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Abstract: Security installations in public transportation 

systems play a more and more important role due to the 

increased threat of terroristic attacks on such critical 

infrastructures. However the placement of such installations is 

rather critical as their installation must not influence the 

passenger flow and so cause inconvenience, delays or crowds. 

Especially the need for an open system in public transportation 

demands for solutions that do not influence or delay passenger 

flows. For giving advice in this decision problem we observed 

passenger flows in the Munich central station and applied 

quantitative graph theory on the network data. The main aim 

was to better understand the status quo of passenger patterns. 

With its help, critical parameter constellations can be identified 

and investigated in detail. Furthermore we are able to identify 

special groups of passengers and the differences in their behavior. 

The method of quantitative network analysis in this field is a 

novel approach and to the best of our knowledge it was not 

applied in previous analysis. 

 
Keywords: network analysis, quantitative networks, passenger 

pattern recognition, RiKoV, RE(H)STRAIN. 

 

I. Introduction 

The protection of critical infrastructures is of high importance 

for every nation. Disturbances such as blackouts might lead to 

cascading effects due to high interconnections among several 

types of infrastructures. Especially after terroristic attacks to 

the rail-bound public transport system, its protection became 

a major issue in public decision making. For example, the 

series of attacks on stations in Madrid 2004 caused almost 200 

deaths and 1.400 injured people. The recent (21.08.2015) 

attack of a terrorist with machineguns in a Thalys high-speed 

train on the border between Belgium and France did not cause 

human victims, but tremendous media attention. This shows 

the insecurity in the public and the importance of the topic at 

hand, as such critical infrastructures are essential for the 

functioning of a modern society [1].  

For protecting the public from terroristic attacks in this 

vulnerable transportation system, risk management [2] as well 

as security installations and measures are coming more and 

more into the focus of ongoing research [3–7]. Here, the 

emphasis lies on the protection of train stations as one of the 

most vulnerable parts of the network and being the link to the 

trains. The effectiveness of security measures depends, 

however, strongly on the location where they are placed [8]. 

While the problem of optimal sensor placement is often 

considered in literature, see e.g. [9], we argue that additional 

factors have to be taken into account. While it is common to 

consider the station layout for providing optimal sensor 

coverage, see e.g. [10], the movement behavior of crowds on 

the effectiveness of the security measures or surveillance 

sensors themselves is only seldom investigated. Therefore, 

agent-based simulation models play a major role in the 

analysis, whereby an adequate parameterization of passenger 

behavior is a crucial task. However, there is hardly any 

literature available on how different people behave and move 

in public places. 

In order to fill this research gap we observed passengers in 

the main station in Munich in order to get first insights in 

passenger patterns and recognize effects on the overall picture. 

Therewith we want to see where security installations might 

lead to promising screening rates and at the same time do not 

influence the overall crowd behavior. This specific knowledge 

of passenger flows and preferences of specific groups might 

support the creation of simulation models with advanced 

parameters and also the decision of optimal placement of 

security measures in a further step. 

For instance, interdisciplinary applications such as web 

graphs and hypertext, biological/chemical structures, and 

financial networks have been examined extensively [1, 11–15], 

while, to the best of our knowledge, the evaluation of 

passenger patterns using this approach was not done before 

and therefore brings a totally new perspective into the field. 

First visions of combining modern risk management 

concepts with strategic forecasting strategies on complex 

graph theoretic structures where discussed generating the 

Operations Research OR2010 conference topic "Mastering 

Complexity". There is still a lot of potential in this innovative 

combination [16]. 

The rest of the paper is structured as follows: In section two 

we will provide some insights into the observation method and 

the gathered data. Section three gives insights into the 

quantitative network analysis and in section four we will 

present some selected results. Finally we conclude the paper 

in section five and give insights into further research. 
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II. Real-Life Observations 

For the observations at the Munich main station three students 

of the Universität der Bundeswehr München positioned 

randomly in the vicinity of the exits and tracked passengers 

based on a convenience sample, meaning that they chose any 

random person that passed them after being available for a 

new observation. The passengers were not in contact with the 

observation team and were not aware of being tracked through 

the station. This was especially possible through finding 

positions that allow for seeing most areas in the station and 

therefore reduce the need of walking and following people. 

