to re-
ceived requests, with no attempt to predict future re-
quests.

« Proactive policy: it is based on prediction techniques to
anticipate future changes in workloads and adapt deci-
sions, accordingly.

o Hybrid policy: it therefore adopts the two previous poli-
cies, the reactive policy is often used to supply resources
to a new request that arrives in the system, while the
proactive policy makes it possible to anticipate future
changes in demand.

1) Proposed architectures

The different resource management approaches in Fog envi-
ronments have been classified according to their 3-type ar-
chitectures [17]:

« Data flow architectures: These types of architectures are
based on the direction of workloads transfer, for exam-
ple, workloads can be transferred from the user to the
Fog node or from the servers Cloud to nodes.

« Control architectures: These architectures are based on
the way the resources are managed at the system level,
for example, a central controller or algorithm can be
used to manage a set of nodes.

o Tenancy architecture: this architecture is based on the
ability of different nodes to host several applications,
for example, one or more applications can run on a Fog
node.

III. Stable Maching Based Resources Allo-

cation in large scale Fog Environment
(SMRA)

According to related research on improving and optimizing
resource management, resource allocation is a key issue that
needs to be investigated to achieve optimal resource manage-
ment. Over the past few years, academia and industry have
paid considerable attention to the objective of optimizing re-
source allocation. The development of an efficient resource
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allocation management model is therefore crucial for an effi-
cient large-scale Fog infrastructure. The purpose of this pa-
per is to develop a dynamic, effective and scalable resource
planning model to enable IoT devices to allocate different
resource demands to different Fog nodes based on their re-
source demands. This problem was inspired by an article
[31] that addressed the same issue, with the authors inter-
ested in providing resources in a Cloud environment. This
process can be divided into three principal steps, namely :

1. Identification of affected nodes (i.e. under-utilized or
over-utilized nodes).

2. Selection of VMs to migrate.
3. Reassigning VMs to underutilized nodes.

We are particularly interested in the third step, where the au-
thors propose a matching problem for allocating VMs to the
correct nodes. Our paper proposes, in a similar way, a new
resource allocation technique for large-scale Fog networks
to better serve queries generated by IoT devices. This tech-
nique, called ”‘pure Stable Matching based Resources Allo-
cation (SMRA)™’, is based on the algorithm of Gale-Shapley
[17, 16]. It is detailed in what follows.

Hypotheses:

in order to focus on the issue of matching service requests
to Fog nodes, we first have to formulate some assumptions
about the physical topology of the large scale Fog infrastruc-
ture.

o The topology is static during operation: once the solu-
tion is implemented, the topology does not undergo any
change.

o The topology follows a matrix organization: Fog nodes
are organized in well-defined, distinct levels with the
same number of nodes in each level.

o The topology is interlaced between the levels: each
cluster Fog node is physically connected to all higher
level nodes.

o Each node knows all its parent and child nodes.(i.e. re-
spectively upper level nodes and lower level nodes)

« In this model, we have at least three types of requests
which are:

— The request, which corresponds to a request for
services issued by the IoT devices, it contains all
the details of the request.

— the outcome request, which is generated after
a service request is completed, is issued to the
sender IoT object.

— The token request, which represents the token cir-
culating between the different gateway nodes fol-
lowing round-robin policy.

1) SMRA architecture

Our allocation technique SMRA is divided into four interre-
lated features, which we describe below.:
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e Clustering: by grouping the Fog nodes into groups
(Cluster) based on their geographical proximity.

« Profiling: by assigning different profiles or roles to the
different nodes of a cluster.

« Batch processing: requests are grouped and processed
in batches according to their arrival orders.

o Matching: the process of associating and redirecting re-
quests to the adequate Fog nodes.

2) Clustering

As mentioned before, a classic Fog infrastructure consists of
3 overlapping layers (see Figure 4(a)):

o The IoT layer, which represents the set of IoT objects
that make service requests.

o The Fog layer, which represents all the Fog nodes lo-
cated at the intermediary between the IoT objects and
the Cloud.

o The Cloud layer, which represents the traditional Cloud
infrastructure.

SMRA starts by vertically splitting up the Fog layer of the
infrastructure into a set of clusters (see Figure 4(b)), i.e. each
cluster brings together a set of interconnected Fog nodes.

