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Abstract- In this paper, a physically based modelling
method for point-sampled surface is proposed based on
mass-spring system. First, a Delaunay based simplifica-
tion algorithm is applied to the original point-sampled
surface to produce the simplified point-sampled surface.
Then the mass-spring system for the simplified point-
sampled surface is constructed by using tangent planes
to address the lack of connectivity information. Fi-
nally, the deformed point-sampled surface is obtained
by transferring the deformation of the simplified point-
sampled surface. Experiments on both open and closed
point-sampled surfaces illustrate the validity of the pro-
posed method.

1 Introduction

Point based techniques have gained increasing attention in
computer graphics. The main reason for this is that the
rapid development of 3D scanning devices has facilitated
the acquisition of the point-sampled geometry. Since point-
sampled objects do neither have to store nor to maintain
globally consistent topological information, they are more
flexible compared to triangle meshes for handling highly
complex or dynamically changing shapes. Since the pio-
neering report by Levoy and Whitted [11], much work has
been focused on both point based rendering[10, 20, 26] and
point based modeling [1, 4, 10, 15, 17, 25]. However, physi-
cally based modeling of point-sampled objects is still a chal-
lenging area.

Physically based modeling has been investigated exten-
sively in the past two decades. Due to the simplicity and
efficiency, mass-spring systems have been widely used to
model soft objects in computer graphics, such as cloth sim-
ulation. We introduce mass-spring system to point-sampled
surface simulation. A Delaunay based simplification algo-
rithm is applied to the original point-sampled surface to
produce the simplified point-sampled surface. Due to the
lack of connectivity information, mass-spring system can
not be applied to point-sampled surface directly. By us-
ing the tangent plane and projection, mass-spring system is
constructed locally for the simplified point-sampled surface.
Then the deformed point-sampled surface is obtained by
transferring the deformation of the simplified point-sampled
surface. The idea of the present method is similar to [17].
They studied curve deformation, while we focus on point-
sampled surface simulation. The overview of our method is
shown as Figure 1.

The remaining of the paper is organized as follows. Re-
lated work is introduced in Section 2. Section 3 explains

the Delaunay based simplification algorithm. Section 4 de-
scribes the simulation of the simplified point-sampled sur-
faced based on mass-spring system. Section 5 introduces
the displacement transference to the original point-sampled
surface. Some experiments results are shown in Section 6.
A brief discussion and conclusion is presented in Section 7.

2 Related Work

Point sampled surface representation is the foundation of
point based modeling. Purely point-based representations
need mush points to describe an object since the approxi-
mation power of piecewise constant representation is linear.
Pfister et al [25, 18, 26]proposed the surfels as surface ele-
ments to store the position, normal, color, size and others.
Surfels help to bridge the gap between neighboring point
samples, just as in the Pointshop3D system[25]. When large
deformation happens, discrete presentations may generate
gaps between point samples. The now standard MLS (Mov-
ing least squares) surfaces [1] provide a continuous surface
approximating the given unstructured point cloud. A MLS
surface is defined as the stationary set of a projection op-
erator. Later Fleishman et al [4] proposed a robust moving
least-squares fitting with sharp features for reconstructing
a piecewise smooth surface from a potentially noisy point
clouds. The displacement transference in our method is in-
spired by the moving least squares projection.

Point-sampled surfaces often consist of thousands or
even millions of points sampled from an underlying surface.
Reducing the complexity of such data is one of the key pro-
cessing techniques. Alexa et al [1] described the contribu-
tion value of a point by estimating its distance to the MLS
surface defined by the other sample points, and the point
with the smallest contribution will be removed repeatedly.
Pauly et al [16] extended mesh simplification algorithms
to point clouds, and presented the clustering, iterative, and
particle simulation simplification algorithms. Moenning et
al [14] devised a coarse-to-fine uniform or feature-sensitive
simplification algorithm with user-controlled density guar-
antee. We present a projection based simplification algo-
rithm, which is more suitable for the construction of mass-
spring system.

