
Journal of Information Assurance and Security.
ISSN 1554-1010 Volume 11 (2016) pp. 021-030
c©MIR Labs, www.mirlabs.net/jias/index.html

Facial Sketch-to-Photo Matching and Face
Recognition using Local Invariant Features

Alaa Tharwat1,2, Hani Mahdi2, Adel El Hennawy2

1Faculty of Engineering, Suez Canal University, Ismailia, Egypt
2Faculty of Engineering, Ain Shams University, Cairo, Egypt

Abstract: In this paper, a proposed model is used to identi-
fy face sketch images based on local invariant features. Our
system has three phases: (1) Feature extraction from the pho-
tos and sketches; (2) Reducing the dimension of feature vec-
tors; (3) Matching the features of the unknown sketches with
the features of the original photos. In this model, four local
invariant feature extraction methods are used to extract lo-
cal features from photos and sketches namely; Scale Invariant
Feature Transform (SIFT), Speed Up Robust Features (SUR-
F), Local Binary Patterns (LBP), and Weber Local Descrip-
tor (WLD). Due to high dimensional features of all feature ex-
traction methods, Direct Linear Discriminant Analysis (Direct-
LDA) is used. Moreover, in the classification phase, AdaBoost
classifier is used. CHUK face sketch database images were used
in our experiments. The experimental results proved that lo-
cal invariant features achieved high accuracy and SIFT method
achieved the best accuracy. Moreover, the effect of the differ-
ent parameters were discussed and tuned to extract robust and
discriminative features.
Keywords: Face Sketch, Scale Invariant Feature Transform
(SIFT), Local Binary Patterns (LBP), Speed Up Robust Features
(SURF), Linear Discriminant Analysis (LDA), Direct-LDA, Weber
Local Descriptor (WLD), AdaBoost Classifier.

I. Introduction

Biometrics method is one of the methods that are used iden-
tify individuals by measuring and analyzing physiological
characteristics, e.g. face, fingerprint, and iris, and behavioral
characteristics, e.g. signature, gait, and keystrokes. Face
recognition is one of the widely used biometrics. However,
changing expressions, mode, and health have a great impact
on the accuracy of face recognition. Moreover, face images
may be occluded by glasses or clothes [?, ?, ?, ?, ?].

Face recognition is used to assist law enforcement by retriev-
ing the photo of the suspects using sketch images which are
drawn based on the recollection of an eyewitness. Hence,
matching a sketch drawing with the photos becomes impor-
tant and helps the police to locate a group of potential sus-
pects. In the past, manual face sketch recognition used man-
ual measurements, but it achieves low accuracy and needs
more time. On the other hand, automatic face sketch recogni-
tion systems save processing time and increase the accuracy.
In addition to the challenges of face recognition application,

face sketch depends mainly on the skills of the artists. How-
ever, there is a great difference between sketches and photos;
hence, face sketch recognition is much harder than normal
face recognition [?, ?, ?].
The process of face sketch recognition system starts from
manually drawing a sketch by artists and then matches the
sketch with different photos in the database to determine
the nearest photo to the sketch and hence identify the
person. Different factors affect the accuracy of face sketch
recognition such as the skills of the artists and the matching
algorithm [?, ?]. Another important factor is that the sketch
is drawn while viewing a photograph of the person or the
person himself or the sketch is drawn by asking a witness
about the descriptions of the suspect [?, ?, ?].

A. Related Work

Many studies used face sketch to recognize face photo
by matching sketches directly with photos. For example,
Yong et al. [?], used hand-drawn face sketches which
were collected from five different artists. They used Prin-
cipal Component Analysis (PCA) to extract features and
Mahalanobis distance was used as a classifier. Moreover,
they used score level fusion technique and achieved 90%
recognition rate. Alaa Tharwat et al. used Scale Invariant
Feature Transform SIFT and Local Binary Patterns LBP to
extract local features from sketches and photos. They used
Support Vector Machines (SVM) and minimum distance
classifiers to match the features of the unknown sketches
with the photos and they achieved 99.25% and 96.4%
using SIFT and LBP methods, respectively [?]. Due to the
difference between sketches and photos, many other studies
synthesized sketches from photos to solve this problem.
Zhong et al. synthesized a photo from a sketch and then
they used photo-photo recognition to achieve better accuracy
[?]. They used 56 color photo-sketch pairs and Embedded
Hidden Markov Model (EHMM) to map between photos
and sketches and used eigenspace to identify sketch images.
Their proposed model achieved recognition rate 17.6%
when they directly applied photo-sketch recognition while
the recognition rate increased to 88.2% when they transform
photos-to-sketch and sketch-to-photo transformation. Liu
et al. generate pseudo-sketch images using Local Linear
Preserving (LLP). Moreover, they used Kernel Linear
Discriminant Analysis (KNDA) to recognize face photos

MIR Labs, USA



Facial Sketch-to-Photo Matching and Face Recognition using Local Invariant Features 22

from the pseudo-sketch images. They used CHUK dataset
and polynomial kernel for KNDA and their proposed model
achieved accuracy ranged from 87.67% to 99% [?]. Xiaoou
et al. used PCA technique to transform the photo face
images into pseudo-sketches. In addition, they used PCA
and Bayesian classifier to recognize face photos from
pseudo-sketches and they used CHUK dataset and their
proposed accuracy ranged from 81.3% to 97% [?]. Xinbo
et al. used Embedded Hidden Markov Model (E-HMM) to
model the nonlinear relationship between a photo-sketch
patch pair to generate pseudo-sketch images. Moreover, they
used PCA to extract features and they used CHUK dataset
and their recognition rate was 95.24% [?]. Alaa Tharwat et
al. used Gabor filters to extract features from three different
scales. The results of the three scales were combined at
classification level fusion. They also used linear regression
to transforms photos to sketches, i.e. pseudo-sketches. They
found that matching sketches to pseudo-sketches achieved
better results than matching sketches with original photos
[?].

