
©

Improved Adaptive Antialiasing for Ray Tracing
Implicit Surfaces

Jorge Flórez, Mateu Sbert, Miguel A. Sainz and Josep Vehı́
Institut d’Informática i Aplicacions, Universitat de Girona

17071 Girona (Spain)

Abstract: Interval arithmetic has been extensively used to
create guaranteed intersection test when ray tracing implicit
surfaces. Aliasing is one of the principal problems in ray trac-
ing, but the interval algorithms are not designed to correct this
situation. This paper shows a novel technique to create a guar-
anteed interval adaptive anti aliasing method (IAA) for inter-
val ray tracing of implicit surfaces. The method is based in the
study of the coherence of sets of neighboring rays in a pixel, to
detect variations over the hit surface. If those variations are not
small enough, the area of the pixel is subdivided and the process
is started over the new sub pixels. The subdivision continues un-
til the variations over the surface are small. This method allows
us to obtain a better visualization than traditional interval ray
tracing.

I. Introduction

Ray tracing is a technique inspired in the behavior of the rays
of light interacting with objects in nature. The rays bouncing
on the objects arrive to our eyes and we can see the features of
the surface (color, shiness, transparency, etc). Indirect light
(light reflected from other objects) can also rebound at the
surface and arrive to our eyes. Using this rendering tech-
nique, it is possible to obtain realistic visualization of differ-
ent kinds of scenes.

Ray tracing has been extensively used to render parametric
and implicit surfaces. However, there are some problematic
situations in which thin features of the implicit surfaces are
not correctly rendered. Many authors have reported the situ-
ation in which thin features ”disappear” when the surface is
ray traced [2, 10, 9].

This occurs because the computers can not guarantee the
robustness of floating point operations: they can not repre-
sent the whole set of real numbers, instead they a set of ma-
chine numbers with limited precision which approximates
the set of real numbers. Although double precision is used,
some problematic surfaces are not correctly rendered.

Some authors have proposed reliable ray tracing algo-
rithms that perform guaranteed intersection test between the
rays and the surfaces, based on interval arithmetic [2, 4, 10].
The interval algorithms provide a guaranteed solution for the
intersection test, but they do not propose a reliable way to
reduce aliasing in the visualization of the surfaces.

Implicit surfaces could have very thin features that are im-
possible to intersect using rays without thickness. In a theo-
retical process, an infinite number of rays should be sent for

every pixel. But it is only possible to send a representative
number of rays (point sampling).

To obtain a completely reliable ray tracing process, the
algorithms used to create guaranteed intersection test should
be improved with a reliable anti aliasing strategy.

The Aliasing effects are related to the jagged edges that
appear on the border of the surfaces. This is due to the high
contrast between colors, for example with the border color
and background color, or with the color of a shadow cross-
ing a surface in a high illuminated area. Aliasing also occurs
when small or thin parts of the surfaces seems to disappear
during the visualization of the surface. The last kind of alias-
ing is more frequently in the ray tracing of complex implicit
surfaces.

The guaranteed algorithms can be adapted to work with a
regular number of rays per pixel, in which the value of the
intensity is obtained from the average value of the sampled
rays. However, small features could be missed producing
jagged effects in the visualization [6].

Whitted [13] proposed a technique called adaptive sam-
pling, which offers a better solution to this problem. In
this technique, rays are traced in the corners of the pixel.
If the values of the colors obtained through every point are
too different, the pixel is subdivided and new rays are traced
through the new corners. When the differences between ray
values are less than a specified threshold, the average of the
values is taken to shade the pixel.

Because it is still possible to miss thin parts of the surface,
Whitted used bounding boxes for small objects. If the ray
intersects a bounding box, the sampling rate is increased to
guarantee that view rays do not miss the object. Although
effective in most of the cases, this technique does not work
very well with long thin objects [6].

Other approaches are based on gathering information of a
continuous set of rays as cone tracing [1] or beam tracing [8].
The main disadvantage of these proposals is that they require
computationally complex intersection tests.