For each observation a printed map of the station was used 

and the walking path drawn into it. Additionally, the 

observation team noted the date, time, the observed person’s 

sex, the estimated age and the fact if the person was alone or 

in companionship. Observations started with the entry of a 

person into the train station and ended either with their exit at 

a gate, exit into a train, or when a person spent more than ten 

minutes at a spot (e.g. track, restaurant, etc.). We conducted 

most of the observations (700) in the morning between seven 

and eleven a.m. in order to get a picture of more crushed 

situations. Compared to this we conducted observations (218) 

as a control group in the evening between five and six p.m.  

Generally, the station can be split into a departure and arrival 

area including the main hall and a shopping and food area 

behind. The main hall can also be used as shortcut between 

two streets which leads to a high frequency of walk-through 

traffic. The two areas are shown in Figures 1 and 2. 

 

 
Figure 1. Arrival and Departure Area. Copyrights of [17] 

 

Figure 2. Shopping and Food Area. Copyrights of [17] 

The positions where people stopped were marked and the 

pauses recorded in seconds. Table 1 gives an overview of the 

observation dates and the numbers of observed passengers. 

 

Table 1. Observation data. 

Weekday Date 7-11 am. 5-6 pm. 

Monday 02.03.2015 100 Obs. 30 Obs. 

Tuesday 10.02.2015 100 Obs. 30 Obs. 

Wednesday 18.02.2015 100 Obs. 30 Obs. 

Thursday 12.02.2015 100 Obs. 30 Obs. 

Friday 06.02.2015 100 Obs. 37 Obs. 

Saturday 14.02.2015 100 Obs. 30 Obs. 

Sunday 15.02.2015 100 Obs. 31 Obs. 

 

During the observations some special events were noticed 

that might influence the results. The weather conditions 

during the observations were cold and sometimes rainy, which 

might also influence the time spent in a (warmer and dry) train 

station compared to a hot summer day. On February 14th the 

station was more crowded than else when due to a soccer 

(home) game of Bayern Munich. Furthermore it was 

Valentine’s Day and free roses were distributed to passengers, 

which led to some stops in the distribution area. On Sunday, 

February 15th there was a raffle (tombola) in the main hall 

which again caused some crowds of passengers and 

influenced additional stops. On Monday, March 2nd there was 

a rescue operation of the ambulance at train tracks 11-16 

which influenced walking paths. However, such events are 

common in such stations and therefore the dataset is accepted. 

After collecting the data the train station was split into 

sectors and single positions were defined as nodes. The 

observed path on special nodes of individuals was then coded 

in a Microsoft Excel file with the duration of stays. 

The basic idea of the project at hand was to analyze the data 

set using quantitative graph theory. Therewith we are aiming 

to reduce the complexity in the huge data set and get very clear 

and precise insights in the behavior of different groups of 

people.    

 

III. Quantitative Network Analysis 

Networks or graphs are relational structures for modelling 

complex relationships between different entities [18, 19]. The 

entities can differ regarding the field of application. Networks 

representing structural objects are often referred to as complex 

networks [20] as they are based on the idea to only consider 

networks that possess unique and non-random topologies. 

Suppose that we are able to generate all existing networks. 

After this, we remove ‘‘simple’’ networks given by k-regular 

graphs and random graphs [21, 22]. A graph is called k-regular 

when every vertex has the same degree. Thus the network is 

quite symmetrical and is therefore not considered as complex. 

Similarly, random networks do not have a structure because 

they are random. Following this augmentation, complex 

networks have a fixed topology with unique graph-theoretical 

patterns. In this paper, we elaborate on weighted and 

undirected passenger networks, where we focus on 

quantitative graph theory [23]. For further explanation see [1]. 



 
 

 

13 

Based on the coded observations, four groups of networks 

are highlighted. The group of networks based on gender (men, 

women), age (under 40, over 40), time of the day (morning, 

afternoon), and time of the week (business days, weekend). A 

network consists of all visited nodes by the passengers of a 

specific group (e.g. gender – Men/Women networks), and all 

edges (connections) that they create between the nodes. The 

not visited (isolated) nodes are not considered in these 

networks. Each network has different structural properties. 

The aim of this paper is to understand how the networks 

differentiate within a group based on their structural properties.  

In order to perform a more sensitive analysis among the 

networks, for each, a ten percent frequency filter is applied. 