B. Our Model

In this paper, a face sketch model based local features
was proposed. There are two methods to extract the local
invariant features, namely, sparse descriptor and dense
descriptor. In sparse descriptor method, the interest points
were extracted to represent the features such as Scale In-
variant Feature Transformation (SIFT) [?] and Speeded Up
Robust Features (SURF) [?]. While in the dense descriptor
methods, local features were extracted from every pixel over
the input image such as Local Binary Patterns (LBP) [?, ?]
and Weber’s Local Descriptor (WLD) [?]. In this model, two
sparse methods (SIFT and SURF) and two dense methods
(LBP and WLD) were used to extract local features. Each
method has different parameters that control the accuracy
of the model and the CPU time. Due to high dimensional
features of the feature extraction methods that were used in
our proposed model, Direct Linear Discriminant Analysis
(Direct-LDA) method was used for two purposes. First,
Direct-LDA reduces the dimension of feature vectors. Sec-
ond, it increases the separability between different classes.
Adaptive Boosting (AdaBoost) classifier was used to match
the features of an unknown sketch with the photo images.

The rest of this paper is organized as follows: The prelim-
inaries of the proposed model are introduced in Section II.
The proposed model is explained in Section III. Experimen-
tal results and discussion are introduced in Section IV. Fi-
nally, concluding remarks and future work are introduced in
Section V.

II. Preliminaries

A. Scale Invariant Features Transform (SIFT)

SIFT is widely used due to its robustness against many chal-
lenges such as scaling and rotation [?]. SIFT algorithm con-
sists of four steps as follows:

1. Creating the Difference of Gaussian (DoG): The goal of

creating DoG or scale-space is to decompose the input
image into different scales to extract features from dif-
ferent image’s scales. At the first level, the images will
be in the original size. At the second level, the images
are half-sized, quarter-sized at the next level, and so on
[?, ?, ?, ?]. The images are decomposed by filtering the
original images with Gaussian functions of many differ-
ent scales. The DoG represents the difference between
nearby scales separated by a constant multiplicative fac-
tor k as follows:

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (1)

where, D(x, y, σ) is the DoG, L(x, y, σ) and
L(x, y, kσ), are two images that are produced from the
convolution of Gaussian functions with an input image
I(x, y) using σ and kσ, respectively, as follows:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2)

where G(x, y, σ) represents the Gaussian function
and it is calculated as follows, G(x, y, σ) =

1
2πσ2 exp[−x

2+y2

σ2 ] [?].

(a) (b)

Figure. 1: A sample of keypoints and its orientation, (a) the
keypoints without orientation, (b) the keypoints after apply-
ing assignment orientation step.

2. Key-point (Extrema) Detection: The Interest points in
DoG pyramids, called key-points, are detected by com-
paring each point with its 26 neighbours, i.e. eight
neighbours in the current level and nine neighbours in
the above and below levels, to compute the extrema
points. If the value of the current pixel represents lo-
cal minimum or maximum, then this point is known as
an extrema [?, ?]. Some key-points that are sensitive to
noise, or are poorly localized on an edge are removed.

3. Orientation Assignment: In this step, one or more ori-
entations are assigned to the key-points based on local
image properties as shown in Figure (1). An orientation
histogram is first formed from the gradient magnitude
and orientations of the sample points within a region
around the key-point. Gradient orientation and orienta-
tion are calculated as in Equations (3 and 4) [?].



23 Tharwat et al.

m(x, y) = ((L(x+ 1, y)− L(x− 1, y))2

+(L(x, y + 1)− L(x, y − 1))2)
1
2

(3)

θ(x, y) = arctan
(L(x, y + 1)− L(x, y − 1))

(L(x+ 1, y)− L(x− 1, y))
(4)

Peaks in the orientation histogram correspond to domi-
nant directions of local gradients. The highest peak in
the histogram and any other local peaks are used to cre-
ate a key-point with that orientation. Some points will
be assigned to many different orientations if there are
multiple peaks of similar magnitude [?, ?].

4. Descriptor Computation: The image gradient magni-
tudes and orientations are sampled around the key-point
location and illustrated with small arrows at each sam-
ple location [?]. The coordinates of the descriptor and
the gradient orientations are rotated relative to the key-
point orientation to increase the robustness against ori-
entation invariance [?].

SIFT algorithm has many parameters that have a great impact
on the robustness of SIFT. The first parameter is the Peak
Threshold parameter. This parameter is used to determine
the amount of contrast to accept a key-point. The minimum
value of Peak Threshold parameter is 0, which all key-points
are accepted, i.e. there are no eliminated key-points as shown
in Figure (2). Increasing the value of peak threshold parame-
ter decreases the number of key-points; hence, the robustness
of feature matching may be decreased. The second parame-
ter is the Patch Size parameter, which controls the number of
patches and the number of key-points. Hence, increasing the
size of patches decreases the number of key-points and SIFT
will be considered as global features. On the other hand, de-
creasing patch size parameter increases the number of key-
points; hence, increases the CPU time [?, ?]. The Number of
Angles is the third parameter. Increasing number of angles
collects features in different angles, i.e. orientations, and in-
crease the number of features; hence, improve the accuracy.
On the other hand, decreasing number of angles leads to a s-
mall number of features, low matching rate, and the features
are more sensitive to rotation [?].