This paper describes a method called interval adaptive anti
aliasing (IAA)[5] which produces reliable anti aliased ray
traced image of implicit surfaces. This method evaluates ar-
eas of the pixel instead of points as in point sampling. In-
terval arithmetic is used to guarantee that small parts of the
surface seen through the pixel are not missed. The set of rays
that cover an area of the pixel are treated as a unique beam.
The information obtained from the beam (instead of indepen-
dent rays) is evaluated to determine whether the area covered

2

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM) 
First Special Issue on “Computer Graphics and Geometric Modeling” (2008) 
Selected Papers from CGGM’2007 Workshop 



by the rays presents much variation over the surface. In that
case, the pixel is subdivided and the process continues until
the variation is not visible.

This method does not require bounding boxes to detect
small features as adaptive sampling does. Also, as the com-
plexity of the intersection test is the same as the traditional
interval ray tracing, the method can be easily implemented.

This paper has the following sections. Section 2 describes
the work that other authors have developed to perform guar-
anteed ray tracing processes. Section 3 presents the IAA
algorithm, including a method to trace a beam (instead of
points). The experimentation and results of the algorithm are
presented in section 4.

II. Related Work

The intersection between an implicit function and a ray is
defined with the following equation:

f(t) = f(sx+t(xp−sx), sy+t(yp−sy), sz+t(zp−sz)) = 0

where (sx, sy, sz) is the origin or view point; (xp, yp, zp) is
the point in which the ray crosses the screen, and t indicates
a magnitude in the direction of the ray. If the parameter t
is replaced with an interval T , a set of real values can be
evaluated instead of a unique value of t.

The reliability in the intersection test is then assured in the
following form:

F (T ) = F (sx+T (xp−sx), sy+T (yp−sy), sz+T (zp−sz))
(1)

in which T is an interval parameter that allows evaluation
over interval sections of the ray. This new function is called
inclusion function.

Mitchell [10] proposed a method to find the roots of the
function in two steps. First, the parameter T is subdivided in
intervals [ti, ti+1]. Every interval is evaluated with the inclu-
sion function to find the first interval containing roots. As a
second step, this interval is reduced until an accurate size is
obtained by means of other numerical techniques. Capriani
et al [2] proposed to solve both steps of Mitchell’s algorithm
using interval arithmetic, proving that the execution time is
not increased.

San Juan-Estrada et al [12] used a technique based on a
branch-and-bound algorithm to find the nearest intersection
point. They defined the intersection test as a minimization
problem where

t∗ = min{ t : F (T ) = 0, t ∈ R}

Other methods are intended to improve the efficiency in the
interval ray tracing. For instance, Flórez et al [4] proposed
a technique to perform a fast elimination of screen space re-
gions without intersections between rays and the implicit sur-
face.

Some authors have introduced other techniques, for exam-
ple LG surfaces (based on Lipschitz constants)[9] and sphere
tracing [7]. The downside of these methods is that they re-
quire severe constraints on the surfaces. Also, affine arith-
metic has been used as a replacement of the traditional inter-
val analysis in the intersection test [3].

III. Interval Adaptive Anti Aliasing (IAA)

In this paper, we propose an Adaptive Anti aliasing method
based in Interval Arithmetic (IAA). This method requires
a function to evaluate a beam of rays instead of individual
rays. Using this function, a beam with an infinite number of
rays crossing an area of the pixel can be evaluated to know
if any of them intersects the surface. Knowing the variations
within the whole pixel, the adaptive anti aliasing strategy can
be established.

A. Evaluation of beams

To cover areas of the pixel instead of points, the real values
of x and y of the screen must be considered as interval values
in equation 1. A new inclusion function to take into account
the new interval values can be defined as follows:

F (T ) = F (sx+T (Xp−sx), sy+T (Yp−sy), sz+T (zp−sz))
(2)

To perform the evaluation with equation 2, the intervals
Xp and Yp must be fixed to a range of values inside the pixel.
This means that the inclusion function will include all the
beams that cross the pixel through this area. The evaluation
of the beam is performed in the same way as in classical in-
terval ray tracing. This way, the method guarantees the relia-
bility during the intersection test and also detects all features
of the surface in the evaluated area.

Figure 1 shows the shape of the new inclusion function.
The beam in the figure is a pyramid, like in other beam trac-
ing processes.

Figure. 1: Shape defined by the new inclusion function
F (Xp, Yp, T )

The value of the interval T increases the further the beam
is traversed which means a size increase in X and Y inter-
vals. If the beam does not intersect any part of the implicit
surface, then the result of the evaluation of equation 2 does
not contain zero (0 /∈ F (Xp, Yp, T )). In any other case, it is
possible that one or more rays inside the beam intersects the
surface. In that case, the parameter T must be bisected until
the machine precision is achieved.