The frequency percentage is given by the probability of a 

person to travel from point A to point B, in a specific network. 

This results in another network that considers the probability 

of passing from one node to another higher than ten percent. 

For each group of networks, a complete network is 

calculated. E.g. the Men and Women networks are collapsed 

in a gender network including all the unique nodes and edges 

of the two sources (see Table 7). The ten percent frequency 

filter is also applied for the complete networks. Finally, each 

group is having six networks, and the four groups totaling 24 

networks. 

Modeling the passenger flow as a network can be beneficial 

even by using the most basic structural property of a network 

node. This is the degree of a node which is represented by the 

number of its adjacent connections. In this case it represents 

the number of passengers from a specific group visiting a 

specific element of the station (e.g. the information desk). An 

example is presented in Figure 3 [24], where the most 

frequently visited ten elements of the station during the 

weekend can be observed. Here, as expected, the most visited 

element of the train station is the information desk. 

Surprisingly, among the top ten most frequently visited 

elements of the station there is not even one single train 

platform included. Even more, the exits are passed even less 

frequent than other elements, e.g. food stores, newsstand, etc. 

More than half of the elements included in Figure 3 are related 

with food. This can show that during the weekends the train 

station serves more as a food court than as a public 

transportation service (especially departure). 

For a more profound quantitative analysis of the passengers 

flow, several network metrics are proposed to describe the 

topologies of the networks. These are the most common and 

meaningful for this type of networks [18, 19, 23, 25].The 

selected metrics are the network diameter [18], density [26], 

average path length [27], and modularity [28–30] 

To determine the structural complexity of the networks, two 

entropy measures are used [4] based on an information-

theoretic analysis approach introduced by Dehmer [31]. These 

will be analyzed along with a couple of classical measures, e.g. 

Wiener index [32], and Randić index [33]. The statistical 

analysis has been performed using the programming language 

R [34] (Release version 3.1.3). 

 

IV. Results 

As mentioned in the previous section, in this paper the 

passengers flow is modeled as an undirected and weighted 

network  𝑁 = (𝑉, 𝐸) . 𝑉 = {𝑣𝑖|𝑖 = 1, 2, … , 𝑛}  is the set of 

network nodes representing the elements of the train station. 

𝐸 = {(𝑣𝑖 , 𝑣𝑗)|𝑣𝑖 , 𝑣𝑗 ∈ 𝑉}  represents the set of edges 

connecting the network nodes and having the number of 

passengers traveling from one node to another as weights 𝑤𝑖𝑗 , 

where 𝑤𝑖𝑗 ≥ 0. 

In the following, the network measures are described and 

their numerical results are interpreted. Individual networks are 

analyzed and compared with their complementary network in 

every group in particular, and with the rest of the networks in 

general. 

 

A. Network diameter 

The diameter of a network ⌀(𝑁) is the greatest number of 

nodes to be passed in order to travel from one node to another 

when paths which backtrack, detour, or loop are excluded 

Figure 3. Bar chart representation of the most frequently visited ten train station elements over a 

weekend by the passengers, generated with [24] 
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from consideration [18]. This helps to understand how tight or 

loose a network is (see Figure 4). 

 

 
Figure 4. Visual representation of a network diameter path 

created by the passengers flow, generated with [28] 

 
If 𝑑(𝑣𝑖 , 𝑣𝑗)  is considered the shortest path between any 

two elements of the station, then 

⌀(𝑁) = 𝑚𝑎𝑥𝑣𝑖,𝑣𝑗
𝑑(𝑣𝑖 , 𝑣𝑗) (1) 

where 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉. This is the so-called “longest shortest path” 

between any two elements of the station. 

In general, the highest value of diameter is reached by a 

path network when its diameter value is given by the number 

of nodes. On the opposite, a full connected network has the 

value one. In Table 2 the diameter of the networks fluctuates 

between the values ten and twenty. The lowest value is 

reached by the Men network where the diameter is ten for a 

network with 354 connections (edges) between its station 

elements (nodes). This is the tightest network based on its 

diameter. Interesting is that the highest diameter value is 

reached by the Under 40 network. This network has one more 

node and 30 extra edges than the previous mentioned, and 

contrary to expectations, this is the loosest network. 

 

Table 2. Networks diameter results. 