Point based surface editing and deformation are pop-
ular fields in point based graphics. Pauly et al [17] in-
troduced Boolean operations and free-form deformation of
point-sampled geometry. Miao et al [12] proposed a detail-
preserving local editing method for point-sampled geometry
based on the combination of the normal geometric details
and the position geometric details. Xiao et al [23, 24] pre-
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Figure 1: The overview of the present method

sented efficient filtering and morphing methods for point-
sampled geometry. Since the pioneering work of Terzopou-
los and his co-workers [22], significant research effort has
been done in the area of physically based modeling for
meshes [5, 19]. Recently, Müller et al [15] presented point
based animation of elastic, plastic and melting objects based
on continuum mechanics. Clarenz et al [3] proposed frame-
work for processing point-based surfaces via PDEs. Re-
cently, Guo and Qin et al [2, 7, 8, 9] proposed the frame-
work(named P-MASS) of physically based morphing, ani-
mation and simulation system. Mass-spring model is one of
the most simplest physically-based methods. In the mass-
spring system, an object is modelled as a collection of point
masses connected by springs in a lattice structure, spring
forces and external forces, such as gravity or user applied
force, are considered for each single mass point. Since the
lack of explicit connectivity information, mass-spring sys-
tem model for point sampled surface is not a direct exten-
sion. Guo et al [6] presented a special mass-spring system
for point sampled surface. In this method, the surface is
represented as the zero level set of a scalar function, and the
springs is for the scalar function not for the spatial position
of the points. The deformation of the point sampled surface
is achieved by changing the magnitude of the scalar function
through the special mass-spring simulation. In this paper,
mass-spring system is constructed directly for the simpli-
fied point-sampled surface. The idea of the present method
is similar to [21]. They studied curve deformation, while
we focus on point-sampled surface simulation.

3 Simplification of Point-Sampled Surface

The point-sampled surface consists of n points P = {pi ∈
R3, i = 1, . . . , n} sampled from an underlying surface, ei-
ther open or closed. Since the normal at any point can be
estimated by the eigenvector of the covariance matrix that
corresponds to the smallest eigen value [16], without loss
of generality, we can assume that the normal ni at point
pi is known as input. Traditional simplification algorithms
reserve more sample points in regions of high-frequency,
whereas less sample points are used to express the regions of
low-frequency, which is called adaptivity. However, adap-
tivity does not necessary bring good results for simulation.
An example is shown in Figure 2, 2a) shows the sine curve
and the simplified curve, force F is applied on the middle
of the simplified curve, 2b) shows that the simulation based
on the simplified curve produce the wrong deformation. We
present a Delaunay based simplification algorithm, which is
suitable for simulation and convenient for the construction
of mass-spring system.

For pi ∈ P , the index set of its k-nearest points is de-
noted by Nk

i = {i1, . . . , ik}. These points are projected
onto the tangent plane at point pi (the plane passing through
pi with normal ni), and the corresponding projection points
are denoted by qj

i , j = 1, . . . , k. 2D Delaunay triangulation
is implemented on the k+1 projection points. There are two
possible cases: 1) pi is not on the boundary of the surface,
2) pi is on the boundary of the surface, shown as Figure 3.
Suppose that there are m points {qjr

i , r = 1, . . . , m} which
are connected with pi in the triangle mesh, the union of the
triangles that contain pi is denoted by Ri whose diameter is
di. In both cases, if di is less than the user-defined thresh-
old, pi will be removed. This process is repeated until the
desired number of points is reached or the diameter di for
each point exceeds the threshold. The resulting simplified
point set is denoted by S = {sj , j = 1, . . . , ns}, and sj

is called simulation point. It is important to select a proper
value of k, too small k may influence the quality of simplifi-
cation, while too big k will increase the computational cost.
In our experiments, preferable k is in the interval [10− 20].