B. Speed Up Robust Features (SURF)

SURF algorithm is one of the recent feature extraction meth-
ods. It consists of the following steps.

1. In the first step, the integral of an image is generated.
An Integral image I(x) is an image where each point
X = (x, y) stores the sum of all pixels in a rectangular
area between origin and X (See Equation (5)) [?].

I(X) =

i≤x∑
i=0

j≤y∑
j=0

I(x, y) (5)

The calculations of the integral image are independent
of the size of the image.

2. In the second step, the interest points are extracted. In
SURF algorithm, Hessian matrix is used to extract the
interest points as follows:

H(X,σ) =

[
Lxx(X,σ) Lxy(X,σ)
Lxy(X,σ) Lyy(X,σ)

]
(6)

whereX = (x, y) is a point in an image I , σ is the scale,
and Lxx(X,σ) is the convolution of the Gaussian sec-
ond order derivative ∂2g(σ))

∂x2 with the image I in point

X as follows, Lxx(X,σ) = I(X) ∗ ∂
2g(σ))
∂x2 . Similar-

ly, Lxy and Lyy are calculated as follows, Lxy(X,σ) =

I(X) ∗ ∂
2g(σ))
∂xy and Lyy(X,σ) = I(X) ∗ ∂

2g(σ))
∂yy [?, ?].

Hessian matrices calculates the interest points as fol-
lows, Det(Happrox) = DxxDxy − (wDxy)2, where
Dxx, Dxy, Dyy are the approximation of second order
Gaussian partial derivative in x, xy, and y directions,
respectively, and w is the weight of the filter responses.
A negative determinant means that eigenvalues with dif-
ferent signs, therefore, the analyzed point neither a local
maximum nor minimum; hence, it is not interest point.
On the other hand, positive determinant indicates that
both eigenvalues are either positive or negative, thus an
extreme point (maximum or minimum) is detected. For
more details, we refer to [?, ?].

3. The third step is the orientation assignment. In this step,
Haar wavelets responses are calculated in x and y di-
rections within a circular neighbourhood of radius 6s
around the interest point, where s represents the scale
at which the interest point is detected. The orientation
of each interest point is then calculated by all responses
within a sliding orientation window of size (π/3) [?, ?].

4. In the fourth and last step in SURF algorithm, a SURF
descriptor for each interest point is generated. In this
step, the descriptor is calculated from square interest
point’s neighbourhood with size 20s. The square is then
divided into 16 equal sub-squares with edge size 5s. In-
side each square, Haar Wavelet filters are used to cal-
culate responses. Moreover, the neighbourhood of the
interest point is rotated to match the orientation of the
interest point [?, ?].

Detector or contrast threshold is one of the most importan-
t parameters of SURF. The goal of this parameter is to e-
liminate weak interest points as peak threshold parameter in
SIFT.

C. Weber Local Descriptor (WLD)

The goal of WLD method is to describe an image as a his-
togram of gradient orientations and differential excitations
[?]. WLD is originally inspired by Weber’s Law where Ernst
Weber, in the 19th century, observed that the ratio between
an increment threshold and the background intensity is con-
stant as follows:

∆I

I
= k (7)

where ∆I represents the increment threshold, I refers to the
initial intensity or an image background, and k denotes the



Facial Sketch-to-Photo Matching and Face Recognition using Local Invariant Features 24

(a) Peak Threshold =0 (b) Peak Threshold=0.10 (c) Peak Threshold=0.4

Figure. 2: The effect of the value of peak threshold parameter on the number of features.

constant value even if I is changing. The fraction ∆I
I is

known as Weber law or Weber fraction [?].
WLD algorithm consists of three steps, namely, calculating
differential excitations, gradient orientations, and building
the histogram. The details of the WLD steps are summarized
below.

Dx0H Dx1H Dx2H

Dx3H

Dx4HDx5HDx6H

Dx7H DxcH

Input=Image

F1 F1 F1

F1

F1F1

F1 -8

f00

F1

F1

f01

0

00

0 00

00

0

f10

-1

00

F1 00

00

0

f11

-1

00

00

F1

0

vs
00 vs

01 vs
10 vs

11

Excitation=DξH=arctan=Dνs
00/νs

01H Orientation=DφtH=arctan=Dνs
11/νs

10H

0

 

Calculate=WLD=Histogram

20 35 55

40

906085

70 50

==-30-15F5-10F40F10F35F20=55 =xc=50 =60-35=25 =70-40=30

Filtering

Figure. 3: Illustration of the computation of the WLD algo-
rithm.

1. Differential Excitation (ξ): In this step, the difference
between the pixel xc (the center pixel) and its neigh-
bours is calculated using Equation (8) [?].

