
Bio-Inspired Metaheuristic Methods for Fitting Points in CAGD

Angel Cobo, Akemi Gálvez, Jaime Puig-Pey, Andrés
Iglesias

Dept. of Applied Mathematics and Computational Sciences
University of Cantabria

E-39005, Santander, Spain
{acobo,galveza,puigpeyj,iglesias}@unican.es

Jesús Espinola
Faculty of Sciences

National University Santiago Antúnez de Mayolo
Huaraz, Peru

espinolj@gmail.com

Abstract- This paper deals with a classical optimization
problem, fitting 3D data points by means of curve and
surface models used in Computer-Aided Geometric De-
sign (CAGD). Our approach is based on the idea of com-
bining traditional techniques, namely best approxima-
tion by least-squares, with Genetic Algorithms (GA) and
Particle Swarm Optimization (PSO), both based on bio-
inspired procedures emerging from the artificial intel-
ligence world. In this work, we focus on fitting points
through free-form parametric curves and surfaces. This
issue plays an important role in real problems such as
construction of car bodies, ship hulls, airplane fuselage,
and other free-form objects. A typical example comes
from reverse engineering where free-form curves and
surfaces are extracted from clouds of data points. The
performance of the proposed methods is analyzed by us-
ing some examples of Bézier curves and surfaces.

1 Introduction

Fitting points is a relevant problem in several areas; it is
a major issue in regression analysis in Statistics [6], usu-
ally fitting an explicit polynomial function in one or sev-
eral variables, plus a random noise term. Best approxima-
tion of points or functions is one of the main topics of Nu-
merical Analysis, and is the source of most of the meth-
ods for performing practical fitting processes by computer
[4, 5]. Most of the common models in Computer-Aided Ge-
ometric Design (CAGD) make use of polynomials [15]. In
CAGD, data usually come from real measurements of an
existing geometric entity. For instance, a typical geometric
problem in Reverse Engineering is the process of convert-
ing dense clouds of data points captured from the surface
of an object into a boundary representation CAGD model
[9, 16, 17, 21, 23]. Models are often parametric representa-
tions of curves and surfaces, and best approximation meth-
ods make commonly use of least-squares techniques.

Genetic algorithms are increasingly used for geomet-
ric problems involving optimization processes with a great
number of unknown variables [20]. The CAD (Computer-
Aided Design) journal devoted a special issue in 2003 to
genetic algorithms [22] and included one paper addressing
data fitting with spline polynomials in explicit form [26]. A
detailed description on genetic algorithms will be given in

Section 3 while Sections 4 to 6 describe its application to
data fitting.

Particle Swarm Optimization (PSO), another popular
metaheuristic technique with biological inspiration, is also
used in CAM (Computer-Aided Manufacturing) for dealing
with optimization of milling processes [10]. The original
PSO algorithm was first reported in 1995 by James Kennedy
and Russell C. Eberhart in [18]. In [8] some developments
are presented. These authors integrate their contributions in
[19]. In general, the PSO techniques have evolved greatly,
from the more intuitive initial idea to more formal con-
vergence analysis within more general optimization frame-
works [24]. In this paper, PSO is described in Section 7
while some examples for Bézier curves and surfaces are dis-
cussed in Section 8.

In this work we address the problem of fitting data points
through parametric models, which are more relevant in
CAGD than the explicit ones. In this case, an additional
and important problem is to obtain a suitable parameteriza-
tion of the data points. As remarked in [1, 2] the selection
of an appropriate parameterization is essential for topology
reconstruction and surface fitness. These parameter values
are also unknowns which introduce nonlinearity in the fit-
ting problem [25]. In this paper, we focus on fitting points
with Bézier curves and surfaces, combining the search of
parameter values by using GA or PSO techniques, with the
least-squares minimization of quadratic errors. Some sim-
ple yet illustrative examples to show the good performance
of the proposed methods are also briefly described.

2 The problem

As a simple explanatory example in simple linear regres-
sion, the process of fitting a set of given data points
{(xi, yi)}i=1,...,np , to a straight line, y = a + bx, by ap-
plying the least-squares technique can readily be done: the
coefficients a and b are the solutions of the linear system
obtained by minimizing the error function, represented by
the sum of squared error distances in the y-direction.

Let us suppose that we are dealing with a 3D parametric

curve C(t) =
nb∑

j=1

PjBj(t), where Pj are vector coeffi-

cients, Bj(t) are the basis functions (or blending functions)
of the parametric curve C(t) and t is the parameter, usually

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM)
First Special Issue on “Computer Graphics and Geometric Modeling” (2008)
Selected Papers from CGGM’2007 Workshop

defined on a finite interval [α, β]. Note that in this paper
vectors are denoted in bold. Now we can compute, for each
of the cartesian components (x, y, z), the minimization of
the sum of squared errors referred to the data points, given
by:

Eγ =
np∑
i=1

γi −
nb∑

j=0

cγ,jBj(ti)

2

; γ = x, y, z (1)

but we need a parameter value ti to be associated with each
data point (xi, yi, zi), i = 1, . . . , np. Coefficients cγ,j ,
j = 0, . . . , nb, have to be determined from the informa-
tion given by the data points (xi, yi, zi), i = 1, . . . , np. We
can see that performing the component-wise minimization
of these errors is equivalent to minimizing the sum, over the
set of data, of the Euclidean distances between data points
and corresponding points given by the model in 3D space.
Note that in addition to the coefficients of the basis func-
tions, cγ,j , parameter values ti corresponding to the data
points also appear as unknowns in (1). Due to the fact that
the blending functions Bj(t) are usually nonlinear in t, the
least-squares minimization of the errors is a strongly non-
linear problem, with a high number of unknowns for large
sets of data points, a case that happens very often in prac-
tice. On the other hand, if values are assigned to the ti,
the problem becomes a classical linear least-squares mini-
mization for each component, with the coefficients cγ,j as
unknowns.