During the subdivision process, the range of values of the
intersection points for the beam must be calculated. To do
this, the values of T near the intersection of the beam are
saved. When 0 ∈ F (Xp, Yp, T ) the minimum and maximum
values of the current interval T are evaluated with the inclu-
sion function. If F (Xp, Yp, T.Inf) > 0, the minimum value
of T is saved in a vector. If F (Xp, Yp, T.Sup) < 0, the max-
imum value is saved in another vector. After that, the smaller
of the positive points and the bigger of the negatives are taken
to create the interval of the final value of T .

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM) 
First Special Issue on “Computer Graphics and Geometric Modeling” (2008) 
Selected Papers from CGGM’2007 Workshop 



Function EvalRaySet(Xp, Yp, T )
add T to List
While List has elements

T=First element of List
If width(T ) reach machine precision then Exit While
If 0 ∈ F (Xp, Yp, T )

If F (Xp, Yp, T.Inf) > 0 add T.Inf to ListInf
If F (Xp, Yp, T.Sup) < 0 add T.Sup to ListSup
Bisect T in T1 and T2
Add T1 and T2 to List

End if
Remove T from List

End While
If List has elements

Inf = smaller value of ListInf
Sup = bigger value of ListSup
return Interval(Inf,Sup)

else return EmptyInterval

Figure. 2: Algorithm for the intersection of the set of rays
with the surface

The algorithm to perform the intersection test using a
beam is presented in figure 2.

Figure 3 shows the result of the evaluation of the
EvalRaySet algorithm. If a part of the surface (even a small
part) is inside the pyramid (Figure 3a), or crosses the evalu-
ated area (Figure 3b), that part will never be missed. The
same occurs when the beam is completely covered by the
surface (Figure 3c). The result of the test is false only if the
beam completely misses the surface (Figure 3d)

Figure. 3: Different situations encountered during the evalu-
ation of the algorithm EvalRaySet

B. Adaptive Anti Aliasing

The IAA algorithm is performed by means of a subdivision
process over the pixel. At the beginning of the process, the
whole area of the pixel is evaluated to determine if the surface
covers the pixel, at least in part. This occurs when the func-
tion EvalRaySet returns non empty intervals. An empty in-
terval indicates that the pixel does not have rays intersecting
the surface.

The estimator we use to know the variations of the surface
is the dot product between the view rays and the surface nor-
mals (Section 3.3 explains how to calculate the interval esti-
mator). Although other estimators could be used, we chose
this one because it is simple to implement and gives enough

information about the variations of the curvature of the sur-
face to detect regions with potential aliasing. If the width of
the interval dot product between the set of rays and the nor-
mals is bigger than a predefined threshold, or if zero is not
contained in the derivative of the equation for the for current
value of T (0 /∈ F ′(P.X, P.Y, T )), the pixel is subdivided in
four sections or sub pixels. After this, a set of rays is traced
for every sub pixel and the process starts in every new area.
When the estimator in a sub pixel is equal or less than the
threshold, the average of the normals is used to calculate the
Phong shading of the sub pixel. Also, the subdivision process
continues until the area of the sub pixel is less or equal than
another threshold. This threshold determines the number of
samples allowed per pixel. In the examples of section 4, the
maximum threshold allowed is 1/16 of the initial area of the
pixel.

Finally, the pixel is shaded using the average of the areas
and the shading values of every sub pixel. The IAA algo-
rithm is presented in figure 4.

Function IAA(Pixel)
add Pixel to PList
T=(0,∞)
While PList has elements

P=First element of List
delete P from PList
TR = EvalRaySet(P.X, P.Y, T )
If Not empty TR

If P <= area threshold
calculate Phong shading for P
add shade value to ShadeList

Else
calculate estimator for P using TR
If accomplish conditions for estimator

calculate Phong shading for P
add shade value to ShadeList

Else
Subdivide Pixel in P1, P2, P3, P4
Add P1, P2, P3, P4 to PList

End if
End if

Else
shade P with background color
add shade value to ShadeList

End if
End While
Average shade values of ShadeList
(proportional to the areas) and assign it to Pixel

Figure. 4: Adaptive Anti Aliasing Algorithm based on Inter-
val Arithmetic

Figure 5 shows the advantage of IAA over an adaptive anti
aliasing method based on point sampling. When point sam-
pling is used (Figure 5a), nothing is known about variations
of the surface between neighboring rays. Using IAA (Figure
5b), the details inside the whole pixel are taken into account.
In this case, the beam is subdivided because the surface has
too much variation in the area covered by the beam. If in the
new set of beams, the smaller and the bigger values of the
estimators are too different, those beams must be subdivided

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM) 
First Special Issue on “Computer Graphics and Geometric Modeling” (2008) 
Selected Papers from CGGM’2007 Workshop 



again.