ν00
s =

p−1∑
i=0

(∆xi) =

p−1∑
i=0

(xi − xc) (8)

where xi(i = 0, 1, . . . , p − 1) represents the intensity
of the ith neighbours of xc and p refers to the num-
ber of neighbours. For example, as shown in Figure

(3), there are eight neighbours to xc, i.e. p = 8. To
calculate the differential excitation and the orientation,
four filters, f00, f01, f10, and f11 are used to calculate
ν00
s , ν

01
s , ν

10
s , and ν11

s , respectively, where, ν00
s repre-

sents the difference between xc and its neighbours as
denoted in Equation (8), ν01

s = xc, ν10
s = x5 − x1, and

ν11
s = x7 − x3. The ratio between the differences, ν00

s ,
and the intensity of the current pixel, ν01

s = xc is then
computed as in Equation (9). Finally, the arc-tangent
function is applied on Gratio(.) to get the differential
excitation of (xc), as denoted in Equation (10) [?].

Gratio(xc) = ν00
s /ν

01
s (9)

ξ(xc) = Garctan[Gratio(xc)] = arctan
[
ν00
s /ν

01
s

]
= arctan

[
p−1∑
i=0

(
xi − xc
xc

)]
(10)

2. Orientation (φt): This step is starting by computing the
gradient orientation of the current pixel, xc, by calculat-
ing the changes in the horizontal and vertical directions
as follows:

θ(xc) = arctan
(
ν11
s

ν10
s

)
= arctan

(
x7 − x3

x5 − x1

)
(11)

The gradient orientation is quantizing by transforming
it into T dominant orientation. This is achieved by first
mapping θ to θ́ as follows:

θ́ = arctan2(ν11
s , ν

10
s ) + π (12)

where

arctan2(ν11
s , ν

10
s )

=


θ, ν11

s > 0 and ν10
s > 0

π − θ, ν11
s > 0 and ν10

s < 0
θ − π, ν11

s < 0 and; ν10
s < 0

−θ, ν11
s < 0 and ν10

s > 0

(13)



25 Tharwat et al.

where θ ∈ [−π/2, π/2] and θ́ ∈ [0, 2π]. Finally, the
quantization function is calculated as in Equation (14)
[?].

φt = fq(θ́) =
2t

T
π , (14)

where

t = mod

(⌊
θ́

2π/T
+ 0.5

⌋
, T

)
(15)

3. WLD Histogram: In this step, the WLD histogram is
computed using the values of both the differential ex-
citation (ξj) and orientation (φt) at each pixel. Hence,
this histogram consists of (ξj , φt), j = 0, 1, . . . , N − 1
and t = 0, 1, . . . , T −1, where N represents the dimen-
sionality of an image and T denotes the number of the
dominant orientation [?].

The patch size is a very important parameter affecting the
accuracy and CPU time of the WLD algorithm. Changing the
patch size changes the number of extracted features; hence,
classification time and recognition rate are affected.

D. Local Binary Patterns (LBP)

LBP feature extraction method is used to extract local fea-
tures from grayscale images. In LBP, the LBP code is calcu-
lated for each pixel by comparing each pixel with its neigh-
bors, thus LBP method is relatively robust to rotation and
poor quality images [?, ?]. The LBP code is represented by
binary number and it is calculated as follows:

LBPP,R =

P−1∑
i=0

s(gi−gc)2i, where s(x) =

{
1, x ≥ 0
0, x < 0

(16)
where gc is the gray level of the center pixel, gi, i =
0, 1, . . . , P − 1 represents the gray levels of the P equally
spaced pixels around the center pixel (gc), LBPP,R repre-
sents the LBP code when the number of neighbors pixels is
P , R(R > 0) is the radius or distance from the center to the
neighboring pixels, and s is the threshold function of x as
shown in Figure (4) [?, ?].
To increase the robustness of LBP against rotation, LBP code
is rotated until reach to its minimum as denoted in Equation
(17).

LBPP,R = min{ROR(LBPP,R, i)}, i = 0, 1, . . . , P − 1
(17)

where ROR(f, i) represents the circular bit-wise right shift
on the f value i times.
There are two types LBP codes, namely, uniform and non-
uniform patterns. In a uniform pattern, the bit-wise transition
from zero to one or from one to zero is maximum one. For
example, the binary values, 11111111 and 00000000 have
zero transition, are uniform patterns. On the other hand, the
values 01010101 and 11001100 have seven and three transi-
tions, respectively, are non-uniform patterns [?, ?].

InputrImage

70
(g0)

50
(g7)

35
(g6)

120
(g1)

40
(gc)

25
(g5)

100
(g2)

20
(g3)

20
(g4)

Sub-Window

1

1

0

1

135

0

1

0

0

Thresholding

LBPrCode
(10000111)2=135

Figure. 4: Illustration of the computation of the LBP algo-
rithm.

gc gc gc

P=4, R=1P=8, R=1 P=16, R=2

Figure. 5: Positions of the neighboring pixels according to
different values of P and R.

After calculating the LBP code for each pixel of the gray im-
age, a histogram is built to represent the texture of the image
as follows:

H(k) =

I∑
i=1

J∑
j=1

f(LBPP,R, k), k ∈ [0,K] (18)

where

f(x, y) =

{
1 , x = y
0 , otherwise (19)

and K represents the maximum LBP code.
LBP method has two main parameters that affect the number
features and robustness of LBP. The first parameter is the ra-
dius (R). Due to a high correlation between neighborhood
pixels, more information can be extracted from local neigh-
bors, thus the radius R is usually small [?, ?]. The number of
neighbors P represents the second parameter. Changing the
value of P will change the number of neighbors as shown in
Figure (5). The neighbors that do not fall exactly on pixel-
s are estimated using interpolation. Increasing the value of
P increases the robustness of the LBP code against image
scaling, translation, or noise [?, ?].