3) Profiling

Once the infrastructure is distributed into clusters, SMRA as-
signs profiles to the nodes constituting each cluster (see Fig-
ure 5) by using two profiles defined as follows:

o The Gateway Node profile (in red), which is adopted
by the nodes belonging to the level that is directly con-
nected to the IoT layer.

o The Node Fog profile (in blue): which is assigned to the
nodes of the remaining intermediate levels between the
gateway node layer and the Cloud.
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Figure. 5: Diagram representing the profiles of the nodes
within a cluster

4) Scenario Execution

Since the clusters are independent, generalizing this opera-
tion to all clusters defined by the infrastructure is thus possi-
ble since it indistinguishably applies to anyone of them. Dif-
ferent IoT devices send service requests to the cluster gate-
way nodes of the cluster they belong to. These nodes keep
then their requests in a queue, waiting for them to be matched
and thereafter sent them to their selected destination.

We define a token circulating from one gateway node to an-
other according to the round-robin policy; Whenever any
Gateway node receives a token, it matches requests in its
queues with Fog nodes in its cluster. Thereafter, it sends each
request to the appropriate Fog node, returns the token to the
next gateway node, and so on (as depicted by the flowchart
of Figure 6).

5) Algorithmic description of the scenario

The SMRA is designed as an event paradigm, i.e. an algo-
rithm based on events, where each event is associated with
a procedure called “Routine”. SMRA has 2 main routines
which are: - The Routine associated with the gateway nodes
- The Routine associated with the Fog node

Routine associated with gateway nodes:

This routine is executed at the level of the gateway nodes
each time a request is received. The pseudo-code of this rou-
tine is as follows:

Matching procedure:

For the implementation of this procedure, we opted for the
use of the Gale-Shapley algorithm [17], which is an algo-
rithm designed to solve the problem of stable marriages. It
has interesting properties [17] which are:

e Good performance due to its quadratic complexity
(O(n2)).

« Convergence: any request will be associated with a node
at the end of the execution.
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Figure. 6: SMRA Execution Scenario Flowchart

o The pairs (request, node) resulting from this algorithm
are stable.

o The resulting configuration is optimal compared to all
other stable solutions

This algorithm requires the definition of a preference rela-
tion, called ”Adequacy Relation” or AR, which is associated
with each request and each node: To achieve this objective,
we define a distance between the request and the node, which
is calculated as follows:

Symbol Definition
Cy MIPS (million of instructions per second) used
Caem M I PS required by the service to be executed
Crd total amount of the node MIPS
C, MIPS Available
Cut+Caem :
Distance = { Crd if Cr 2 Cem
-1 else

The matching relationship is defined by using the mini-
mum distance between the node and the request. That is,
let D = {D;,Ds,....,D,} be a set of demands, and let
N = {N1,Ns,.,N,} be a set Opf nodes. We say that
the node NN, is the best suited to the request D; if and only
if: Distance(D;, N;) = Min(Distance(D;, Ny,)),Vm €
{1,..,n}.

Routine associated with the Fog node:

This routine is executed at Fog nodes each time a request is
received.

IV. Implementation and experimental results

A. Introduction

The previous section presented all the theory behind our re-
source planning solution for managing resources in the Fog
environment. To evaluate performance and results, we need
tools that allow us to quantify them. In this section, we first
provide an overview of the different tools used to simulate
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Algorithm 1 Routine associated with gateway nodes

function HANDLE(Input Data: ListRequests, ListNodes)
if The event received is of the token type then > call the
Matching procedure
Matching(fileRequests, listNodes);
request routing
for all request D, € fileRequests do
if listParents.contains(D;.destination) then
send(request, D; .destination);
else
send(request, DefaultParentNode);
default node for load balancing between links
DefaultParentNode < nextParentNode()
end if
end for
else
if The event received is of type result then
result to the concerned IoT device
send(result, result.destination);
else > the event is therefore of the service request type
push(fileRequests, Request);
end if
end if
end function

> then perform the

> update

> send the

Algorithm 2 Matching procedure

function HANDLE(Input Data: ListRequests, ListNodes) >
reset all requests to null destination.

for all Event D; € fileRequests do

D;.destination < null;

end for

while 3 an unassigned request d that can be offered to a node
do

n < the node the best suited to d such that d ¢
node.rejectedrequests;
if n = null then © if no node can process the request, it is
delegated to the Cloud.
d.destination < Cloud,;
sendToCloud(d);
else
if n is free then
d.destination < n;
else © case nis not free and d is more adequate than
the request associated with n
if distance(n,n.request) > distance(n,d)
then > reset to null the destination field of the request associated
with n so that it can be handled again.
n.request.destination < null; > add old
request attached to n into the list of requests rejected by the node
n so that it cannot be offered again to n
n.rejectedrequests.add(n.request);
request associated with n is replaced by d
n.request < d,
d.destination < n;
else > request d does not fit with the node n, so it
is rejected by n.