Our strategy for solving the problem in the general case
is a mixed one, combining genetic algorithms (GA) in one
case, or particle swarm optimization (PSO) in the other, to
determine suitable parameter values ti for the data points,
and calculating the best least-squares fitting coefficients cγ,j

and the corresponding error for the set of parameter values
provided by the GA/PSO method. The process is performed
iteratively while the evolution of the parameters does not
stabilize the minimization of the error, using GA or PSO
techniques. As basis functions, we use polynomials Bj(t)
of low degree in order to prevent possible numerical insta-
bilities and over-fitting of the data.

3 Genetic Algorithms

Genetic Algorithms (GA) [13] are search procedures based
on principles of evolution and natural selection. They can
be used in optimization problems where the search of opti-
mal solutions is carried out in a space of coded solutions as
finite-length strings. They were developed by John Holland
at the University of Michigan [14] and are considered as a
particular type of metaheuristic, a group of techniques that,
according to the classification followed in [3], encompasses
trajectory methods such as Tabu Search, Simulated Anneal-
ing or Iterated Local Search, and population-based methods

such as Genetic Algorithms, Particle Swarm Optimization
and Ant Colonies.

Genetic Algorithms handle populations consisting of a
set of potential solutions, i.e. the algorithm maintains a pop-
ulation of n individuals Pop(k) = {x1(k), . . . , xn(k)} for
each iteration k, where each individual represents a poten-
tial solution of the problem. Normally the initial population
is randomly selected, but some knowledge about the spe-
cific problem can be used to include in the initial population
special potential solutions in order to improve the conver-
gence speed. The size of this initial population is one of the
most important aspects to be considered and may be critical
in many applications. If the size is too small, the algorithm
may converge too quickly, and if it is too large the algorithm
may waste computational resources. The population size
is usually chosen to be constant although GA with varying
population size are also possible. A study about the optimal
population size can be found in [12]. Each individual in the
population, i.e. potential solution, must be represented us-
ing a genetic representation. Commonly, a binary represen-
tation is used, however other approaches are possible. Each
one of the potential solutions must be evaluated by means of
a fitness function; the result of this evaluation is a measure
of individual adaptation.

The algorithm is an iterative process in which new popu-
lations are obtained using a selection process (reproduction)
based on individual adaptation and some “genetic” opera-
tors (crossover and mutation). The individuals with the best
adaptation measure have more chance of reproducing and
generating new individuals by crossing and muting. The re-
production operator can be implemented as a biased roulette
wheel with slots weighted in proportion to individual adap-
tation values. The selection process is repeated m times and
the selected individuals form a tentative new population for
further genetic operator actions.

After reproduction some of the members of the new ten-
tative population undergo transformations. A crossover op-
erator creates two new individuals (offsprings) by combin-
ing parts from two randomly selected individuals of the pop-
ulation. In a GA the crossover operator is randomly applied
with a specific probability, pc. A good GA performance re-
quires the choice of a high crossover probability. Mutation
is a unitary transformation which creates, with certain prob-
ability, pm, a new individual by a small change in a single
individual. In this case, a good algorithm performance re-
quires the choice of a low mutation probability (inversely
proportional to the population size). The mutation operator
guarantees that all the search space has a nonzero probabil-
ity of being explored.

In spite of their surprising simplicity, GA have been rec-
ognized as a powerful tool to solve optimization problems
in various fields of applications; examples of such problems
can be found in a great variety of domains such as trans-
portation problems, wire routing, travelling salesman prob-
lem [11, 13, 22].

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM)
First Special Issue on “Computer Graphics and Geometric Modeling” (2008)
Selected Papers from CGGM’2007 Workshop

Parent 1 0.123 0.178 0.274 0.456 0.571 0.701 0.789 0.843 0.921 0.950
Parent 2 0.086 0.167 0.197 0.271 0.367 0.521 0.679 0.781 0.812 0.912

cross point

Offspring 1
0.123 0.178 0.274 0.271 0.367 0.521 0.679 0.781 0.812 0.912

” ” 0.271 0.274 ” ” ” ” ” ”
chromosomes sorting

Offspring 2 0.086 0.167 0.197 0.456 0.571 0.701 0.789 0.843 0.921 0.950

Table 1: Crossover operator of the genetic algorithm

begin
k=0
random initialization of Pop(k)
fitness evaluation of Pop(k)
while (not termination condition) do

Select individuals from Pop(k)
Apply crossover and mutation operator with

probabilities pc and pm respectively
Set Pop(k + 1)
k = k + 1

end
end

Table 2: General structure of the genetic algorithm

4 Using Genetic Algorithms for Data Fitting

In order to use GA for fitting curves/surfaces to data points,
several aspects must be previously considered. Firstly, a
typical GA requires two elements to be defined prior to its
use: the genetic representation of each potential solution of
the problem and a measure of the quality of the solution
(usually referred to as the fitness function). In our problem,
we are interested on the assignment process of parameter
values to data points, so we propose the use of a real-coded
genetic algorithm in which the genetic representation of an
individual will be a real np-dimensional vector, where each
coordinate represents the parameter value assigned to a data
point. The fitness function that allows measuring the quality
of an assignment will be based on the error function of the
fitting process.

As initial population we will consider a randomly gen-
erated set of parameter vectors (individuals). To widen the
search area of the algorithm it is desirable that the popula-
tion size be large; however the computation time increases
as this parameter rises, so a trade-off between both consid-
erations is actually required.

