
Journal of Information Assurance and Security.
ISSN 1554-1010 Volume 11 (2016) pp. 348-358
c©MIR Labs, www.mirlabs.net/jias/index.html

A Collaborative Task Role Based Access Control
Model

Mohamed Amine Madani, Mohammed Erradi, Yahya Benkaouz

Networking and Distributed Systems Research Group, SIME Lab,
ENSIAS, Mohammed V University in Rabat, Morocco

amine.madani@um5s.net.ma, mohamed.erradi@gmail.com, y.benkaouz@um5s.net.ma

Abstract: Cloud computing allows to move computing and
storage components from individual systems into the cloud,
which provides software and hardware services over the Inter-
net. A collaborative application is among software services that
can be provided by the cloud computing to enable collabora-
tion among users from the same or different tenants. During
such collaborations, the participants need to access and use re-
sources held by other collaborating users. These resources often
contain sensitive data. They are meant to be shared only dur-
ing specific collaborative sessions. This paper proposes a Col-
laborative Task Role-Based Access Control CTRBAC1 model to
ensures access control to the shared resources in a collabora-
tive session in multi-tenants environments. The suggested C-
TRBAC model is an extended version of RBAC in which new
entities were added in order to support together: Collabora-
tion in multi-tenant environment, active and passive access con-
trol and collaborative sessions. The suggested model has been
implemented using Swift component in the open source cloud-
computing platform “OpenStack”.
Keywords: access control; cloud multi-tenant; collaborative task
Role-Based Access Control; OpenStack.

I. Introduction

Cloud computing allows to move computing and storage
components from individual systems into the cloud, which
provides software and hardware resources over the Inter-
net. The US National Institute of Standards and Technol-
ogy (NIST) [1] defines cloud as follows:“Cloud computing
is a model for enabling convenient, on-demand network ac-
cess to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications and services)
that can be rapidly provisioned and re-leased with minimal
management effort or service provider interaction”.
The cloud model has several characteristics: on-demand self-
service, ubiquitous network access, resource pooling, rapid
elasticity and measured service. In cloud environment, we
distinguish between two deployment models: a single tenant
model and a multi-tenants model. In the first one, each cus-
tomer gets a separate instance of the software that runs on a
logically isolated hardware environment. The second one is

1This work is supported by the BMBF (PMARS Programme) and the
DAAD (German-Arab Transformation Partnership)

defined as the capability of a single instance of a software ap-
plication to serve, simultaneously, multiple clients (tenants).
It allows the separation of tenants in order to secure the ac-
cess to customers resources in the cloud.
Collaborative applications are among the services that can be
provided by the cloud computing. They enable collaboration
among users from the same or different tenants of a given
cloud provider. During collaborations, the participants need
to access and use resources held by other collaborating users.
These resources often contain sensitive data. They are meant
to be shared only during specific collaborative session. This
collaborative session is an abstract entity, comprising a set
of users, called members of the session, playing the same or
different roles. These users may have concurrent access to
shared objects in this session depending on their roles.
Using collaborative sessions in cloud environment requires
a fine-grained access control model. This model should be
flexible enough in order to support the requirements of the
collaborative session. In this model, each tenant may share
several resources with other tenants belonging either to the
same issuer or to a different issuer in order to perform a
common task. In this paper, we propose an approach that
ensures access control to the shared resources in a collab-
orative session in multi-tenants environments. This means
that collaborating users and the shared resources belong to
the same or different tenants. We suggest CTRBAC, the Col-
laborative Task Role-based Access Control, as an extended
version of the CRBAC model [21]. In CTRBAC, new enti-
ties were added in order to support together: collaboration in
multi-tenant environment, active and passive access control
and collaborative sessions. Moreover, we propose an admin-
istrative model for this approach. The suggested model has
been implemented using Swift component in the open source
cloud-computing platform OpenStack.
The rest of this paper is organized as follows: Section 2
presents a use case of collaborative session in cloud envi-
ronment. Section 3 discusses the related work in the context
of access control models in cloud environments. Section 4
formally presents the proposed model CTRBAC. Section 5
presents the administrative model. Section 6 describes CTR-
BAC implementation. Finally, we conclude in Section 7.