𝑵 𝑽 𝑬 ⌀(𝑵) 

Men 65 354 10 

Women 66 354 14 

Under 40 66 384 20 

Over 40 66 315 15 

Morning 66 385 14 

Afternoon 66 262 19 

Business days 66 389 14 

Weekend 66 278 15 

Notation: 𝑵 – network; 𝑽 – number of nodes; 

 𝑬 – number of edges; ⌀(𝑵) – diameter. 

 

Observing the network diameter results from Table 2, we 

can spot interesting behaviors of the passengers. The men tend 

to browse the train station in a star movement by visiting more 

neighbors of each element of the station. Women tend to 

create more a path movement visiting the elements of the 

station rather linearly than the men do. When analyzing the 

age group, passengers under 40 years are walking more in a 

linear movement in the train station than the elder ones. And 

in the mornings people tend to browse more in a star 

movement than in the afternoons. For the week time group we 

observe the less meaningful difference compared with the 

other groups. 

For an extended analysis, the ten percent filter mentioned 

in the previous section is applied. The results can be observed 

in Table 7. Here the situation changes very sharply for the day 

time and the week time groups. A very large amount of 

passengers tends to have a path movement in the network in 

the mornings, and during the business days. This is opposite 

in the afternoons and in the weekend days. When analyzing 

the gender and age, the situation tends to preserve as for the 

initial networks. 

 

B. Network density 

The ratio between the number of edges and the number of 

possible edges gives the density of the network [26]. This can 

be defined as: 

𝐷 =
2∗𝐸

𝑉(𝑉−1)
  (2) 

For this analysis we consider self-loops in determining the 

network density. Thus, the possibility that a passenger can 

return to the same element of the station without reaching 

another one in between is considered. Self-loops can be 

considered in the density formula as: 

𝐷𝑠−𝑙 =
2∗𝐸

𝑉(𝑉+1)
  (3) 

The higher the value, the denser is the network. The 

opposite, a network with only a few edges is a sparse network. 

A full network is a network with all its possible edges and 

then the density reaches the maximum value of one. The 

minimum value of the density is reached when the network 

has a path shape. In Table 3, the densest network is the 

Business days network and has 17.59 % of its potential. 

The sparsest network, among the other network, is the 

Afternoon network where its density reaches only 11.85% of 

the maximum possible value. 

 

Table 3. Networks density results. 

𝑵 𝑽 𝑬 𝑫𝒔−𝒍(𝑵)  

Men 65 354 0.165 

Women 66 354 0.1601 

Under 40 66 384 0.1737 

Over 40 66 315 0.1425 

Morning 66 385 0.1741 

Afternoon 66 262 0.1185 

Business days 66 389 0.1759 

Weekend 66 278 0.1257 

Notation: 𝑵 – network; 𝑽 – number of nodes; 

 𝑬 – number of edges; 𝑫𝒔−𝒍(𝑵) – density. 

 

In Table 3, the most balanced density value in all groups 

is between men and women. Thereafter, we can observe that 

passengers under 40 years of age tend to visit slightly more 

nodes than the elder ones. Concerning the other groups, we 

can observe that in the mornings and during business days 

people create substantially denser networks compared with 

afternoons and weekend days networks. This can be also seen 

in Figure 5. 
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The extended analysis for density with the ten percent filter 

can be observed in Table 7. Here, the density tends to be 

opposite than for the initial networks in the age group, day 

time group, and week time group. Thus, the elder passengers, 

the passengers in the afternoon, and the passengers during the 

weekend days, visit more nodes in the network. We also notice 

that men are visiting slightly more nodes than women, 

compared with the initial network case. 

 

C. Average path length  

The average path length in a network is determined based on 

the average of the shortest paths for all possible pairs of nodes 

in a network. The shortest path between a pair of nodes in a 

network is a path with the minimal number of nodes [27]. The 

average path length can be defined as: 

𝜆 =
1

𝑉(𝑉−1)
∑ 𝑑(𝑣𝑖 , 𝑣𝑗)(𝑣𝑖,𝑣𝑗)∈𝐸; 𝑣𝑖≠𝑣𝑗

 (4) 

The shortest path length is opposite to the diameter of a 

network when being determined, but the values have similar 

interpretation. Smaller values of the average of the shortest 

paths indicate efficient connections in the network. The 

greater values indicate in average a higher number of nodes to 

be passed in the network between every two nodes. It is 

interesting to observe in Table 4 that from all the present 

networks, the extreme values are found in the same group. 