The algorithm uses three genetic operators to obtain new
populations of individuals: selection, crossover and muta-
tion. In our case, the selection operator is implemented as
the classical biased roulette wheel with slots weighted in
proportion to individual fitness values. We use an one-point
crossover operator that randomly selects a crossover point

within an individual, then swaps the two parent chromo-
somes to the left and to the right from this point and even-
tually sorts the obtained vectors to produce two new off-
springs. This process is illustrated in Table 1.

As mutation method we propose to select the position
s with worst fit error in the vector parameter of the solu-
tion and change the value of the selected parameter by the
arithmetic mean of the previous and next parameters in the

vector, that is, ts =
ts−1 + ts+1

2
. Using these genetic oper-

ators, the general structure of the algorithm is described in
Table 2.

The termination condition consists of establishing a
threshold limit for the number of consecutive iterations
without improving the fitting error in the set of geometric
data points.

5 Best Least-Squares Approximation

Let us consider a set of 3D data points Di = (xi, yi, zi), i =
1, . . . , np. We describe the procedure in more detail for the
x’s coordinates (the extension to y’s and z’s is immediate).
The goal is to calculate the coefficients cx

j , j = 0, . . . , nb

of (1) which give the best fit in the discrete least-squares
sense to the column vector X = (x1, . . . , xnp

)T where (.)T

means transposition, by using the model

x(t) =
nb∑

j=0

cx
j Bj(t), (2)

supposing that ti (i = 1, . . . , np) are parameter values as-
signed to the data points and the Bj(t) are the known blend-
ing functions of the model. Considering the column vectors
Bj = (Bj(t1), . . . , Bj(tnp))T , j = 0, . . . , nb and solving
the following system gives the coefficients cx

j :

 BT
0 .B0 . . . BT

nb
.B0

...
...

...
BT

0 .Bnb
. . . BT

nb
.Bnb


 cx

0
...

cx
nb

 =

 XT .B0

...
XT .Bnb


(3)

The elements of the coefficient matrix and the indepen-
dent terms are calculated by performing a standard Eu-
clidean scalar product between finite-dimensional vectors.
This system (3) results from minimizing the sum of squared

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM)
First Special Issue on “Computer Graphics and Geometric Modeling” (2008)
Selected Papers from CGGM’2007 Workshop

−40

−20

0

20

40

−40

−20

0

20

40
0

5

10

15

xy

z

0 10 20 30 40 50 60 70 80
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Number of Generations

Figure 1: Bézier curve fitting through genetic algorithms: (left) Bézier curve, its control points (stars) and the data points
(spheres); (right) evolution of the mean (solid line) and the best (dotted line) Euclidean errors along the generations

errors referred to the xi coordinates of the data points, as
indicated in Section 2. Considering all the xi, yi, zi coordi-
nates, the solution of the three linear systems with the same
coefficient matrix provides the best least-squares approxi-

mation for the curve C(t) =
nb∑

j=0

PjBj(t), where the coef-

ficients Pj = (cx
j , cy

j , cz
j) represent 3D vectors.

For surfaces in parametric form, one uses the struc-

ture S(u, v) =
nu∑
i=0

nv∑
j=0

Pi,jBi(u)Bj(v), which is a tensor-

product surface, a very common model in CAGD. The co-
efficients Pi,j are the control points in 3D, arranged in
a quadrilateral topology, and functions Bi(u) and Bj(v)
are the same basis functions used for representing curves,
for example Bernstein polynomials in this paper. The
parameters u and v are valued on a rectangular domain
[um, uM]× [vm, vM], a Cartesian product of the respective
domains for u and v. If Bi(u) and Bj(v) are Bézier ba-
sis functions, the (nu + 1).(nv + 1) bivariate polynomials
Bi,j(u, v) = Bi(u).Bj(v), i = 0, . . . , nu, j = 0, . . . , nv

constitute a vector basis for a linear vector space of polyno-
mials in u and v on the square domain [0, 1]×[0, 1]. Given a
cloud of points (xl,k, yl,k, zl,k), in 3D, with a quadrilateral
structure, l = 1, . . . , npu , k = 1, . . . , npv , and a set of pa-
rameter values (ul, vk) associated one-to-one with the data
points in the cloud such that these points form a cartesian
set in the parameter domain, a discrete formulation simi-
lar to that for fitting points to a curve can be made. The best
least-squares tensor-product surface fitting the points can be
obtained using the system (3), in which the role of the B’s
is now assumed by the bivariate basis functions Bi,j(u, v)
described earlier.

6 Genetic Algorithm Examples

In this section two examples (a Bézier curve and a Bézier
surface) aimed at showing the performance of the GA
method are discussed.

6.1 Fitting a Bézier curve

As a first example we consider a Bézier curve of de-
gree d whose parametric representation is given by Eq.
(2) where the basis functions of degree d are defined as:

Bd
i (t) =

(
d

i

)
ti (1− t)d−i, i = 0, . . . , d and t ∈ [0, 1].

In this example, we have chosen a set of eigth 3D points
to be fitted to a Bézier curve of degree d = 4. The un-
knowns are 23 scalar values: a vector of 8 parameter values
associated with the 8 data points, plus 15 coefficients (3 for
the coordinates of each of the 5 control points of the curve
of degree 4). The data for the genetic algorithm are set as
follows: we select an initial population of 100 parameter
vectors, each having 8 elements generated randomly from
a Uniform[0, 1] distribution and sorted in increasing order.
Then, we apply the procedure shown in Table 2 to produce
successive generations. In this example, the crossover and
mutation operators are applied with probabilities pc = 0.80
and pm = 0.20, respectively. A typical output for a couple
of parent chromosomes is shown in Table 1, yielding two
new offsprings in the next generation.