MIR Labs, USA

349 Madani et al.

II. CASE STUDY: A COLLABORATIVE AP-
PLICATION FOR TELEMEDECINE

In this section, we show a case study which consists in a
telemedicine use case shown in Figure 1. In this real use case,
the School Hospital (SH), the Emergency Medical Services
(EMS), and the Home Hospital (HH) are three collaborating
issuers sharing a common private cloud service. The cloud
service provides storage services for the Home Hospital is-
suer, and three SHs departments: neurology, radiology and
cardiology, as segregated tenants.
This private cloud provides a service of collaborative ses-
sions for the Emergency medical services (EMS). This ser-
vice allows a group of users, from different tenants, to col-
laborate in order to observe and treat a patient admitted in
the Home Hospital (HH) emergency. In this example, we
have a collaborative session CS1 of a telemedicine type. The
members of this session are:

• User1: neurologist in the tenant neuro of the issuer SH,

• User2: cardiologist in the tenant cardio of the issuer
SH,

• User3: radiologist in the tenant radio of the issuer SH,

• User4: doctor EMS (Emergency doctor) in the tenant
emr of the issuer EMS,

• User5: doctor HH in the tenant storage of the tenant
HH.

In this example, we assume that each issuer has its own ad-
ministrator which could define the security policies belong-
ing to this issuer independently from the other collaborating
issuers. This administrator could perform many administra-
tive operations, such as:

• Add a new tenant;

• Delete a tenant;

• Add/delete users to/from the tenant;

• Create roles, collaborative session templates, workflows
and tasks;

• Assign users to the roles

• Assign tasks to roles

• Assign the permissions to tasks

• Assign the objects to object types

The example of the workflow schema (figure 2) shows a diag-
nosis in neurology field and its emergencies. This workflow
is defined as a set of tasks that are connected in order to take
the decision on the type of care to apply to the patient. In this
use case, we consider that each task in the collaborative ses-
sion will be active only if the previous tasks are performed.
The task assignment table (Table 1) describes which tasks are
assigned to which roles in the collaborative session. More-
over, the issuer administrator could assign a set of permis-
sions to each task. For instance, the permissions (read, s-
can image) and (write, scan imag) are assigned to the task

Figure. 2: A workflow schema for diagnosis in neurology

Role Assigned task
Doctor EMS ta1: Initiate the collaborative session
Doctor HH ta2: Make comments
Doctor HH ta3: Share the Medical record
Neurologist ta4: Determines the type of scans images
Doctor HH Ta5: Share the Scans Images
Radiologist Ta6: Interpret the scans images
Neurologist Ta7: Take the decision

Table 1: Task assignment table

Interpret the scans images. The considered scenario involves
different cross-tenant access rules. Among these rules, we
find the following:

• The doctor EMS in the tenant Emr has the authorization
to create a collaborative session and invite users to join
this session.

• User5 has the right to share the patient’s medical record
in the collaborative session.

• All members of the session must access to the shared
medical record to perform the medical diagnosis.

• Non-members of the collaborative session CS1 do not
have the rights to participate in this session.

• Only the neurologist in this collaborative session has the
permission to decide on the type of care to apply to the
patient.

• The radiologist in the collaborative session has the right
to interpret scans images shared in this session.

• The permissions associated to each task will be active
only if the previous tasks are performed.

III. RELATED WORK

In the Role Based Access Control Model (RBAC) [1], [2],
[3], the permissions are assigned with roles, and users are as-
signed to appropriate roles. This model significantly reduces
administration overheads. In OrBAC (Organization Based
Access Control) [10] model, the expression of an authoriza-
tion policy is centered on the concept of organization. An
organization is a structured group of active entities, in which
subjects play specific roles. An activity is either one or more
actions, a view can be either one or more objects, and a con-
text is designed to handle dynamic parameters of a policy.
However, these models do not separate task from role and do
not support workflow.