> the new

n.RejectedRequests.add(d);
end if
end if
end if
end while
end function
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Algorithm 3 Routine associated with Fog nodes

function HANDLE(Input Data: ListRequests, ListNodes)
if Event received is of type request then
if request.destination is the node itself then
destination of the result is the request source .
result < execute(request); > thereafter route the
result to its destination.
if listChildren.contains(result.destination) then
send(result, result.destination);
else
send(result, DefaultChildNode);
DefaultChildNode < nextChildNode();
end if
else > the node in question is not the destination.
if listParents.contains(request.destination) then
send(request, request.destination);
else
send(request,DefaultParentNode);
DefaultParentNode < nextParentNode();
end if
end if
else > the request received is therefore a result request.
if listChildren.contains(result.destination) then
send(result, result.destination);
else
send(result, DefaultChildNode);
DefaultChildNode < nextChildN ode();
end if
end if
end function

> the

this solution and the various elements added to it. As a final
step, we compare the results with those of the various classic
management policies: “First fit”, ”Best fit”, and "Worst fit”.

B. Development Tool

In order to be able to simulate the proposed solution, we
opted for the "IFogSim” simulator (see Figure 7). The lat-
ter operates according to the event paradigm, which is in
line with our solution. With IFogSim, an application de-
veloped exclusively in Java, we can measure the impact of
management on technical factors by analyzing data, energy
consumption, lead times and network status.

C. Design, development and Tests

In order to implement the proposed technique, we add new
classes necessary for the implementation of our solution, but
we also proceed to the modification of some main classes of
the [FogSim in order to adapt it to our needs (see Figure 8).
The manipulations carried out to implement this solution are
listed below:

1) Creation of a ClusterFogDevice class:

This class represents any Fog node of the cluster. It extends
the predefined FogDevice class and additionally includes the
following attributes:

— parentsIds: which is a list that contains the identifiers of
the nodes at the top level.

— isNorthLinkBusyById: which is a list of booleans where
each element indicates whether the upper link in question is
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Figure. 7: Diagram representing interactions of the different
components of [FogSim

Figure. 8: Diagram representing relationships between the
main classes of [FogSim
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busy.

— northTupleQueues: which is a list of tuple queues that
associates each upper link with a queue of tuples where the
tuples (related to tasks required by sensors) to be sent on this
link will be stored if the latter is busy. Each tuple is generated
by a sensor to require some task.

Additionally, the processTupleArrival method, which is the
method executed by the node each time a tuple arrives, has
been redefined to implement the routine associated with a
Fog node that is described in the design.

2) Creation of a GWFogDevice class:

This class represents a Fog gateway node, i.e. the node con-
nected directly to sensors and actuators. This class also ex-
tends the class FogDevice, and adds the following attributes:
— waitingQueue: which is a list of tuples used to store re-
quests not yet assigned.

— tupleToMatchedDevice: is a list containing the tuples not
assigned to a node.

— matchedTupleList: which is a list comprising the tuples
assigned to their respective nodes.

— gwDevices: is a list of GWFogDevice, containing the set
of gateway nodes.

— isNorthLinkBusyByld: which represents the same as in
the class.

— northTupleQueues: it also represents the same as men-
tioned in the ClusterFogDevice class.

— clusterFogDeviceslIds: which represents the list of all Fog
nodes in the cluster.

3) Creation of a MatchedTuple class:

This class describes the tuples once assigned to their respec-
tive nodes. It represents an enrichment of the Tuple class by
the following attributes: — destinationFogDeviceld: which
contains the identifier of the destination node. — destMod-
uleMips: which describes the processing requirements of the
destination module. The same procedure was followed to
implement concurrent policies.

D. Results and performance evaluation:

We evaluate the performance of our solution by measuring
the time taken to complete the task in order to determine the
effectiveness and the extent of gains made through our re-
source planning model. So, to evaluate the performance of
this solution, we measure the execution time, application ex-
ecution time, and tuple execution time. Then, we compare
the results with those of the classical models implementing
the “FirstFit”, “BestFit”, “WorstFit” strategies.

