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Abstract- It is well-known that the truthfulness
of some theorems in plane geometry depends
on the base field considered. We shall show
a simple example of geometric theorem, whose
corresponding geometric configuration is rule-
and-compass constructible in the real case, that
is always true in the real case and that is “al-
most always” false in the complex case (more
precisely, it is true only in a non-degenerated
algebraic variety). We believe this is an eye-
catching example illustrating how the results
from explorations carried out with a Dynamic
Geometry System or from computations carried
out using a Computer Algebra System should
be carefully analyzed.

1 Introduction

Let us begin with two elementary introductory exam-
ples of algebraic systems that illustrate how different
the real and complex solutions of a geometric problem
can be (this section can be skipped by any reader with
notions of elementary analytic geometry).

Example 1: Let su consider the following algebraic
system in Rz, y]:

2 +y?—-1=0
2 +y?—4=0

If we plot the zeroes of the two equations, that is, the
so called algebraic variety of the ideal generated by the
polynomials in the left hand side of the equations, two
concentric circumferences are obtained (see Figure 1).
Obviously, the two circumferences do not intersect, so
the system has no real solution (i.e., no solution in R?).

The example is simple and it can be easily solved by

hand: ) )
2 4+y*—-1=0
w2+y2—420}:>
=@+’ -1) -2+ -4 =0=>3=0

so the system has no complex solutions either (i.e., it
has no solutions if the polynomials are considered in
Clz,y] and we look for solutions in C?).

Example 2: If we consider the algebraic system in
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Figure 1: The algebraic system corresponding to Ex-
ample 1 has neither real nor complex solutions

Figure 2: The algebraic system corresponding to Ex-
ample 2 has no real solutions but has complex solutions
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R[z, y]:

2+ (y+2)?2-12=0

and we plot the zeroes of the two equations, two sym-
metric circles are obtained (Figure 2). Obviously, they
do not intersect, so the system has no real solutions.

{x2+(y—2)2—12:0

Figure 3: Trying to find a counterexample of MacLane
83 Theorem with the DGS GSP

But if we try to solve this system by hand:

2?2+ (y—-22-12=0 _
2+ (y+2)?2-12=0

=@+ y+2° -1 - (" + (-2 -1")=0=
> W+2)°-(y-2°=0=>4y=0=y=0

and substituting this value in any of the two equations:
2’ +4-1=0=>z=%V31

It is straightforward to check that this two candidates
are both solutions, so the system has two complex so-
lutions: (+v/3-1,0).

2 MacLane 8; Theorem

It is well-known that the truthfulness of some theorems
in plane geometry depends on the base field considered.
A well known tricky one is MacLane 83 Theorem [1].
It is extensively treated in excellent papers regarding
automated theorem proving like [2, 3, 4, 5].
For instance in [3] it is enunciated as follows.

MacLane 83 Theorem: Consider eight points
A,B,....,H such that the following eight triples are
collinear ABD, BCE, CDF, DEG, EFH, FGA,
GHB, HAC. Then all eight points lie on a line. (All
points A,B, ....H are supposed to be different from each
other.)

But, is this theorem true or false?

2.1 Exploring MacLane 8; with a Classic Dy-
namic Geometry System

A first attempt to try to show that MacLane 83 The-
orem is false could be to try to find a configuration
where the eight points were not aligned using a classic
Dynamic Geometry System (DGS) like The Geometer’s
Sketchpad (GSP).

Nevertheless, all attempts with GSP fail. For in-
stance, in Figure 3, only that H should lie on AC
(the thick line) is missing. The dynamic exploration of
the construction is very curious: H can get closer and
closer to BC but, depending on which element we are
dragging, either the movement of H suddenly changes
its direction and H moves away from BC, or the eight
lines collapse into a single one.

Figure 4: If the hypothesis condition that the 8 initial
points are different from each other is excluded, then
the thesis of MacLane 83 Theorem doesn’t hold

If it was allowed that some of the initial points co-
incided, then it would be possible to find eight points
verifying the alignment conditions. Two such configu-
rations can be found in Figure 4 (two pairs of points
coincide) and in Figure 5 (three pairs of points coin-
cide).

2.2 Exploring MacLane 83 with the DGS Geom-
etry Fxpressions

Geometry Expressions (GE) [6] is a recently released
innovative DGS, that includes a small Computer Alge-
bra System (CAS) and can communicate in a bidirec-
tional way (using MathML) with the CAS Maple and
Mathematica. Observe that the existing attempts to
connect DGS with existing CAS, like GDI [7, 8, 9],
GEOTHER [10], paramGeo [11]... are only able to ex-
port information from the DGS to the external CAS
(Geometry Expert [12, 13] follows another philosophy,
as it includes a built-in CAS).