E. Direct-Linear Discriminant Analysis (DLDA)

LDA is one of the common feature extraction and dimen-
sionality reduction methods. The main objective of LDA is
to search for LDA space that maximizes the Fishers’ formula
(J(W ) = WTSB W

WTSW W
) by: (1) Increasing the between-class

variance, SB , by increasing the distance between means/-
centroids of different classes, (2) Decreasing the within-class



Facial Sketch-to-Photo Matching and Face Recognition using Local Invariant Features 26

Algorithm 1 : Direct-LDA

1: Compute the mean of each class µi and total mean of all
classes µ.

2: Compute SB as follows:

SB =

c∑
j=1

ni(µj − µ)(µj − µ)T (20)

where µj is the mean of jth class, µ is the total mean, ni
is the number of samples in each class, and c represents
the number of classes.

3: Diagonalize SB as follows:

V TSBV = λ (21)

where V and λ represent the eigenvectors and eigenval-
ues of SB , respectively.

4: Sort eigenvectors according to eigenvalues and neglec-
t the eigenvectors that have eigenvalues less or equal to
zero. The selected eigenvectors and eigenvalues are de-
noted by Y and Db, respectively.

5: Let Z = Y D
− 1

2

b , where Z used to reduce the dimension
of SB from n to m.

6: Use Z to diagonalize ZTSWZ, as follows:

UTZTSWZU = Q (22)

where U and Q represent the eigenvectors and eigenval-
ues of ZTSWZ, respectively.

7: Sort eigenvectors U according to eigenvalues Q and ne-
glect eigenvectors that have high eigenvalues to increase
the ratio of Fishers’ formula. The selected eigenvectors
and eigenvalues are denoted by R and Dw, respectively.

8: The final projection space (A) is calculated as follows,
A = RTZT ,

variance, SW , by decreasing the distance between the sam-
ples and mean of each class, where W is the transformation
matrix that is used to project the original data on the LDA
space [?, ?].
Small Sample Size (SSS) is one of the main problems of L-
DA. This problem occurs when the number of samples in
classes is lower than the dimension of the feature vectors of
those samples. Due to (1) high dimensionality in face sketch
images and photos in this research, (2) the number of sam-
ples in each class is small; therefore, Direct-LDA method is
used. In this method, the null space of SB , which contains no
useful information for classification, is removed. This step is
achieved by diagonalizing SB first then diagonalizes SW [?].
Algorithm (1) summarizes the steps of Direct-LDA.

F. AdaBoost Classifier

AdaBoost (Adaptive Boosting) is a classifier ensemble algo-
rithm and it consists of a number of weak learners. A weak
learner/classifier is a simple and easy to implement classifier
such as single level decision tree or simple neural networks
[?]. In ensemble classifiers, the weak learners are first trained
and then their decisions are combined to determine the final

decision. AdaBoost classifier consists of two phases, namely,
training and testing.
In the training phase, the parameters of AdaBoost classifier
such as weights of all samples, and maximum iteration (T )
are first initialized. The weights of all samples (w) are ini-
tialized to be equal and the weights will be adjusted for each
iteration. For each iteration (t), the training samples are se-
lected according to their weights (w), and these samples are
used to build the weak learner (Ct). The difference between
the predicted values and the true labels of the training sam-
ples, i.e. the training error rate of the current weak learner
(εt) is then calculated. If the error rate is more than or equal
to 0.5, i.e. 50% of the samples, the weights (w) are reinitial-
ized and the error rate is recalculated again. The weight of
the current weak learner, (αt ∈ (0, 1)), is then calculated as
follows:

αt =
εt

1− εt
(23)

As denoted in Equation (23), increasing the error rate in-
creases the weight of the weak learner (αt). The weights
of the training samples are then updated at the end of each
iteration to be used in the next iteration as denoted in Equa-
tion (24). In each iteration, the AdaBoost will focus on the
misclassified patterns and the procedure is repeated for many
iterations until the performance is satisfied [?].

wt+1
j =

wtjα
(1−ltj)

t∑N
i=1 w

t
iα

(1−lti)
t

, j = 1, 2, . . . , N (24)

In the testing phase, to classify an unknown sample (xtest),
all weak learners of the AdaBoost classifier are used as de-
noted in Equation (25). The score of each class is calculated
and then assigns the class that has a maximum score to the
unknown sample.

µt =
∑

Ct(xtest)=ωt

ln(
1

αt
) ,∀ t = 1, 2, . . . , T (25)

where T represents the maximum number of iterations and
it ranges from a few dozen to a few thousand, Ct(xtest)
denotes the tth weak learner, µt represents the score of a
class ωt, and αt refers to the weight of the tth weak learner.
The number of iterations parameter, i.e. the number of weak
learners, controls the size of the ensemble and it controls the
accuracy of AdaBoost classifier.

III. Proposed Face-Sketch Recognition System

This section describes the proposed approach in detail. The
proposed model depends on using the different local invari-
ant features to extract robust features and then using the Ad-
aBoost classifier to identify an unknown sketch. The ap-
proach, as illustrated in Figure (6), generally consists of three
phases: feature extraction, feature reduction, and classifica-
tion. These phases are explained below.