Regarding our termination condition, these steps are re-
peated until the results no longer change for 20 succes-
sive iterations. In this example, the optimal fit is attained
at the 76th generation with the following results: the er-
ror in the population (the maximum point error in the best
fitted parameter vector) is 1.8774, while the mean error
in the population is 2.0875. The number of crossovers

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM)
First Special Issue on “Computer Graphics and Geometric Modeling” (2008)
Selected Papers from CGGM’2007 Workshop

iter. Best error Mean error CPU time (secs)
1 73 1.832 2.104 1.1718
2 51 1.858 1.891 0.8281
3 40 1.904 2.116 0.6562
4 50 1.858 2.092 0.8281
5 33 1.870 2.242 0.5625
6 45 1.898 2.086 0.7656
7 64 1.874 2.041 1.0625
8 58 1.844 2.055 0.9531
9 37 1.842 2.017 0.6250
10 59 1.877 2.118 0.9531
11 59 1.986 2.150 0.9531
12 44 1.835 2.064 0.7500
13 56 1.837 2.017 0.9218
14 59 1.850 2.297 0.9531
15 61 1.897 2.085 1.0156
16 42 1.861 2.148 0.7031
17 37 1.968 2.166 0.6093
18 41 1.960 2.071 0.6875
19 56 1.880 2.045 0.9218
20 49 1.882 2.161 0.8281

Table 3: 20 executions of a Bézier curve fitting through ge-
netic algorithms

and mutations for the last generation are 46 and 24, re-
spectively. The optimum parameter vector obtained is
[0, 0.0131, 0.0583, 0.3556, 0.5384, 0.7138, 0.7899, 1]. The
computation time for this example (in Matlab version 7.0,
running on a Pentium IV, 3 GHz and with 1GB RAM) has
been 1.22 seconds.

Fig 1(left) shows the data points (represented as
spheres), the fourth-degree 3D Bézier fitting curve and its
5 control points (represented as stars). Fig 1(right) shows
the evolution of the mean (solid line) and the best (dotted
line) Euclidean errors of the parameter vectors for each gen-
eration along the successive generations. Note that the best
error becomes small very quickly at the beginning, the re-
duction rate getting slower for later generations.

To check how the randomness inherent in GA affects the
results, we performed 20 executions on the previous exam-
ple for a population size of 100 candidate solutions (gen-
erated as vectors of Uniform (0,1) random numbers sorted
in increasing order) and probability values of 0.80 for the
crossover and 0.20 for the mutation. The termination cri-
teria is that of not improving solution after 20 consecutive
iterations.

The obtained results are reported in Table 3. Columns of
this table show the example number, number of iterations,
the best and mean errors and the computation time (in sec-
onds), respectively. For the sake of clarity, the execution
with the best result has been boldfaced. Note that the best
and mean errors take relatively close (although slightly dif-
ferent) values. Note also that the number of iterations of

iter. Best error Mean error CPU time (secs)
1 127 1.271 2.287 17.5156
2 104 2.087 3.055 16.4687
3 80 1.259 2.080 12.9687
4 53 2.282 3.628 8.3750
5 86 1.524 2.337 12.9687
6 58 2.062 2.895 8.8125
7 188 1.623 2.180 27.8593
8 157 1.027 1.723 24.4375
9 160 1.409 1.913 26.0937
10 109 1.190 2.018 17.2656
11 101 1.083 2.028 14.9218
12 108 1.630 2.694 16.1718
13 100 1.238 2.068 14.4687
14 109 1.963 2.984 16.4687
15 150 1.123 1.775 22.3281
16 83 1.214 1.861 12.4843
17 38 1.245 2.763 5.7656
18 78 1.714 2.297 11.9218
19 149 1.457 1.863 21.3750
20 82 1.403 2.457 12.1562

Table 4: 20 executions of a Bézier surface fitting through
genetic algorithms

these examples for our choice of parameters ranges from
37 to 73 leading to computation times of about 0.7 ∼ 1.2
seconds for the configuration described above.

6.2 Fitting a Bézier surface

We consider now a parametric Bézier surface of degree nu

in u and nv in v whose representation is given by:

S(u, v) =
nu∑
i=0

nv∑
j=0

Pi,jB
nu
i (u)Bnv

j (v) (4)

where the basis functions (the Bernstein polynomials) are
defined as above and the coefficients Pi,j are the surface
control points. For this example we consider an input of
256 data points generated from a Bézier surface as follows:
for the u’s and v’s of data points, we choose two groups of
8 equidistant parameter values in the intervals [0, 0.2] and
[0.8, 1]. Our goal is to reconstruct the surface which the
given points come from. To this purpose, we consider a
bicubic Bézier surface, so the unknowns are 3 × 16 = 48
scalar coefficients (3 coordinates for each of 16 control
points) and two parameter vectors for u and v (each of size
16) associated with the 256 data points. That makes a total
of 80 scalar unknowns.

The input parameters for the procedure are as follows:
population size: 200; pc = 0.95; pm = 0.20; termination
criteria =no improvement after 20 consecutive generations.
Initially, we have a population of 200 U-vectors and 200 V-
vectors, each one constructed by assigning random parame-

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM)
First Special Issue on “Computer Graphics and Geometric Modeling” (2008)
Selected Papers from CGGM’2007 Workshop

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

Number of Generations

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

v

Figure 2: Bézier surface fitting through genetic algorithms: (left) bicubic Bézier surface and data points; (right-top):
evolution of the mean (solid line) and the best (dotted line) Euclidean errors along the generations; (right-bottom): optimum
parameter values for u and v on the parametric domain

ter values with Uniform[0, 1] distribution, and sorting them
within each vector. The best solution is attained at gener-
ation 108 with the following results: best error in the fit:
1.1922; mean error: 1.9831; number of crossovers (resp.
mutations) for the last generation: 56 (resp. 31); compu-
tation time (Pentium IV, 3 GHz, 1GB RAM and running
Matlab v7.0): 16.28 seconds.