Using GE, the same step as with GSP can be
reached: only H € AC is missing (see Figure 6). As
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GE is a constraint-based DGS, we can then try to im-
pose H € AC using Constrain (Input)/Incident, but an
unsolvable Constraint Conflict is obtained (see Figure
7).

Figure 5: Another configuration where the hypothesis
condition that the 8 initial points are different from
each other is excluded and the thesis of MacLane 83
Theorem doesn’t hold

Figure 8: Configuration of Theorem 1in R?> when k = 1

2.3 When Does MacLane 83 Theorem Hold?

As said above, this theorem is studied in detail, e.g.,
in [2, 3, 4, 5]. But how to rate its truthfulness is a
controversial issue:

e in [3] it is said

“It holds in the real plane but fails
in the complex one.”

e in [5] it is treated in Example 4, that finishes
saying

“... give a non-degenerated com-

plex zero of Cyg, under which the eight
points are not collinear. So the theo-
rem is not true over the field of complex
numbers.”

(in fact the non-degenerate complex zero of Cig
is explicitly given)
e in [4], they claim

“.. which implies [18] that the
theorem holds over all components of
the hypothesis variety where these vari-
ables (of number equal to the dimen-
sion of the variety) remain indepen-

Figure 6: Dynamically trying to find a counterexample denF; thislfact (for some of us) supports
of MacLane 83 Theorem with the DGS GE calling this a generally true theorem”

Remarkably, the authors of [4] treat the prob-
lem using the new generation DGS GDI, that is
able to communicate with the CAS CoCoA and
Mathematica in order to perform algebraic com-
putations.

Meanwhile,
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Resolve Constraint Conflict E\

The new incdence constraint tries to move items that are
already fixed by ather constraints.

() Discard the incidence

(&) Relax other constraints so the incidence can be added
Click o the constraints to be relaxed

[ confiicting Constraints: 23

[ constraints Relaxed: 0

[ The incidence waiting to be added

Figure 7: Trying to find a counterexample of MacLane 83 Theorem with GE by imposing a membership constraint

e in [2] is considered “A Weird Example”; and, in-
terestingly, their conclusion is

“The  theorem  stating that
Py, ..., Py are collinear is true on
the reals. (...) The theorem is intu-
itively false on the complex field, since
the component Hg cannot be consid-
ered “degenerate”. But if we adhere to
our definition of (algebraic) truth, the
theorem should be considered true; an
example of an obviously false theorem
that is true.”

Essentially, they all reach the same conclusions, but
the definition used of a “true” or “generally true” the-
orem is different (in the latter cases, the dimensions of
the components of the varieties are analyzed, and, that
the theorem holds in the highest dimension variety, is
found).

The definition of “a generally true theorem” more
commonly used is probably that in [14] (pages 48-49).
A detailed definition of “algebraically true statement”
can be found in [15] (Section 2). A specific discussion
about grading the “truth of geometry theorems” can
be found in [16].

3 A Curious Theorem

Now we wonder if it would be possible to find a simple
theorem that verified the following assertions:
e it is rule-and-compass constructible in the real
case,

e it is always true in the real case,

e it is “almost always” false in the complex case

(it is true only in a non-degenerated algebraic
variety).

The answer to the previous question is “yes”, and we

have found a simple example: Theorem 1 verifies all

these conditions, as will be shown below.

Theorem 1: Let K = (k,0) be a point on the z axis.
Let ¢; and ¢y be two circumferences, both of them of
radius k? + 1, and of centers M; = (0,2 - (k* + 1)) and
My = (0,—-2 - (k* 4+ 1)), respectively. Then, for any
value of k, the two circumferences ¢; and cs are either
disjoint or do coincide.

Remark 1: According to the way Theorem 1 is stated,
if it is considered as a theorem in R?, then k € R.

Remark 2: If Theorem 1 is considered as a theorem in
R?, then the two circumferences are symmetrical w.r.t.
the x axis.

Remark 3: The equations of the two circumferences
described in Theorem 1 are:

{w2+(y—2-(k2+1))2—(k2+1)2=0
2+ y+2-(+1))7 - (B +1)>=0

(we shall precise in each case if they will be considered
as polynomials in Rz, y, k] or in Clz,y, k]).