4 Simulation Based on Mass-Spring System

4.1 Structure of the Springs

Since no explicit connectivity information is known for the
simplified point-sampled surface, traditional mass-spring
system [19] can not be applied directly. Here the stretch-
ing and bending springs are constructed based on the region
Ri corresponding to si. For si ∈ S, the vertices of the
region Ri are {qjr

i , r = 1, . . . , m}, which are the projec-
tion points of {sjr

i , r = 1, . . . , m}. Assuming that qjr

i are
sorted counter clockwise. The stretching springs link si and
sjr

i and the bending springs connect sjr

i and sjr+2
i (Figure

4). This process is implemented on each point on S, and the
structure of the springs is obtained consequently.

4.2 Estimation of the Mass

The mass of si is needed for simulation. Note that in region
of low sampling density, a simulation point si will repre-
sent large mass, whereas smaller mass in region of higher
sampling density. Since the area of region Ri reflects the
sampling density, the mass of si can be estimated by

mi =
1
3
ρSRi

(1)

where SRi is the area of region Ri, and ρ is the mass density
of the surface.
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a) Sine curve (solid line) and the simplified polyline(solid
line)

b) Deformation of the simplified polyline under an applied
force F

Figure 2: The effect of simplification to the simulation

a) Delaunay triangulation for case 1) b) Delaunay triangulation for case 2)

Figure 3: Delaunay triangulation of the projection points on the tangent plane

4.3 Forces

According to the Hooke’s law, the internal force Fs (Si,j) of
spring Si,j linking two mass points si and sj can be written
as

Fs (Si,j) = −ks
i,j

(
Ii,j − l0i,j

Ii,j

‖Ii,j‖
)

(2)

where ks
i,j is the stiffness of spring Si,j , Ii,j = sj − si, and

l0i,j is the natural length of spring Si,j .
In dynamic simulation, a damping force is often intro-

duced to increase the stability. In our context, the damping
force is represented as

Fd (Si,j) = kd
i,j (vj − vi) (3)

where kd
i,j is the coefficient of damping, vj and vi are the

velocities of sj and si.
Appling external forces to the mass-spring system yields

realistic dynamics. The gravitational force acting on a mass
point si is given by

Fg = mig (4)

where mi is the mass of the mass point si, g is the accelera-
tion of gravity. A force that connects a mass point to a point
in world coordinates r0 is given by

Fr = kr (r0 − si) (5)

where kr is the spring constant. Similar to [22], other types
of external forces, such as the effect of viscous fluid, can be
introduced into our system.

4.4 Simulation

The mass-spring system is governed by Newton’ s Law. For
a mass point si, there exists the equation

Fi = miai = mi
d2xi

dt2
(6)

where mi, xi, and ai are the mass, displacement, accel-
eration of si respectively. A large number of integration

schemes can be used to Eq. (6). Explicit schemes are easy
to implement and computationally cheap, but stable only for
small time steps. In contrast, implicit schemes are uncon-
ditionally stable at the cost of computational and memory
consumption. We use explicit Euler scheme for simplicity
in our system.

5 Deformation of the Original Point-Sampled
Surface

The deformation of the original point-sampled surface can
be obtained by the deformation of the simplified point-
sampled surface. Let us consider the x-component u of
the displacement field u = (u, v, w). Similar to [15],
we compute the displacement of pi through the simulation
points in its neighborhood. While the simulation points
sampled from an underlying surface, it may be singular
due to coplanarity if we use moving least square fitting
to compute the displacement directly. We treat the tan-
gent plane at pi as the reference domain. The simulation
points sj

i , j = 1, . . . , k in the neighborhood of pi are pro-
jected onto the reference plane, with corresponding projec-
tion points qj

i , j = 1, . . . , k, and (x̄j , ȳj) , j = 1, . . . , k are
the coordinates of qj

i , j = 1, . . . , k in the local coordinate
system with origin pi. Let the x-component u is given by

u (x̄, ȳ) = a0 + a1x̄ + a2ȳ (7)