Fig. 2(left) shows the data points and the bicubic Bézier
fitting surface. In Fig. 2(right-top) we display the evolution
of mean error (solid line) and best (dotted line) distance er-
ror for each generation along the iterations. The optimum
parameter values for u and v are depicted in Fig. 2(right-
bottom) where one can see how the fitting process grasps the
distribution of parameter values assigned to the data points.
It is worthwhile to mention the tendency of the obtained
parameter values, initially uniformly distributed on the unit
square, to concentrate at the corners of such unit square pa-
rameter domain, thus adjusting well the input information.

Similarly to the case of curves, we carried out 20 exe-
cutions on the surface example for a population size of 200

candidate solutions, crossover probability pc = 0.95, mu-
tation probability pm = 0.20 and a limit termination crite-
ria of 20 consecutive iterations with no change. The corre-
sponding results are listed in Table 4 with the same meaning
for the columns as in Table 3.

7 Particle Swarm Optimization

Particle Swarm Optimization (PSO) techniques come from
a model to imitate the behaviour of a flock of birds, for
instance, when moving all together following a common
tendency in their displacements. They incorporate both a
global tendency for the movement of the set of individu-
als and local influences from neighbors [7, 18]. Similarly
to Genetic Algorithms, PSO procedures start by choosing
a population (swarm) of random candidate solutions, called
particles. But they are displaced throughout their domain
looking for an optimum taking into account global and lo-
cal influences, the latest coming form the neighborhood of
each particle.

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM)
First Special Issue on “Computer Graphics and Geometric Modeling” (2008)
Selected Papers from CGGM’2007 Workshop

The dynamics of the particle swarm is considered along
successive iterations, like time instances. Each particle
modifies its position Pi along the iterations, keeping track
of its best position in the variables domain implied in the
problem. This is made by storing for each particle the coor-
dinates P b

i associated with the best solution (fitness) it has
achieved so far along with the corresponding fitness value,
f b

i . These values account for the memory of the best particle
position. In addition, members of a swarm can communi-
cate good positions to each other, so they can adjust their
own position and velocity according to this information. To
this purpose, we also collect the best fitness value among
all the particles in the population, f b

g , and its position P b
g

from the initial iteration. This is a global information for
modifying the position of each particle.

Alternatively, an additional information can be used,
consisting of the best fitness value, lf b

i , and position, lP b
i ,

attained within a local group of neighbors of particle i, be-
ing the number of neighbors a control parameter for the
process. This alternative allows parallel exploration of the
search space while reducing the probability of the PSO to
fall into local minima, at the price of slow convergence
speed. In general, smaller neighborhoods lead to slower
convergence while larger neighborhoods yield faster con-
vergence. Because of this reason, most PSO methods con-
sider the global approach (i.e. the entire swarm) instead of a
local approach (the neighborhood of each particle). In such
a case, the evolution for each particle i is given by:


Vi(k + 1) = w Vi(k) + C1R1(P b

g (k)− Pi(k))+
C2R2(P b

i (k)− Pi(k))
Pi(k + 1) = Pi(k) + Vi(k)

(5)
where Pi(k) and Vi(k) are the position and the velocity
of particle i at time k, w is called inertia weight and de-
cide how much the old velocity will affected the new one
and coefficients C1 and C2 are constant values called learn-
ing factors, which decide the degree of affection of P b

g and
P b

i . In particular, C1 is a weight that accounts for the “so-
cial” component, while C2 represents the “cognitive” com-
ponent, accounting for the memory of an individual par-
ticle along the time. Two random numbers, R1 and R2,
with uniform distribution on [0, 1] are included to enrich the
searching space. Finally, a fitness function (similar to that
for genetic algorithms) must be given to evaluate the qual-
ity of a position. The termination condition is also the same
used for the genetic algorithm. This final PSO procedure is
briefly sketched in Table 5.

8 Particle Swarm Optimization Examples

In this section the two previous examples of Section 6 are
analyzed from the new perspective of Particle Swarm Opti-
mization.

begin
k=0
random initialization of individual positions Pi and

velocities Vi in Pop(k)
fitness evaluation of Pop(k)
while (not termination condition) do

Calculate best fitness particle P b
g

for each particle i in Pop(k) do
Calculate particle position lP b

i with best fitness
in the neighborhood of particle i

Calculate velocity Vi for particle i according
to first equation of (5)

while not feasible Pi + Vi do
Apply scale factor to Vi

end
Update position Pi according to second

equation of (5)
end
k = k + 1

end
end

Table 5: General structure of the particle swarm optimiza-
tion algorithm

8.1 Fitting a Bézier curve

We consider the same set of 8 data points used in Section
6.1 and a fourth-degree Bézier fitting curve. The parame-
ter values for the PSO algorithm are: population size: 100
individuals or particles, where each one is a vector with 8
components initially taken as an increasing sequence of ran-
dom uniform numbers on [0,1]; inertia coefficient w = 1;
coefficient for the global influence C1 = 0.2; coefficient for
the neighbors local influence C2 = 0.8; number of neigh-
bors locally influencing each particle: 5; and limit for not
improving error iterations: 10. With these parameters, we
obtain a curve with: best fitting error: 1.8104; mean error:
1.8106; number of iterations: 192; computation time (Pen-
tium IV, 3 GHz, 1 GB. RAM, running Matlab v7.0): 2.6562
seconds. For these values, the optimum parameter vector
is: [0.0028,0.0420, 0.0841, 0.2756, 0.4866, 0.7155, 0.8056,
0.9978]. The resulting curve is very similar to that in Fig. 1
and hence it is not displayed here.

Figure 3 shows the evolution of the mean and best Eu-
clidean errors along the successive iterations. In comparison
with the results for GA reported in Section 6.1, we can see
that best and mean error are closer each other for PSO than
for GA. This is because the particles or individuals in PSO
tend to move all together to a closer position where the op-
timum is attained, while in GA the population individuals
maintain a greater dispersion in their spatial distribution.