Example 3: (in R?) If k = 1, the circumferences c;
and ¢y have radius 2 and centers (4,0) and (—4,0),
respectively (see Figure 8), so they share no real points.
Therefore, Theorem 1 holds in the reals at least when
kE=1.
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Figure 9: Configuration of Theorem 1 in R? when k = 1

3.1 The Configuration of Theorem 1 is Rule-
and-Compass Constructive in R?

A rule-and-compass constructive version (in R?) of the
configuration of Theorem 1 could be (see Figure 9):

e let U be a point on the z* half-axis, such that
OU is the unit segment,

e let K be a point on the z1 half-axis, such that
length(OK) = k,

e draw a circumference of center O passing through
K

e let B be another point on this circumference,

)

e draw a parallel to U B through K and do intersect
it with line OB,

e denote this intersection point by A; as trian-
gles AOUB and AOK A are in Thales position,
length(OA) = k2,

e draw a circumference of center A and radius OU,

e intersect this circumference with line OA and de-
note by @ the further intersection point (from O);
this way length(0Q) = length(OA)+1 = k* +1,

e draw a circumference of center () passing through
0,

e denote by P the intersection point of this circum-
ference and line O@) that is not point O; this way

length(OP) = 2 - (k? + 1),
e draw points M; and M> on the y axes so that
their distances to O are equal to length(OP),

e denote bLC1 and ¢y the circumferences of radius
length(OQ) and centres M7 and My, respectively.

3.2 Dynamically Exploring Theorem 1 in R?

We can intuitively treat the real case. Some DGS like
GSP allow to produce animations and to make objects
leave traces. Let us return to the construction of Fig-
ure 9. If we choose that ¢; and ¢» “leave trace” and we
animate point K on the z+ half-axis, Figure 10 is ob-
tained. As the two shaded areas corresponding to the
“traces” of ¢; and ¢y are disjoint, we experimentally
confirm that the two circumferences never intersect in
the real case.

3.3 Truthfulness of Theorem 1 in the Real Case

We can prove Theorem 1 in R? just using synthetic
techniques:
i) According to Remark 1, as we are stating Theo-
rem 1 in R?, k is necessarily a real number and
consequently k% +1 > 1.

ii) The loci described in Theorem 1 are two circum-
ferences of equal radii in R?> (as shown in Fig-
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Figure 10: Animating the construction with GSP

ure 8). The distance between their centers is
four times their radii, and their radii are equal
to k2 + 1. As shown in i), ¥ +1 > 1, so the
two circumferences are always disjoint, and con-
sequently Theorem 1 holds in R2.

3.4 Truthfulness of Theorem 1 in the Complex
Case

Le us consider Theorem 1 in C?. According to its enun-
ciate, now k£ € C. The loci considered are again:

{w2+(y—2-(k2+1))2—(k2+1)2=0
2+ (y+2-(*+1)° - (K +1)°=0

Subtracting the first equation from the second one, we
obtain:

(y+2-(K*+1))> = (y—2-(K*+1))> =0 = 8-y-(K*+1) =0

There are two possibilities:

a) If k241 =0 & k = +1 we have that ¢; = ¢5 and
that both circumferences have degenerated into
the pair of lines:

V+2l=0cy==+Il =2

so they would have infinite points in common.
Therefore, Theorem 1 would be true.

b) If k2 +1 # 0 & k # £I, then the intersection
must verify y = 0. For this value of y, we have
that the system

{x2+(—2-(k2+1))2—(k2+1)2:0
2+ (2-(k*+1)2—(k*+1)2=0

is equivalent to the equation
P+ (=2- K+ - +1)1=0s
s +3-(KP+1) =0s
sr=+V3-(K®+1)-1

Consequently, for each value of k, except if k =
+1, there are two different common points to the
two circumferences:

(V3-(k*+1)-1,0) , (=V3-(k*+1)-1,0)

(i.e., if k # 1 then Theorem 1 is false).
Therefore, Theorem 1 is “almost always” false in the
complex case.
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5 Conclusions

DGS and CAS are fruitful tools. But deducing re-
sults in plane geometry from DGS explorations or from
blindly applying computer algebra techniques can lead
to wrong conclusions. The key problem is that:

e we draw in R2,

e explore with a DGS in R?,

e intuitively think in R?,

e perform the effective computations in C2,

e think of generalizations in CZ,
meanwhile the truthfulness of many theorems strongly
depend on the base field considered.

As shown in the Introduction, it is very easy to find
results that have solution or solutions if the base field
considered is C* but do not have a solution in R2.

What we have done here is different: we have pre-
sented a simple theorem (Theorem 1), which truthful-
ness discussion is very similar to that of MacLane 83
Theorem, but that is not a configuration theorem but
a theorem which corresponding configuration is con-
structible.

That Theorem 1 is constructible makes an impor-
tant difference. For instance, from the dynamic explo-
ration point of view:

e in MacLane 83 Theorem the dynamic exploration
cannot provide a certainty (only a guess) of the
falseness of the theorem in R? because we cannot
be sure that we have tried all possible allowed
configurations of the eight points,

e in Theorem 1 the dynamic exploration provides
a certainty of its falseness in R?, as the theorem
is constructive and only k£ can be changed.
Summarizing, the truthfulness of a geometric theo-
rem may depend on the base field and has to be care-
fully analyzed even in simple looking constructive the-
orems.
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