The parameters al, l = 0, 1, 2 can be obtained by minimiz-
ing

Ei =
k∑

j=1

w (rj) (uj − a0 − a1x̄j − a2ȳj)
2 (8)

where rj is the distance between pi and qj
i , w (·) is a Gaus-

sian weighting function w (rj) = exp (−r2
j /h2). Eq. (8)

can be rewritten in matrix form as

Ei = (Pa− uT )W(Pa− u) (9)
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a) Stretching springs for case 1) and 2) b) Bending springs for case 1) and 2)

Figure 4: The spring structures (dashed lines).

where

u =




u1

· · ·
uk


, P =




1 x̄1 ȳ1

· · · · · · · · ·
1 x̄k ȳk




a =




a0

a1

a2


, W =




w(r1) 0 0
· · · · · · · · ·
0 0 w(rk)


.

By minimizing Eq. (9), we have

∂Ei

∂a
= Aa−Bu = 0 (10)

where A = PT WP, B = PT W. Then

a = A−1Bu (11)

The x-component u of the displacement of pi is

ui = u(0, 0) = a0 (12)

Similarly, v and w can be computed. The matrix A, B
can be pre-computed, and used for the computation of v and
w. Since the shape of the point-sampled surface is changed
due to the displacements of the sample points, the normal
of the underlying surface will change consequently. The
normal can be computed by the covariance analysis as men-
tioned above. The point sampling density will be changed
due to the deformation, we use the resampling scheme of
[1] to maintain the surface quality.

6 Experimental Results

We implement the proposed method on a PC with Pentium
IV 2.0GHz CPU and 512MB RAM. Experiments are per-
formed on both closed and open surfaces, shown as Figure 5
and Figure 6. The sphere is downloaded from the website of
PointShop3D and composed of 3203 surfels. For the model-
ing of the hat, the original point-sampled surface is sampled
from the lower part of a sphere, and a stretching force acted
on the middle of the point-sampled surface produce the hat.
We also produce other interesting examples, the sculpting of
a character “B” and the logo “CGGM 07”, which are both
produced by applying force on the point-sampled surfaces
(Figure 7, Figure 8). The simplification and the construc-
tion of mass-spring system can be performed as preprocess,
and the simulation points is much less in the simplified sur-
face than the original point-sampled surface, so the simu-
lation is very efficient. The performance of simulation is
illustrated in Table 1. The main computational cost is the
transference of the displacement from the simplified surface

      
a) b) c) d)

Figure 5: The deformation of a point sampled sphere. a)
The original point-sampled surface. b) The simplified point-
sampled surface. c) Deformation of the simplified point-
sampled surface. d)The deformation of a point sampled
sphere.

Figure 6: The modeling of a hat.

to the original point-sampled surface and the normal com-
putation of the deformed point-sampled surface. Compared
to the global parameterization in [8], the local construction
of mass-spring system makes the simulation more efficient.
The continuum-based method [15] presented the modeling
of volumetric objects, while our method can deal with both
volumetric objects using their boundary surface and sheet
like objects.

Figure 7: The sculpting of character “B”.
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Figure 8: The “CGGM 07” logo

Table 1: The simulation time
Number of simulation points 85 273 338

Simulation time per step (s) 0.13 0.25 0.42

7 Conclusion

As an easy implemented physically based method, mass-
spring systems have been investigated deeply and have been
used widely in computer graphics. However, it can not be
used to point-sampled surfaces due to the lack of connec-
tivity information and the difficulty of constructing mass-
spring system. We solve the problem of the construction
of mass-spring system for point-sampled surface based on
projection and present a novel mass-spring based simula-
tion method for point-sampled surface. A Delaunay based
simplification algorithm facilitates the construction of mass-
spring system and ensures the efficiency of the simulation
method. Further study focuses on the simulation with adap-
tive topology. And the automatic determination of the sim-
plification threshold should be investigated to ensure suit-
able tradeoff between accuracy and efficiency in the future.
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