Figure. 5: Estimator using point sampling and IAA

The IAA algorithm can visualize features impossible to
detect with ray tracing using point sampling. This is the case
with the Teardrop surface (Figure 6). Even using a robust
polygonal approximation of this surface, it is not possible
to render the thin feature that joins the drop with the main
body [11]. A Chub’s surface (Figure 7) has many sections
connected in just a few pixels which are correctly rendered
using IAA algorithm.

Figure. 6: A Teardrop surface rendered using Anti aliasing
based in point sampling and Interval Arithmetic (top). The
surface is generated in 26 minutes. Using IAA (bottom),
the detail of the drop connecting to the main body is better
visualized. The IAA version takes 17 minutes.

C. Calculation of the interval estimator

If a pixel covers part of the surface, the values of T corre-
sponding to the intersecting rays are returned by the algo-

Figure. 7: A Chub’s surface was generated using adaptive
Anti aliasing and Interval Arithmetic in 19 minutes (top left
and right). IAA takes 14 minutes (bottom left and right).

rithm described in figure 4. Those values are used to calcu-
late the interval values of X , Y and Z, corresponding to the
set of all the possible intersections of the beam.

To calculate the interval normal, the interval version
of the derivative of the function f ′(x, y, z) can be used:
F ′(X, Y, Z). Also, an interval version of the dot product
can be used, in which the real values are replaced by their
corresponding interval variables. Given two interval vectors
A and B, the interval dot product is A.X ∗ B.X + A.Y ∗
B.Y + A.Z ∗ B.Z. This interval operation can be used to
calculate the dot product between the interval normals and
the beams.

IV. Experimentation and results

The IAA method was tested on the surfaces presented in
figure 8. The comparisons have been performed against an
adaptive anti aliasing algorithm based on point sampling (us-
ing a guaranteed algorithm based on interval arithmetic for
the intersection test). Both techniques were applied to the
classical interval ray tracing algorithm based on a branch-
and-bound strategy. All the examples were generated using
a resolution of 500x500 pixels. The hardware used to test
the surfaces was a Pentium 4 (2.6) with 1 Gb. of memory
RAM. The algorithms were programmed in Borland C++
6.0, using a graphic library created in that language to test the
examples presented in this paper. The interval library used
was ivalDb. This library was developed by the MiceLab
group at Girona University, an it is currently used in many
tasks related to guaranteed algorithms for structures, control
and medicine.

Figure 8 (a and b) shows a Twist with shadows. Fine de-
tails of the shadow are not well visualized using point sam-
pling (a). Using IAA, those details are better visualized (b).
Problems in the visualization of the point sampling exam-
ple occur because shadow rays miss the thin details of the
Twist. The visualization of figure 8a takes 27 minutes; fig-
ure 8b takes 20 minutes. The time difference is due to the
fact that IAA detects pixels without much variations inside,

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM) 
First Special Issue on “Computer Graphics and Geometric Modeling” (2008) 
Selected Papers from CGGM’2007 Workshop 



using one single intersection test. In the point sampling test,
at least four rays are traced for every pixel. Figure 8c shows
an example of a blobby surface visualized with the IAA al-
gorithm in 15 minutes. Figure 8d represents the Tri-trumpet.
Details of that surface are presented in figure 8e for adaptive
point sampling and figure 8f for IAA. Using our method,
the borders look better and the image is created in 8 min-
utes. Using point sampling, the sections appear separated
although interval arithmetic is used for the intersection tests.
Using point sampling, the algorithms takes 7 minutes.