As a result, Fog nodes and generated requests have a certain
level of heterogeneity, allowing us to better study the ability
of our algorithm to match a variety of requests to nodes with
different hardware capabilities.

1) Vertical scalability

This part measures the performance of the model based on
the variation of the Fog matrix levels. In this experiment, we
fix the number of nodes per level at 5 nodes.

Figures 9 and 10 show, respectively, the variation in the aver-
age execution time of a tuple (representing a service request)
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Figure. 9: Average execution time of a tuple according to the
number of levels

and the execution time of a complete application according
to the number of levels in the architecture.

We see a clear reduction in the tuple processing time of about
75 per cent, compared to the other simulation algorithms.
This reduction stabilizes beyond the threshold of 18 levels,
This metric is no longer affected by the number of levels. Itis
also possible to see the impact of reducing the response time
of individual tuples on the execution time of an application.

2) Horizontal scalability

Here, we evaluate the model performance in relation to the
variation in the number of nodes per level of the previously
defined Fog matrix. Since each gateway node is connected
to a set of IoT objects, the number of tuples generated by
IoT objects depends on the number of nodes per level. In
this way, increasing the number of gateway nodes will also
result in an increase in requests. We set the complexity with
relation to ten levels.

Figures 11 and 12 represent, respectively, the variation in ex-
ecution time of a tuple by the number of nodes per level and
the variation in execution time of an application by the num-
ber of nodes per level.

Figure 11 shows a linearly increasing execution time for clas-
sical strategies, unlike the proposed method which seems to
follow a logarithmic trend. For classical strategies, increas-
ing the number of nodes per level significantly impacts the
execution time of an application, contrary to the proposed
strategy. It seems that the correlation is less significant.
With the “Best Fit” strategy, the number of nodes per level in-
creases linearly with the execution time of a tuple. In the case
of the "First Fit” strategy, in levels with more than 19 nodes,
the execution time stabilizes. “Worst Fit” strategy shows an
increase followed by a phase decrease from 17 nodes per
level.
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Figure. 10: Average execution time of an application accord-
ing to the number of levels

The proposed strategy also seems to have better results and a
more stable execution time, which is a bullish sign.
Clustering schemes are derived from the results of our scala-
bility experiments. As the number of gateway nodes exceeds
the number of levels in the Fog cluster, the performance of
our previous two experiments drops.

3) Study based on Throughput Request

Our model will be evaluated based on its response time as a
function of the delay between each request. In a network, the
smaller the delay between requests, the greater the load and
congestion. We fix in this experiment the number of levels at
7 levels and the number of nodes per level at 5 nodes (note
that 5 < 7).

Figures 12 and 13 represent, respectively, the variation of the
execution time of a tuple and the execution time of an appli-
cation according to the transmission delay between consecu-
tive tuples. According to the classic strategies, the execution
time of an application is stable and close to the maximum
value, which means that the decrease in workload does not
affect the execution time. Conversely, the proposed strategy
shows better performance in terms of delay as well as a reac-
tivity to variations in transmission delay.

With our technique, we were able to reduce the execution
time of service requests, indicating better resource manage-
ment and distribution throughout the entire cluster.

V. Conclusion and future work

In this paper, a decentralized algorithm is proposed for the
fair distribution of batch service requests among Fog nodes.
With our solution, real-time applications with high quality
service requirements can expect responsiveness and shorter
response times. Additionally, this solution ensures an eq-
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Figure. 11: Average execution time of a tuple based on the
number of nodes per level
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Figure. 13: Average execution time of a tuple according to
the transmission rate
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Figure. 14: Average execution time of an application accord-
ing to the transmission rate

K. Zeraoulia, A. Hammal, M. Lerari and Y. Hammal

uitable distribution of workloads among nodes in the same
cluster, which prevents saturation of the network and critical
points from occurring. There are other aspects of the Fog
architecture that could be explored to enrich the current solu-

tion,

which deals only with the resource allocation problem.

Many perspectives could be explored, in particular:

Our technique could enhanced to provide a logical
topology of the network by integrating a network dis-
covery mechanism. By doing so, we will be able to in-
clude the cost of the network link in the distance func-
tion between requests and nodes.

It can take advantages of Gateway node subscription
based solutions to enable dynamic addition and removal
of nodes.

Lastly, in order to efficiently deal with different requests
from IoT devices, a priority concept need to be devel-
oped and integrated to our proposal.
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