A Collaborative Task Role Based Access Control Model 350

Figure. 1: A collaborative session in cloud environment

In the Task based access control [4] (TBAC), the permissions
are granted in steps that are related to the progress of tasks.
The TRBAC [18] model is constructed by adding task to the
RBAC model. In TRBAC, the user has a relationship with
permission through role and task. On the other hand, In the
Team Access Control Model (TMAC) [6], the permissions
are granted to each user through its role and the current ac-
tivities of the team. These models enable fine-grained access
control but they do not incorporate contextual parameters in-
to security considerations and do not support dynamic col-
laboration by using the collaborative sessions. Moreover, the
notion of team used in TMAC is not dynamic.
On the other hand, Cuppens et al proposes in [11] an ap-
proach to secure dynamic session. This approach defines a
concept called “switchability ”where means that a user can
share his session with another user from the same or different
organization. However, the dynamic session proposed in this
approach is different from the concept of collaborative ses-
sion proposed in our approach: All members of the dynamic
session play the same roles in this session. While in the col-
laborative session, the users members may play the same or
different roles. These users can perform specific tasks, by ac-
cessing shared resources in order to achieve a common goal.
Other access control approaches have been suggested to se-
cure resources in cloud Environment [7], [8], [9], [13], [14].
Calero and al [7] suggests a multi-tenancy authorization sys-
tem. His work is based on role-base access control with a
coarse-grained trust relation, path-based object hierarchies
and hierarchical RBAC. Calero et al [7] assumes that each
issuer may use several cloud services and could collaborate
with other issuers.
Tang et al [8] proposes in a multi-tenancy authorization sys-
tem (MTAS) model based on the RBAC model and the trust
relations established between the cloud issuers in order to
support collaboration between these issuers. The issuer that
establishes the trust is called the truster and the one being
trusted is called the trustee. The trustee can authorize one of
the trusters roles accesses to a trustees resources.
The Multi-Tenant Role-Based Access Control (MT-RBAC)
proposed by Tang et al in [9] is a model to provide fine-
grained access control in collaborative cloud environments

by using trust relations among tenants. In this work, trust
relations among issuers were not considered (i.e. they dis-
tinguish between issuers and tenants). In MT-RBAC model,
the truster exposes some trusters roles to the trustee, and this
trustee assigns their users to these trusters roles so these users
can access to the truster’s resources by activating the trusters
roles.
Other access control approaches [14], [15] have been pro-
posed to ensure access control in collaborative multi-clouds
environments. Authors present in [14] a distributed ac-
cess control architecture for multi cloud environments in or-
der to support dynamic collaboration between clouds. This
approach requires pre-establishing collaboration agreements
(SLA) among clouds providers. Another approach [15], that
doesn’t require prior agreements between the cloud service
providers, makes use of a proxy in order to support collabo-
ration among heterogeneous cloud.
After analyzing these access control approaches related to the
collaboration in the cloud environment, we noticed that these
approaches do not support the resources sharing rules. These
rules are used to secure resources sharing among users in col-
laborative sessions. These rules become more complex if we
consider the members of the collaborative session are from
different tenants and the shared resources are owned by dif-
ferent tenants. For instance: The user U1 playing the role R1
and member of the collaborative session CS1 is authorized to
access the object O1 that is shared in this collaborative ses-
sion CS1. And if we have a user U2 that plays the same role
R1 and he is not member of the session CS1, then this user
will not be authorized to access to this object O1. Also if we
have an object O2 that is not shared in this session CS1, then
the user U1 will not be authorized to access to this object O2.
In this paper, we formally define a new model that ensures
access control to shared resources in a collaborative session
in multi-tenants environments. This model supports:

• Collaboration in multi-tenant environment: Collabora-
tions among tenants require an adaptive and a flexible
access control model. In this model, each tenant may
share several resources with other tenants belonging ei-
ther to the same issuer or to a different issuer in order to

351 Madani et al.

perform a common task.

• Collaborative sessions: We need to have a fine-grained
access control policies, in order to support the require-
ments and the management of the collaborative session
like: Only users members in the collaborative session
could: access to the shared resources in such session,
join/leave the collaborative session and share/unshare
resources in/from the session.

• Task and workflow: This model should enable the grant-
ing and revoking of permissions to be automated during
the progression of the running tasks. Also, it should
support active and passive access control.