Therefore, the Afternoon network created by the passengers is 

the most efficient, while its opposite is the Morning network.  

Furthermore, in Table 4 we observe that there is just a 

small difference between men and women. Contrariwise, 

observing the other three groups, we can conclude that the 

passengers under 40 years old, the passengers in the mornings, 

and the passengers during the business days, create in average 

shorter paths in the networks between the elements of the 

station. The opposite holds for the complementary networks 

from this three groups.  

 

Figure 5. Visual representation of the passengers flow network density values, generated with [24] 

 

 

 

Figure 6. Visual representation of the passengers flow networks density values and the average path 

length values to observe their linear correlation, generated with [24] 
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Table 4. Networks average path length results. 

𝑵 𝑽 𝑬 𝝀(𝑵)  

Men 65 354 2.4399 

Women 66 354 2.5156 

Under 40 66 384 2.3935 

Over 40 66 315 2.6606 

Morning 66 385 2.386 

Afternoon 66 262 2.8979 

Business days 66 389 2.4005 

Weekend 66 278 2.8359 

Notation: 𝑵 – network; 𝑽 – number of nodes; 

 𝑬 – number of edges; 𝝀(𝑵) – average path length. 

 

Because the observations between density and average 

path length are having similar changes, we measure the linear 

correlation (dependence) between the two measures results. 

We use the Pearson's correlation coefficient. Appling this 

measure on the two samples, the result is -0.9660123, which 

means that the density values are highly negatively correlated 

with the average path length values. Thus, when the values of 

density are increasing, the values of average path length are 

decreasing with the same intensity. The same holds for the 

opposite situation. This can be seen in Figure 6. 

For a deeper analysis, the ten percent or higher probability 

filter that a passenger is visiting the adjacent nodes can be 

observed in Table 7. Here, men tend to have longer paths in 

the train station than women. A similar observation for the 

passengers visiting the station in the mornings, and during the 

business days is observed. The age group remains more 

balanced. 

 

D. Network modularity 

Another measure used to study the passengers flow is the 

network modularity. This measure helps to understand the 

denseness of groups of passengers in the train station. In this 

case, to understand how the passengers form groups based on 

different criteria (e.g. age, gender, time of the day, etc.)  

Therefore, modularity is a network property of dividing the 

network into groups. A group of a network is a subset 

connected part of that network to measure how separated the 

different node types are from each other [29]. 

For this analysis, the greedy optimization of modularity is 

used [28, 30]. The graph modularity [28] is defined as: 

𝑄 =
1

2𝐸
∑ (𝐴𝑖𝑗 −

𝑘𝑣𝑖
𝑘𝑣𝑗

2𝐸𝑣𝑖,𝑣𝑗∈𝑉 )𝛿(𝑐𝑣𝑖
, 𝑐𝑣𝑗

) (5) 

where 𝐸 – number of edges; 𝐴𝑖𝑗 – adjacency matrix element 

of 𝑁 ; 𝑘𝑣𝑖
 and 𝑘𝑣𝑗

– degree of 𝑣𝑖  and 𝑣𝑗 ; 𝑐𝑣𝑖
 and 𝑐𝑣𝑗

 – 

type/component of 𝑣𝑖 and 𝑣𝑗; 𝛿(𝑐𝑣𝑖
, 𝑐𝑣𝑗

) is 1 if 𝑐𝑣𝑖
= 𝑐𝑣𝑗

, or 0 

otherwise [28]. 

A high modularity means a dense number of connections 

between the nodes within groups of a network, and only few 

connections between nodes in different groups [30]. Starting 

with the original networks which can be seen in Table 5, the 

highest value of modularity among all the other networks is 

possessed by the Weekend network (see Figure 7). 

 

 
Figure 7. Visual representation of Weekend network which 

has the highest modularity value among the other passengers 

flow networks, generated with [28] 

 

In Figures 8 we show the visual representation of the lowest 

modularity which can be found at the Men network. Thereby 

one can observe that the nodes of the single modules are 

visually more mixed than in Figure 7.  