Table 6 shows 20 executions of the PSO algorithm for
this example and the same parameters used in the previous
paragraphs. Comparing it with Table 3 we can notice that

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM)
First Special Issue on “Computer Graphics and Geometric Modeling” (2008)
Selected Papers from CGGM’2007 Workshop

Figure 3: Mean (solid line) and best (dotted line) errors
along the generations of a Bézier curve with the particle
swarm optimization algorithm

PSO improves a little bit GA. Although in both cases the er-
rors are large, they are smaller for PSO. Furthermore, from
Table 6 we can see that there are many examples reach-
ing the same best value, meaning that the obtained result
is likely quite close to the real one. This implies that PSO
is able to yield a very good approximation of the optimal
solution. Such good results are obtained for a larger num-
ber of iterations in the PSO executions thus leading to larger
computation times as well. One observation is that PSO in-
troduces more variation in the values of the variables, and
that increases the time required for the stabilization of the
fitting error value.

8.2 Fitting a Bézier surface

For comparative purposes, we consider the same set of 256
point data used in Section 6.2, and try to fit a bicubic Bézier
surface. The input parameter values for the PSO algorithm
are: population size: 200 individuals or particles, where
each particle is represented by two vectors, U and V , each
with 16 components initialized with random uniform val-
ues on [0, 1] sorted in increasing order; inertia coefficient
w = 1; coefficient for the global influence: C1 = 0.2; coef-
ficient for the neighbors local influence C2 = 0.8; number
of neighbours influencing locally to each particle: 20 and
threshold limit for not improving iterations: 10.

Figure 4(left) shows the obtained surface and the data
points. In Fig. 4(right-top) we display the evolution of
mean error (solid line) and best (dotted line) distance error
for each generation along the iterations, while the optimum
parameter values for u and v are shown in Fig. 4(right-
bottom). The convergence in this example is attained at it-
eration 473 at which the best and mean errors are 0.287 and

iter. Best error Mean error CPU time (secs)
1 53 1.823 1.833 0.9687
2 198 1.810 1.810 2.8281
3 20 1.830 1.877 0.5156
4 42 1.815 1.838 0.8125
5 172 1.810 1.810 2.1718
6 46 1.813 1.826 0.7968
7 78 1.811 1.812 1.2187
8 140 1.810 1.811 2.0468
9 187 1.810 1.810 2.4687
10 65 1.813 1.820 1.0156
11 104 1.810 1.810 1.5312
12 200 1.811 1.813 2.6875
13 146 1.810 1.810 2.0937
14 137 1.810 1.810 1.8437
15 105 1.813 1.817 1.5122
16 34 1.820 1.853 0.6718
17 45 1.814 1.829 0.8125
18 76 1.810 1.811 1.1406
19 152 1.811 1.811 2.2031
20 89 1.811 1.813 1.3906

Table 6: 20 executions of a Bézier curve fitting through par-
ticle swarm optimization

0.289 respectively. The computation time for this example
is 48.7 seconds.

Visual comparison of Figures 2 and 4 shows that the PSO
algorithm outperforms substantially GA for the given ex-
ample. Points at the corners (that sometimes fall outside
the surface with GA) are now very well fitted and the sur-
face is much closer to the cloud of points as evidenced by
the smaller error in comparison with GA. Further, the sur-
face obtained with GA exhibit a more intricate structure at
the boundaries (occasionally leading to self-intersections at
the corners for some executions). By contrast, the surfaces
obtained with PSO do reflect much better the real geome-
try of the data while preserving better the smoothness at the
boundaries. Another remarkable issue concerns the distance
between the best and the mean error for each iteration. In
our PSO example, they converge to roughly the same value,
as opposed to the GA example (see Figs. 2-4(right-top) for
comparison). Finally, the distribution of points, (Figs. 2-
4(right-bottom)) is more uniform for the PSO example and
fits better into the intervals [0, 0.2] and [0.8, 1] for both u and
v (although the obtained intervals are still slightly larger).
One reason to explain this is that the number of iterations
until reaching the prescribed convergence is larger for PSO.
In short, better quality is achieved at the price of larger com-
putation times.

Table 7 reports the results of 20 executions on the sur-
face example for a population size of 200 candidate solu-
tions, inertia coefficient w = 1; coefficient for the global
influence: C1 = 0.2; coefficient for the neighbors local in-

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM)
First Special Issue on “Computer Graphics and Geometric Modeling” (2008)
Selected Papers from CGGM’2007 Workshop

0 100 200 300 400 500
0

2

4

6

8

10

12

14

Number of Generations

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

v

Figure 4: Bézier surface fitting through particle swarm optimization: (left) bicubic Bézier surface and data points; (right-
top): evolution of the mean (solid line) and the best (dotted line) Euclidean errors along the generations; (right-bottom):
optimum parameter values for u and v on the parametric domain

fluence C2 = 0.8; number of neighbours influencing locally
to each particle: 10 and threshold limit for not improving it-
erations: 10. In general, these results are in good agreement
with our previous assertions.

9 Conclusions and Future Work

In this paper we address the problem of fitting 3D data
points by means of Bézier curves and surfaces by follow-
ing a novel approach. Basically, it combines the error min-
imization by least-squares with artificial intelligence meth-
ods of biological inspiration: Genetic Algorithms (GA) and
Particle Swarm Optimization (PSO). In our opinion, both
methods can readily be implemented and provide the user
with good quality solutions at reasonable execution times.
In our trials, PSO generally outperforms GA. We speculate
that the dual weighted contribution to the evolution of ev-
ery particle given, on one hand, by the distance from such a
particle to the global best of the population (or alternative,

its neighborhood) and, on the other hand, by the local influ-
ence of its best over the time, seems to lead the swarm of
particles towards the optimum in a very natural way. How-
ever, further research is still needed in order to elucidate the
rationale of this behavior at full extent.