A. Feature Extraction Phase

In this phase, four local invariant methods were adapted to
extract features. As shown in Figure (6), the photos were
used to train the model in the training phase. In other words,



27 Tharwat et al.

Featurek
Extraction

Dimensionalityk
Reduction

Modelk
Training

TrainingkData

Model

TrainingkPhase
Enrollment

Featurek
Extraction

Projection Classification

TestingkData

TestingkPhase
Recognition

Decision

(MxN)
(kxN)

(Mx1) (kx1)

Figure. 6: A block diagram of the proposed model.

photos represent the training data, while the sketches were
used as testing data in the testing phase. Each sample (xi)
of the training data was represented by a vector; hence, all
the training samples were used to build the feature matrix
(X = {x1, x2, . . . , xN}), where N is the number of photos,
while the unknown sketch was represented by one feature
vector.

B. Feature Reduction Phase

The output of the feature extraction phase is usually a high
dimension feature vector because dense methods extract fea-
tures from each pixel and spares method have a high number
of interest points. To use these feature vectors in the classi-
fication phase, there will be a high computational cost and
time-consuming process. That is to say that the high dimen-
sionality will in turns affect the performance of the proposed
approach. To address these issues, Direct-LDA (DLDA) al-
gorithm, described in Section II-E, was applied on the output
of the feature extraction phase. In other words, the DLDA
method was applied to the feature matrix (X ∈ RM ) which
computed in the training phase to find the DLDA space, W ,
that reduces the dimension of the training data to Rk and
separate different classes, i.e. photos. The feature vector of
an unknown sketch image (xtest ∈ RM ) was then project-
ed on the DLDA space to reduce its dimension to Rk before
starting the classification phase.

C. Classification Phase

Finally, in the classification phase, the proposed model clas-
sifies an input, a sketch image of unknown person, to the
nearest photo. In this paper, a supervised learning classifier
(AdaBoost) was used. As shown in Figure (6), the feature
matrix, after projection onto the DLDA space, and the labels
of the training samples represent the input to the AdaBoost
classifier. The AdaBoost classifier model was then built by

training one weak learner in each iteration and calculating
the weight of that weak learner.
To automatically identify an unknown sketch image, all weak
learners were used to classify that sketch image. The weight-
ed voting method was then used to calculate the score of each
class, and assign the class with the maximum score to the un-
known image.

Figure. 7: Samples of face photos (top row) and correspond-
ing sketches (bottom row) for different three individuals.

IV. Experimental Results and Discussion

The proposed approach was evaluated using CHUK face s-
ketch dataset which consists of 606 individuals. Each per-
son has a frontal face photo image and a sketch image drawn
by an artist. The dataset was divided into two sets, namely,
training and testing sets. The training set consists of 306 in-
dividuals, while the other images were used as a testing set.



Facial Sketch-to-Photo Matching and Face Recognition using Local Invariant Features 28

Table 1: Accuracy (in %) and CPU time (secs) of the pro-
posed model using SIFT method according to different an-
gles.

Number of
Angles

Length of
Feature Vector CPU Time Accuracy

4 64 0.44 94.5
8 128 0.64 99.33

16 256 1.05 99.67

The size of all photos and sketches were 250 × 200; Figure
(7) shows samples of the used dataset. In this section, four
experiments were conducted to investigate the robustness of
the feature extraction methods that were used to extract fea-
tures from photo and sketch images. In each experiment, one
of the local invariant feature extraction methods that were
mentioned in Section II was used.
In the first experiment, SIFT method was used. This exper-
iment has three sub-experiments to tune up parameters of
SIFT method. The second experiment was conducted to in-
vestigate the robustness of SURF feature extraction method.
In the third experiment, WLD was used as a feature extrac-
tion method. The fourth experiment was conducted to test
the robustness of LBP feature extraction method. In all the
four experiments, AdaBoost classifier was used to match the
unknown sketch with the training photos. The size of the
AdaBoost classifier was 15. One more experiment was con-
ducted to evaluate the influence of the size of AdaBoost clas-
sifier on the accuracy and CPU time of the proposed model.
Herein, the accuracy of our method is given as a ratio of the
number of correctly classified samples to the total number of
samples. It is computed as follows:

Accuracy =
#Correct Classification

#Total Samples
(26)

The experiments in this paper were conducted using a PC
with Intel(R) Core(TM) i5-2400 CPU @ 3.10 GHz, and 4.00
GB RAM. The Matlab platform was used and it was run un-
der windows 32-bit operating system.

A. SIFT Experiments

The aim of this experiment was to evaluate the robustness
of SIFT method. In this experiment, three sub-experiments
were conducted to test the influence of the parameters of
SIFT method (peak threshold, patch size, and the number of
angles) on the accuracy and CPU time of the proposed mod-
el. In the first sub-experiment, the value of peak threshold pa-
rameter was 0, 0.05, 0.1, 0.15, and 0.25. Figure (8) shows the
results of this experiment. In the second sub-experiment, a
different number of angles was used to extract features from
different orientations. The number of angles was 4, 8, and
16. Table (1) summarizes the result of this sub-experiment.
In the third sub-experiment, different values of patch size pa-
rameter were used to evaluate the accuracy of the proposed
model. The patch size was 64× 64, 32× 32, 16× 16, 8× 8,
4 × 4, and 2 × 2. Table (2) summarizes the results of this
sub-experiment.
From Figure (8), it can be noticed that the accuracy inversely
proportional to the value of peak threshold parameter. More-
over, the number of key-points decreased when the peak

0 0.05 0.1 0.15 0.2 0.25

90

92

94

96

98

100

Thershold Parameter

A
cc

ur
ac

y 
(%

)

0 0.05 0.1 0.15 0.2 0.25
0

500

1000

1500

2000

N
um

be
r 

of
 K

ey
po

in
ts

Figure. 8: Accuracy and number of key-points of the pro-
posed model using SIFT method with different values of the
peak threshold parameter.