 

 
Figure 8. Visual representation of Men network which has the 

lowest modularity value among the other passengers flow networks, 

generated with [28] 

 

In Table 5 we also observe that the highest difference 

between the modularity values of two complementary 

networks is between the Business days network, and the 

Weekend network. According to these observations, the 

passengers are more scattered in the train station during the 

business days. While during the weekend they tend to spend 

their time there more in a module (group) of nodes, and 

crossing less between the modules. 
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For the time of the day analysis, the passengers spend their 

time more in a modular sense in the mornings, and less 

grouped during the evenings. This means that the passengers 

tend to browse more in the station while waiting for their trains 

in the morning than in the afternoon when they just cross the 

station without too much stopping around.  

 

Table 5. Networks modularity results. 

𝑵 𝑽 𝑬 𝑸(𝑵)  

Men 65 354 0.4067 

Women 66 354 0.4478 

Under 40 66 384 0.4269 

Over 40 66 315 0.4395 

Morning 66 385 0.4825 

Afternoon 66 262 0.4534 

Business days 66 389 0.4196 

Weekend 66 278 0.5338 

Notation: 𝑵 – network; 𝑽 – number of nodes; 

 𝑬 – number of edges; 𝑸(𝑵) – modularity. 
 

In the group gender we find that women, in comparison 

with men, tend to be more organized in visiting the elements 

of the train station. For the age group we find comparable 

results, where passengers under 40 years tend to stay in the 

station more in an organized way than the ones over 40 years 

of age, but with a less meaningful difference.  

For the networks with the ten percent filter (see Table 7) 

we observe that the modularity efficiency increases for all of 

them. Analyzing the groups, we find that the ratio is quite 

similar only in two groups: gender, and time of the day 

(compared with the original networks). In the other two 

groups, we observe that elder passengers, and the passengers 

during the weekend days, are crossing the platform more 

frequently. While in the case of younger passengers, and 

passengers traveling during the business days, they tend to 

browse more around their interest point in the train station. 

 

E. Structural measures 

For the available networks, we try to determine their 

structural complexity. This allows to understand the profound 

structure (e.g. the symmetry) of the networks, and how these 

can be analyzed in comparison with their complementary 

network.  

The entropy of a network is defined by using a probability 

value for each node of the network. Entropy measures using 

the information-theoretic approach of Dehmer [31] are 

applied. The advantage of using this method is that the 

probability values are not determined for each subtracted 

module (partition), but for each node of the network. To 

quantify the structural information based on a given 

probability distribution, the local node functionals are used. 

They are defined as positive mappings [31]. 

Entropy j-spheres is an entropy measure based on 

information functional using the nodes’ j-spheres. This 

measure captures the information structure of the complete 

neighborhood of each node of the network by taking into 

account the number of nodes in the available j-spheres around 

a node, as shown in [4]. 

Entropy centrality is an entropy measure based on 

information functional using node centrality. This measure 

captures the centrality properties of each node in the network, 

as shown in [4]. Furthermore, we interpret the connection 

with two classical topological descriptors, e.g., the Wiener 

index [32], and the Randić connectivity index [33]. 

Wiener index captures the structural branching in a 

network based on the shortest distance between nodes, as 

defined in [32]. Randić connectivity index captures the 

connectivity structural information in a network based on the 

degrees of the nodes, as defined in [33]. 

The first observation from Table 6, regarding the two 

entropy measures, is that these capture the structural 

information uniquely compared with the other classical 

measures. 

Dehmer et al [35] found that the two entropy measures are 

used to capture the symmetric structures of networks. These 

have the property of changing their position (e.g. by rotation, 

reflection) and appear unchanged compared with their 

original state. According to Dehmer [31], the smaller the 

entropy value, the more symmetric the network is (and vice-

versa). Therefore, the quantities can be useful when exploring 

the structural organization of the networks. Based on this and 

on the values of the two entropy measures from Table 6, we 

can conclude that the analyzed networks possess a very 

symmetric information structure. These values significantly 

change with the number of nodes of the network, e.g. the Men 

network and cases where networks are disconnected (see 

Table 7 for the ten percent filter networks). 

 

Table 6. Networks structural measures results. 