It is worthwhile to mention that in our experiments
neighborhood is based on index proximity of particles. In
sorted points along a curve this strategy reveals to be ade-
quate. For surfaces whose points are arranged in a quadrilat-
eral topology this approach could also be suitable, since the
proximity of indices would imply Euclidean distance prox-
imity between particles in the domain space of the prob-
lem. If the cloud of points to be fitted by a surface has not
a quadrilateral structure, one feasible alternative is to ob-
tain a quadrilateral data mesh from the given data, by ap-
plying some criteria like point proximity, for example. If no
quadrilateral structure can eventually be adapted, the pro-
cess described above could also be applied, but problems
might appear with the condition of the resulting system of

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM)
First Special Issue on “Computer Graphics and Geometric Modeling” (2008)
Selected Papers from CGGM’2007 Workshop

iter. Best error Mean error CPU time (secs)
1 185 0.448 0.466 19.2031
2 488 0.274 0.275 50.6406
3 368 0.350 0.351 37.7968
4 441 0.259 0.260 45.2812
5 372 0.889 0.890 35.1875
6 242 0.390 0.397 24.2343
7 264 0.420 0.420 26.1562
8 261 0.685 0.692 26.5625
9 143 0.633 0.659 14.0625
10 242 0.505 0.510 24.9843
11 382 0.544 0.550 38.2812
12 135 0.633 0.646 15.4843
13 136 0.552 0.559 13.1718
14 109 0.634 0.654 10.8281
15 106 0.378 0.434 11.5000
16 143 0.845 0.853 15.6562
17 289 0.368 0.369 26.9687
18 344 0.207 0.209 35.0156
19 289 0.421 0.422 28.9375
20 413 0.319 0.322 39.6562

Table 7: 20 executions of a Bézier surface fitting through
particle swarm optimization

equations.
Of course, other families of piecewise polynomial mod-

els such as B-spline or NURBS can be used to fit the data,
with some changes in the computational process to handle
the knot vectors, which are additional parameters in these
models. In this case, the distance error function for fitting
data to the different models could exhibit multiple relative
minima. This makes more difficult attaining a global opti-
mum. Some ideas on how to improve globally the search
process are desirable.

Obviously, all results reported in this paper are affected
by a certain level of randomness according to the probabilis-
tic and random factors inherent to GA and PSO schemes.
This means that our results should be regarded as an aver-
age behavior, rather than as deterministic rules. From this
point of view, an additional issue is to determine the optimal
values for the parameters of the GA/PSO models in order to
achieve the best performance. Although we have already
done some preliminary experiments, further research is still
needed. We are currently working on these issues. Our on-
going results will be published elsewhere.

Acknowledgments

The authors would like to thank the financial support from
the SistIng-Alfa project, Ref: ALFA II-0321-FA of the Eu-
ropean Union and from the Spanish Ministry of Education
and Science, Projects MTM2005-00287 (Mathematics Na-
tional Program) and TIN2006-13615 (Computer Science

National Program). Financial support from the University
of Cantabria is also kindly acknowledged.

Bibliography

[1] Barhak, J., Fischer, A.: Parameterization and re-
construction from 3D scattered points based on
neural network and PDE techniques. IEEE Trans.
on Visualization and Computer Graphics, 7(1)
(2001) 1-16.

[2] Bradley, C., Vickers, G.W.: Free-form surface
reconstruction for machine vision rapid proto-
typing. Optical Engineering, 32(9) (1993) 2191-
2200.

[3] Blum, C., Roli, A.: Metaheuristics in combinato-
rial optimization: overview and conceptual com-
parison. ACM Computing Surveys, 35(3) (2003)
268-308.

[4] Dahlquist, G., Bjrck, A.: Numerical Methods.
Prentice Hall (1974).

[5] de Boor, C. A.: Practical Guide to Splines.
Springer-Verlag (2001).

[6] Draper, N. R., Smith, H.: Applied Regression
Analysis, 3rd ed. Wiley-Interscience (1998).

[7] Eberhart, R. C., Kennedy, J.: A new optimizer
using particle swarm theory. Proceedings of the
Sixth International Symposium on Micro Ma-
chine and Human Science, Nagoya, Japan (1995)
39-43.

[8] Eberhart R.C., Shi Y.: Particle swarm optimiza-
tion: developments, applications and resources
Proceedings of the 2001 Congress on Evolution-
ary Computation (2001) 81-86.

[9] Echevarrı́a, G., Iglesias, A., Gálvez, A.: Extend-
ing neural networks for B-spline surface recon-
struction. Lectures Notes in Computer Science,
2330 (2002) 305-314.

[10] El-Mounayri H., Kishawy H., Tandon V.: Opti-
mized CNC end-milling: a practical approach. In-
ternational Journal of Computer Integrated Man-
ufacturing, 15(5) (2002) 453-470.

[11] Gálvez, A., Iglesias, A., Cobo, A., Puig-Pey,
J., Espinola, J.: Bézier curve and surface fitting
of 3D point clouds through genetic algorithms,
functional networks and least-squares approxima-
tion. Lectures Notes in Computer Science, 4706
(2007) 680-693.

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM)
First Special Issue on “Computer Graphics and Geometric Modeling” (2008)
Selected Papers from CGGM’2007 Workshop

[12] Goldberg, D.E.: Optimal Initial Population Size
for Binary-Coded Genetic Algorithms, TCGA
Report No.85001. University of Alabama (1985).

[13] Goldberg, D.E.: Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-
Wesley (1989).