V. Conclusions

In this paper we have presented a guaranteed adaptive anti
aliasing method (IAA) for the interval ray tracing of im-
plicit surfaces. It can be adapted from a traditional algo-
rithm for ray tracing implicit surfaces, without increasing
the complexity of the intersection tests. Also, the proposed
technique generates better visualization results than meth-
ods based in point sampling, specially for surfaces with thin
features. IAA is completely based on interval arithmetic,
which guarantees the reliability of the algorithm. Although
the IAA algorithm improves the computation time in some
cases (as is shown in the presented examples), it is possi-
ble that the times obtained would be equal or higher than a
guaranteed algorithm based on point sampling and Interval
Arithmetic that renders the same surface. However, the lat-
ter situation never occurred in the examples presented in this
paper.

IAA uses Interval Arithmetic, so the ray tracing algo-
rithms based on floating points can improve the computa-
tional time of the rendering of implicit surfaces, but the im-
provement in the quality of the images generated using IAA
over the same images generated using point sampling is clear.
IAA is intended to be used in those cases in which the qual-
ity of the image is preferred over efficient times.

As future work, we are planning to apply our method to
reflections and refractions. In this paper, view and shadow
rays are used for visualization of the surfaces.

Acknowledgements

This work has been partially funded by the Euro-
pean Regional Development Fund and the Spanish Gov-
ernment (Ministerio de Ciencia y Tecnologı́a) through
the co-ordinated research projects DPI2004-07167-C02-02,
DPI2005-08668-C03-02, TIN2004-07451-C03-01, and TIN-
2007-68066-C04-01 and by the government of Catalonia
through SGR00296.

References

[1] J. Amanatides. Ray tracing with cones. Computer
Graphics, 18(3):129–135, 1984.

[2] O. Capriani, L. Hvidegaard, M. Mortensen, and
T. Schneider. Robust and efficient ray intersection
of implicit surfaces. Reliable Computing, 1(6):9–21,
2000.

[3] A. de Cusatis, L. de Figueredo, and M. Gatas. Inter-
val methods for ray casting implicit surfaces with affine
arithmetic. Proceedings of SIBGRAPH, 1999.

[4] J. Flórez, Mateu Sbert, Miguel A. Sainz, and Josep
Vehı́. Improving the interval ray tracing of implicit sur-
faces. Lecture Notes in Computer Science, 4035:655–
664, 2006.

[5] J. Flórez, Mateu Sbert, Miguel A. Sainz, and Josep
Vehı́. Guaranteed adaptive antialiasing using interval
arithmetic. Lecture Notes in Computer Science, 4488,
2007.

[6] J. Genetti and D. Gordon. Ray tracing with adaptive su-
persampling in object space. Graphics Interface, pages
70–77, 1993.

[7] John Hart. Sphere tracing: Simple robust antialiased
rendering of distance based implicit surfaces. Model-
ing, visualizing and Animating implicit surfaces. SIG-
GRAPH’93 Course Notes, 1993.

[8] P. Heckbert and P. Hanrahan. Beam tracing polygonal
objects. Computer Graphics, 18(3):119–127, 1984.

[9] D. Kalra and A. Barr. Guaranteed ray intersection with
implicit surfaces. Computer Graphics (Siggraph pro-
ceedings), 23:297–206, 1989.

[10] Don Mitchell. Robust ray intersection with interval
arithmetic. Proceedings on Graphics interface ’90,
pages 68–74, 1990.

[11] A. Paiva, H. Lopez, T. Lewiner, and L.H. de Figueredo.
Robust adaptive meshes for implicit surfaces. Com-
puter Graphics and Image Processing, SIBGRAPH,
2006.

[12] J.F. Sanjuan-Estrada, L.G. Casado, and I. Garcı́a. Reli-
able algorithms for ray intersection in computer graph-
ics based on interval arithmetic. XVI Brazilian Sym-
posium on Computer Graphics and Image Processing,
pages 35–44, 2003.

[13] T. Whitted. An improved illumination model for shaded
display. Communications of the ACM, 23(6):343–349,
1980.

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM) 
First Special Issue on “Computer Graphics and Geometric Modeling” (2008) 
Selected Papers from CGGM’2007 Workshop 



Figure. 8: Experimentation images. An image with thin features is not correctly rendered using point sampling (a).Using
IAA the result is better (b). The method can be used for general surfaces, like a set of blended spheres (c). Also, a surface
with critical points like the Tri-trumpet (d) is not correctly rendering using point sampling (e), but the critical points are
detected using IAA (f).

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM) 
First Special Issue on “Computer Graphics and Geometric Modeling” (2008) 
Selected Papers from CGGM’2007 Workshop 