𝑵 𝑽 𝑬 𝑰𝒇,𝒍𝒊𝒏𝑽
𝝀 (𝑵) 𝑰𝒇,𝒍𝒊𝒏𝑪

𝝀 (𝑵) 𝑾(𝑵) 𝑹(𝑵) 

Men 65 354 6.0152 5.9744 5075 31.155 

Women 66 354 6.033 5.9946 5396 31.7177 

Under 40 66 384 6.0381 6.0043 5134 31.7727 

Over 40 66 315 6.0366 5.9909 5707 31.577 

Morning 66 385 6.0351 5.9957 5118 31.7577 

Afternoon 66 262 6.0367 5.9826 6216 31.4252 

Business 
days 

66 389 6.0381 5.9992 5149 31.7619 

Weekend 66 278 6.0366 5.9973 6083 31.3041 

Notation: 𝑵 – network; 𝑽 – number of nodes;  𝑬 – number 

of edges; 𝑰
𝒇,𝒍𝒊𝒏𝑽
𝝀 (𝑵) – entropy measure based on information 

functional using the j-spheres; 𝑰
𝒇,𝒍𝒊𝒏𝑪
𝝀 (𝑵) – entropy measure 

based on information functional using vertex centrality; 

𝑾(𝑵) – Wiener index; 𝑹(𝑵) –Randić’s connectivity index. 

 

The two entropy measures and the Wiener index are 

measures based on distances in a network. Even though, the 

values are highly uncorrelated. The Pearson's correlation 

coefficient between the entropy j-spheres and Wiener index 

is -0.09213692, and the Pearson's correlation coefficient 

between the entropy centrality and Wiener index is 0.176219. 

Furthermore, the Wiener index captures the branching 

structural information. The higher the value, the more cyclic 

the network is. Analyzing the values of the initial networks 

from Table 6, we notice that in the afternoons and during the 

weekends, passengers tend to create more cycles in the 

networks. The same holds for women and passengers over 40 
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years old, but with a less meaningful difference compared 

with their complementary network. 

 For a further analysis, the ten percent filer networks from 

Table 7 can be considered. Here, the Wiener index values 

increase for these particular networks. The situation changes 

in the mornings, and during the business days, when the 

passengers tend to create more cycles in the networks 

compared with their initial status. The same holds for the Men 

network in comparison with the Women network from the 

gender group. 

 

 

For the networks in the age group, the situation preserves. 

Passengers over 40 years old tend to create more cycles in the 

network than the ones under 40 years of age. 

 Another observation is made regarding the Randić’s 

connectivity index measure, which has a minimal value for a 

path network, and a maximal value for a star network [33]. 

According to the values from Table 7, all the networks have 

a similar general shape and that is rather a star-shape than a 

path-shape. 

 

 

 𝑵 𝑽 𝑬 ⌀(𝑵) 𝑫𝒔−𝒍(𝑵) 𝝀(𝑵) 𝑸(𝑵) 𝑰
𝒇,𝒍𝒊𝒏𝑽
𝝀 (𝑵) 𝑰

𝒇,𝒍𝒊𝒏𝑪
𝝀 (𝑵) 𝑾(𝑵) 𝑹(𝑵) 

G
en

d
er

 

Men 65 354 10 0.165 2.4399 0.4067 6.0152 5.9744 5075 31.155 

Women 66 354 14 0.1601 2.5156 0.4478 6.033 5.9946 5396 31.7177 

*Both genders 66 423 4 0.1913 2.2886 0.4164 6.0302 5.9948 4909 31.9803 

Men >=10% 65 158 103 0.0737 4.3149 0.5415 6.0117 5.9759 8975 31.5761 

Women >=10% 66 151 101 0.0683 4.062 0.6 6.0346 6.0013 8713 31.7889 

*Both genders >=10% 66 196 8 0.0886 3.6765 0.5365 6.0356 6.0065 7886 32.2132 

A
g

e
 

Under 40 66 384 20 0.1737 2.3935 0.4269 6.0381 6.0043 5134 31.7727 

Over 40 66 315 15 0.1425 2.6606 0.4395 6.0366 5.9909 5707 31.577 

*All ages 66 423 4 0.1913 2.2886 0.4164 6.0302 5.9948 4909 31.9803 

Under 40 >=10% 66 151 99 0.0683 4.0559 0.588 6.0322 5.9953 8700 32.0624 

Over 40 >=10% 66 155 64 0.0701 4.1953 0.561 6.0347 6.0053 8999 31.854 

*All ages >=10% 66 190 8 0.0859 3.6499 0.5863 6.0362 6.0094 7829 32.1437 

T
im

e 
o

f 
th

e 
d

a
y

 