Table 2: Accuracy (in %) and CPU time (secs) of SIFT
method using different values of patch size parameter.

Patch Size No of Patches CPU Time Accuracy
64× 64 3× 3 = 9 5.5 91.56
32× 32 7× 6 = 42 1.18 95.61
16× 16 15× 12 = 180 0.64 99.33
8× 8 31× 25 = 775 0.48 97.54
4× 4 62× 50 = 3100 0.44 93.44
2× 2 125× 100 = 12500 0.43 83.6

threshold increases. Thus, classification time decreases. Ta-
ble (1) shows the accuracy and CPU time when the number
of angles was, 4, 8, and 16. From the table, it can be noticed
that the accuracy was increased when the number of angles
increases from four to eight angles. The reason for that is
increasing the number of angles extracts features from dif-
ferent orientations, thus, the features are more robust against
rotation. However, increasing the number of angles increases
the length of the feature vector; hence, needs more classifica-
tion time. Generally, using eight angles will save more time
and extract discriminative features. According to the patch
size parameter, as shown in Table (2), increasing the patch
size decreases the number of patches, decreases the number
of key-points, thus SIFT will be considered as global and ex-
tracting features from each patch needs more CPU time. On
the other hand, small patch size increases the number of key-
points, but it takes less CPU time to extract features. Further
analysis to this parameter showed that the accuracy of SIFT
using different values of patch sizes fluctuated and the best
accuracy achieved when the patch size was 16× 16.

B. SURF Experiment

The aim of this experiment was to evaluate the contrast
threshold of SURF method on the accuracy of the proposed
model. In this experiment, different values of the contrast
threshold parameter were used to show how this parameter
affects the accuracy and CPU time. Figure (9) shows the re-
sults of this experiment.
From Figure (9), it can be noticed that the accuracy inversely
proportional to the value of the contrast threshold parameter.



29 Tharwat et al.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

80

85

90

95

100

Contrast Thershold Parameter

A
cc

ur
ac

y 
(%

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
400

500

600

700

800

900

1000

N
um

be
r 

of
 In

te
re

st
 P

oi
nt

s
Figure. 9: Accuracy and number of interest points of the
proposed model using SURF method with different values of
the contrast threshold parameter.

In terms of the number of interest points, the number of in-
terest points decreased when the contrast threshold increases.
Hence, increasing the contrast threshold reduces the required
classification time.

C. WLD Experiment

In this experiment, different patch sizes were conducted to
investigate the impact of the WLD patch size parameter on
the accuracy and CPU time of the proposed model. Changing
the value of patch size parameter changes the robustness of
WLD features. Figure (10) shows WLD features using dif-
ferent values of the patch size parameter. Table (3) illustrates
the results of this experiment.

(a) 3× 3 (b) 5× 5 (c) 7× 7

(d) 9× 9 (e) 11× 11 (f) 13× 13

Figure. 10: WLD features using different values of patch
size parameters.

From Table (3), it was found that the most suitable size
for the patch parameter was 7 × 7. This is because it
allowed our model to achieve an accuracy rate significantly
better than the other sizes. Moreover, it can be noticed that
increasing the patch size led to decreasing the length of the
feature vectors, consequently decreasing the CPU time for
classification. Thus, the 7 × 7 patch size did not take more

Table 3: Accuracy (in %) and CPU time (secs) of the WLD
method using different values of patch size parameter.

Patch Size CPU Time Accuracy
3× 3 1.64 91.56
5× 5 0.95 94.65
7× 7 0.54 96.67
9× 9 0.41 95.33

11× 11 0.32 94.65
13× 13 0.24 90.6

Table 4: Accuracy (in %) and CPU time (secs) for LBP
method using different values of P and R.

P R CPU Time Accuracy
4 1 0.232 85.5
4 2 0.241 83.6
4 3 0.245 81.4
8 1 0.248 91.5
8 2 0.256 93.5
8 3 0.262 95.2
16 2 0.38 96.33
16 3 0.426 94.6

CPU time comparing with the other patch sizes.

D. LBP Experiment

As mentioned in Section II-D, LBP method has only two pa-
rameters namely, P which represents the number of neigh-
bors and R which represents the radius. In this experiment,
different values of P and R were used to show how these t-
wo parameters affect the accuracy and CPU time. Table (4)
summarizes the results of this experiment.
Table (4) shows that increasing the values of P and R
increases the CPU time slowly. The reason is that the
calculations for each pixel were increased when the P and
R increased. For example, when P = 4, the LBP code is
calculated by comparing each pixel with its four neighbors,
while when P = 16 we need to compare the current pixel
with 16 neighbors which needs more time and memory
space. Moreover, increasing P increases the length of the
feature vector. According to the accuracy, we note that the
best accuracy achieved when P = 16 and R = 2.

E. Ensemble Size Experiment

The aim of this experiment was to investigate the accuracy
rate of our face sketch recognition model when changing of
the ensemble size, L, of the AdaBoost classifier. In this ex-
periment, the size of the AdaBoost ensemble was 5, 15, 25,
and 35. Table (5) summarizes the experimental results of this
experiment.
From Table (5) two main remarks can be seen. Firstly, the
CPU time of the proposed model was increased when the
size of the ensemble increases. In other words, increasing the
ensemble size increases the number of weak learners; hence,
training the model needs more time. Secondly, the accuracy
also increased when the size of the ensemble increases. The
analysis of this point is that increasing the ensemble size,
i.e. weak learners, accordingly, more classifiers were used to
predict the class of the unknown sample.