[14] Holland, J.H.: Adaptation in Natural and Arti-
ficial Systems. Ann Arbor: The University of
Michigan Press (1975).

[15] Hoschek, J., Lasser, D.: Fundamentals of Com-
puter Aided Geometric Design. A.K. Peters
(1993).

[16] Iglesias, A., Gálvez, A.: A new artificial intel-
ligence paradigm for computer aided geometric
design. Lectures Notes in Artificial Intelligence,
1930 (2001) 200-213.

[17] Iglesias, A., Echevarrı́a, G., Gálvez, A.: Func-
tional networks for B-spline surface reconstruc-
tion. Future Generation Computer Systems, 20(8)
(2004) 1337-1353.

[18] Kennedy, J., Eberhart, R. C.: Particle swarm opti-
mization. IEEE International Conference on Neu-
ral Networks, Perth, Australia (1995) 1942-1948.

[19] Kennedy J., Eberhart R. C., Shi, Y.: Swarm Intel-
ligence, San Francisco: Morgan Kaufmann Pub-
lishers (2001).

[20] Marinov M., Kobbelt, K.: A Robust Two-Step
Procedure for Quad-Dominant Remeshing. Com-
puter Graphics Forum, 25(3), (2006) 537-546.

[21] Pottmann, H., Leopoldseder, S. Hofer, M.,
Steiner, T., Wang, W.: Industrial geome-
try: recent advances and applications in CAD.
Computer-Aided Design 37 (2005) 751-766.

[22] Renner, G. Ekárt, A.: Genetic algorithms in com-
puter aided design. Computer-Aided Design 35
(2003) 709-726.

[23] Varady, T., Martin, R.: Reverse Engineering. In:
Farin, G., Hoschek, J., Kim, M. (eds.): Handbook
of Computer Aided Geometric Design. Elsevier
Science (2002).

[24] Vaz I.F., Vicente L.N.: A particle swarm pattern
search method for bound constrained global op-
timization. Journal of Global Optimization, 39
(2007) 197-219.

[25] Weiss, V., Andor, L., Renner, G., Varady, T.:
Advanced surface fitting techniques. Computer
Aided Geometric Design, 19 (2002) 19-42.

[26] Yoshimoto F., Harada T., Yoshimoto Y.: Data fit-
ing with a spline using a real-coded algorithm.
Computer Aided Design, 35 (2003) 751-760.

About the authors

ANGEL COBO is an Associate Professor at the Faculty
of Economics of the University of Cantabria. He obtained a
B.Sc. and a Ph.D. (1993) in Mathematics at the University
of Cantabria, Spain. He has authored or coauthored 24 sci-
entific articles and books in Applied Mathematics and Com-
puter Science. His research topics are operations research,
metaheuristics and application of bio-inspired techniques in
information management.

AKEMI GALVEZ TOMIDA is a lecturer at the Depart-
ment of Applied Mathematics and Computational Sciences
of the University of Cantabria (Spain). She holds a B.Sc.
degree in Chemical Engineering at the National University
of Trujillo (Peru), a M.Sc. and a Ph.D. degrees in Com-
putational Sciences at the University of Cantabria (Spain).
She has published several papers on geometric processing,
surface reconstruction and symbolic computation and par-
ticipated in national and international projects on geomet-
ric processing and its applications to the automotive indus-
try. Her fields of interest also include Chemical Engineer-
ing, numerical/symbolic computation and industrial appli-
cations.

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM)
First Special Issue on “Computer Graphics and Geometric Modeling” (2008)
Selected Papers from CGGM’2007 Workshop

JAIME PUIG-PEY is a Full Professor of Applied Math-
ematics and Computing at the University of Cantabria
(Spain). He obtained a M.Sc. (1975) and a Ph.D. (1977)
degrees in Civil Engineering, and a M.Sc. in Mathemat-
ics and Statistics in 1981. He currently teaches Numeri-
cal Methods to Civil Engineering students and postgraduate
courses on CAGD. His research interests include Computer
Aided Geometric Design (CAGD) from the point of view of
numerical calculations, in particular curves on surfaces (in-
tersection and other characteristic lines), and reconstruction
of CAD curves and surfaces from clouds of points.

ANDRES IGLESIAS is an Associate Professor at the
Department of Applied Mathematics and Computational
Sciences of the University of Cantabria (Spain). He holds
a B.Sc. degree in Mathematics (1992) and a Ph.D. in Ap-
plied Mathematics (1995). He has been the chairman and
organizer of some international conferences in the fields of
computer graphics, geometric modeling and symbolic com-
putation, such as the CGGM (2002-08), TSCG (2003-08)
and CASA (2003-08) annual conference series. In addi-
tion, he has served as program committee and/or steering
committee member of 65 international conferences such as
3IA, CGA, CGIV, CIT, CyberWorlds, GMAG, GMAI, GM-
VAG, Graphicon, GRAPP, ICCS, ICCSA, ICICS, ICCIT,
ICM, ICMS, IMS, ISVD, MMM and WSCG, and reviewer
of 70 conferences and 13 journals. He has been guest editor
of some special issues of international journals about com-
puter graphics and symbolic computation. He is the author

of over 90 international papers and four books. For more
information, see: http://personales.unican.es/iglesias

JESUS ESPINOLA currently teaches Mathematics at
UNASAM University, Huaraz (Peru). He got a B.Sc. in
Mathematics from the University of Trujillo (Peru) and
a Ph.D. from the University of Cantabria (Spain). He
also worked as a researcher, developing mathematical al-
gorithms at Candemat (a company that makes dies for au-
tomotive industry) and also at the University of Cantabria.
His research interests include curve and surface modeling
and computer graphics.

International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM)
First Special Issue on “Computer Graphics and Geometric Modeling” (2008)
Selected Papers from CGGM’2007 Workshop