Morning 66 385 14 0.1741 2.386 0.4825 6.0351 5.9957 5118 31.7577 

Afternoon 66 262 19 0.1185 2.8979 0.4534 6.0367 5.9826 6216 31.4252 

*Whole day 66 423 4 0.1913 2.2886 0.4164 6.0302 5.9948 4909 31.9803 

Morning >=10% 66 149 160 0.0674 4.4228 0.5918 6.0343 6.0082 9487 31.9407 

Afternoon >=10% 66 159 69 0.0719 3.9058 0.5267 5.9938 5.9612 7878 31.3635 

*Whole day >=10% 66 202 9 0.0914 3.696 0.5798 6.0344 6.004 7928 31.9093 

T
im

e 
o

f 
th

e 
w

ee
k

 Business days 66 389 14 0.1759 2.4005 0.4196 6.0381 5.9992 5149 31.7619 

Weekend 66 278 15 0.1257 2.8359 0.5338 6.0366 5.9973 6083 31.3041 

*Whole week 66 423 4 0.1913 2.2886 0.4164 6.0302 5.9948 4909 31.9803 

Business days >=10% 66 144 166 0.0651 4.5133 0.571 6.0337 6.005 9681 31.8836 

Weekend >=10% 66 157 50 0.071 3.8093 0.5513 6.0361 5.9918 8171 31.7555 

*Whole week >=10% 66 201 8 0.0909 3.3879 0.5894 6.0374 6.0012 7267 31.8938 

Table 7. Quantitative network analysis results. 

 

Notation: 𝑵 – network; 𝑽 – number of nodes;  𝑬 – number of edges; ⌀(𝑵) – diameter; 𝑫𝒔−𝒍(𝑵) – density; 𝝀(𝑵) – average path 

length; 𝑸(𝑵) – modularity; 𝑰
𝒇,𝒍𝒊𝒏𝑽
𝝀 (𝑵) – entropy measure based on information functional using the j-spheres; 𝑰

𝒇,𝒍𝒊𝒏𝑪
𝝀 (𝑵) – 

entropy measure based on information functional using vertex centrality; 𝑾(𝑵) – Wiener index; 𝑹(𝑵) –Randić’s connectivity 

index. 

 

* Group networks: these networks are a result of summing up the two networks from each group. These networks consist of all 

the unique nodes and edges of the two networks to be summed. The role of the group networks is to highlight the difference 

between an individual network and its group network. E.g. to highlight the difference between the measure results of the 

Morning network in comparison with the Whole day network. 
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V. Conclusions 

For the possible implementation of various security measures 

in public places such as train stations without influencing 

passengers walking paths, one needs to understand their 

walking patterns in detail. As providers of such critical 

infrastructures as well as politicians and passengers tend to 

prefer an open system, the placement of measures is a very 

critical issue. One needs to maximize the rate of screened 

passengers and so of threats as well as minimize the change of 

walking paths in order to avoid crowds. 

The method of quantitative network analysis in this field is 

a novel approach and to the best of our knowledge it was not 

applied in previous analysis. In this novel analysis now at hand 

we found some very interesting and meaningful insights in the 

pattern of different groups of passengers based on real-life 

observation data. We identified for example that women tend 

to spend more time for browsing in the station than men do, 

but on the other hand their walking path is far more structured 

than the one of men. Furthermore, passengers seem to spend 

more time with browsing through the station in the mornings 

than they do in the afternoon. Also age influences the structure 

of the paths. Within the observed station the information 

counter and food stores were the most frequently visited spots 

– even more than train tracks or exits from entering passengers. 

However, we are also facing several limitations in our study. 

We assume the patterns to change according to different 

station structures. In the analysis at hand we only consider a 

dead-end station. Therefore, more research is needed on the 

field, especially in terms of additional observations. 

Additionally, the observations focused on passengers entering 

the station from entries only. We did not consider people 

arriving by train. This might also influence the used dataset 

and results. However, for the planning of security guards or 

smart camera systems, the findings might be very helpful as 

over different times of the day and days of the week the 

behavior changes strongly. 

In further research we will apply the findings directly in 

agent-based simulation models with adequately parameterized 

agents that follow the detected patterns in order to test for 

several security measures available for the considered station.   
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