Facial Sketch-to-Photo Matching and Face Recognition using Local Invariant Features 30

Table 5: Accuracy (in %) and CPU time (secs) of the proposed model using SIFT, SURF, WLD, and LBP methods with
different ensemble sizes.

Ensemble Size SIFT SURF WLD LBP
Accuracy CPU Time Accuracy CPU Time Accuracy CPU Time Accuracy CPU Time

5 99.33 0.64 98.33 0.51 96.67 0.54 96 0.38
15 99.33 1.21 98.33 1.12 96.67 0.98 96.33 0.46
25 99.67 3.25 98.67 2.94 96.67 1.74 96.67 0.74
35 99.67 7.45 98.67 4.56 97 3.05 96.67 0.82

F. Further Analysis

From the experimental results obtained from the five experi-
ments, the following remarks can be noticed. First, for SIFT
method, the most suitable value of the peak threshold param-
eter was zero because it allows more key-points than other
values. Moreover, using eight angles achieved high accuracy
and low CPU time. In addition, 16 × 16 patch size param-
eter achieved the highest accuracy. Generally, SIFT method
achieved high accuracy (99.67%) compared with the three
other methods. Second, SURF algorithm achieved high ac-
curacy (98.33%) when the contrast threshold parameter was
low and the highest accuracy achieved when the contrast
threshold was zero. Third, WLD method achieved high ac-
curacy (97%) when the patch size was 7 × 7. Fourth, LBP
achieved the lowest accuracy (96.67%) among the other three
methods. The most suitable values of P and R parame-
ters were 16 and 2, respectively. Fifth, sparse, i.e. SIFT
and SURF, methods achieved accuracy better than dense, i.e.
WLD and LBP, methods. This is because sparse methods
extract features from different levels, i.e. scales, of the orig-
inal image while in dense methods the features are extracted
from only the original scale. Sixth, increasing the size of
AdaBoost ensemble increases the accuracy, but needs more
CPU time.
To further prove that our model is better than other related
work, as illustrated in Table (6), a comparison with the most
related work [?, ?, ?, ?] was conducted. From this table, it
can be remarked that although our approach used the same
dataset (CHUK dataset), local invariant features (both sparse
and dense) methods achieved high accuracy results and s-
parse methods achieved results better than dense methods.

1) Sparse vs. Dense Methods

As mentioned in Section I, there are two main methods to
extract local invariant features: dense and sparse methods.
To justify why sparse methods achieved accuracy better than
dense methods in this work, a comparison between the two
methods that were used in this work is made.
There are two main differences between sparse and dense
methods. Firstly, the computation time of LBP and WLD
depend mainly on the size of the image. On the other hand,
in SIFT and SURF methods, the scale space step needs more
time. Hence, the complexity of sparse methods is much high-
er than dense methods [?]. Secondly, in terms of accuracy,
sparse methods achieve high accuracy compared with dense
methods as proved in our experiments. This is because s-
parse methods are applied on different scales while in dense
methods the features are only extracted from the original s-
cale which reduces the accuracy of the dense methods than
the sparse ones.

Table 6: A comparison between some state-of-the-art models
and the proposed model.

Author Method Accuracy (in %)
X. Tang et al. [?] Eigentransform+PCA 75
X. Tang et al. [?] Eigentransform+Bays 81.3
X. Tang et al. [?] PCA 81.3-97

Qingshan Liu et al. [?] LDA 85
Qingshan Liu et al. [?] PCA 64.33

Xinbo et al. [?] E-HMM+PCA 95.24
Wang et al. [?] Multiscale−MRF−SP 96.3

Proposed Model

SIFT 99.67
SURF 98.33
WLD 97
LBP 96.67

Markov Random Field (MRF), Sketch/ Photo (SP)

V. Conclusions and Future Work

In this paper, a face sketch recognition model was proposed.
In this model, two types of local invariant feature extraction
methods, namely, dense and sparse methods were used. SIFT
and SURF methods were used as sparse methods, while LBP
and WLD methods were used as dense methods. Moreover,
AdaBoost classifier was used to match the features of the
unknown sketch with the features of the photos. Four dif-
ferent experiments were performed to test the robustness of
the four feature extraction methods. Another experiment was
conducted to evaluate the impact of the ensemble size on the
accuracy and CPU time. Due to high dimensionality in both
sparse and dense methods, Direct-LDA method was used to
reduce the number of features.
In terms of accuracy rate and CPU time, the best perfor-
mance of SIFT algorithm achieved when peak threshold=0,
the number of angles=8, and patch size=16× 16. According
to SURF method, the best accuracy achieved when the con-
trast threshold was zero. For WLD method, the best accuracy
achieved when the patch size was 7 × 7. For LBP method,
the best accuracy achieved when P=16 and R=2. In general,
SIFT method achieved the best accuracy (99.67%) when the
ensemble size was more than 25. Thus, it could be concluded
that the proposed model has achieved an excellent accuracy
against many state-of-the-art methods.
In the future work, bio-inspired optimization algorithms are
used to select the most discriminative features. Moreover,
further analysis is performed to increase the accuracy of the
future model.