IV. CTRBAC: COLLABORATIVE TASK
ROLE BASED ACCESS CONTROL

In our previous works, we have proposed CRBAC [21]
Collaboration-Role Based Access Control model as an ex-
tended version of RBAC Model, in which new entities were
added in order to support collaborative sessions in multi-
tenant environments. This model introduces the entities:
Collaborative sessions, collaborative session templates, ten-
ants and issuers. Also, a new trust relation among ten-
ants was introduced. In this work we present CTRBAC
Collaboration-Task-Role Based Access Control model: an
extension of CRBAC Collaboration-Role Based Access Con-
trol model model, in order to consider tasks and their work-
flow during a collaborative session in multi-tenants envi-
ronments. The suggested CTRBAC introduces the enti-
ties (tasks, tasks instances, workflow schema, workflow in-
stances) to the original CRBAC model to allow a dynamic
access control during a collaborative session. Moreover, this
model CTRBAC supports active and passive access control
and enables the granting and revoking of permissions to be
automated with the progression of the tasks in workflow sys-
tems.
In this model, as shown in Figure 3, we have the follow-
ing entities: we have many entities: Issuers (I), tenants (T),
collaborative sessions (CS), collaborative session templates
(CST), roles (R), tasks (TA), task instances (TI), workflows
schema (WS), workflows instances (WI), permissions (P),
users (U), sessions (S), actions (C), objects (O) and objects
types (B). An issuer has one or several tenants. A tenant is
associated to one issuer by a many-to-one relationship. Fur-
ther, there are many-to-one relationships from different enti-
ties to their owner tenants. These entities are described in the
following:
ISSUERS. An issuer is an organization or an individual that
uses the cloud services. It is a client who is able to administer
its own tenants in the cloud. For instance, in the previously
described scenario, the SH is an issuer in a single private
cloud service.
TENANTS. A tenant is a virtual partition of a cloud service
provided by the cloud provider to the issuer. An issuer is
associated to multiple tenants while a tenant belongs to a s-
ingle issuer. For instance, tenants neuro, cardio and radio are
examples of tenants that are belonging to the issuer school
hospital.
COLLABORATIVE SESSION TEMPLATES. It defines a

pattern for a collaboration activity[15]. A collaborative ses-
sion is created and started by instantiating its template. We
can have different kinds of collaborative session templates:
(public session template, private session template, emergen-
cy in the neurology, emergency in the cardio). A collabora-
tive session template belongs to a single tenant while a tenant
may have multiple templates.
A Collaborative Session Template is defined as the quadru-
plet (cst, R, B, TA):

• cst: Template ID;

• R: Set of Roles;

• B: Set of Object Types;

• TA: Set of tasks performed in the session.

COLLABORATIVE SESSIONS. A collaborative session
is the basic entity in our model. It is an abstract entity, com-
prising a set of users (called members of the session), that
performs specific task, by accessing to shared resources to
achieve a common goal. Each collaborative session is an in-
stance of the collaborative session template. This kind of
session is characterized by a set of parameters: id, members
participating to the session, shared objects and a set of tasks.
A collaborative session is defined as the quadruplet (cs, U,
O, TI):

• cs: The collaborative session ID which is an instance of
the template cst;

• U: Set of users (u is an instance of the role r);

• O: Set of objects shared in this collaborative session (o
is an Instance of the object type b);

• TI: Set of task instances performed in the session.

As shown in figure 4, we have a collaborative session tem-
plate cst from which both the Collaborative sessions cs1 and
cs2 are instantiated. In this template cst, we define a set of
roles R1, R2 and R3. For each role, we assign a set of permis-
sions. A permission is defined in the template as an action on
an object type.
When a user instantiate a collaborative session cs1 from the
template cst, the entities users and objects in the session cs1
will be instantiated from the entities roles and objects type
respectively in the template. For example, the users u2 and
u3 in the collaborative session cs1 are instantiated from the
role R2, which means that these users play the role R2 and
are members of this session cs1. The same for the object
obj1, which is instantiated from the object type ObjType1.
ROLES. A role is a collection of users that have the same
job function in the tenant. A tenant may own multiple roles
while a role is associated to a single tenant.
TASKS. Task [6] is a fundamental unit of a business work
or a business activity. Job function is another expression of
task. Share the Scans Images, Interpret the scans images and
Take the decision are examples of tasks. Tasks are assigned
to users by their job positions or business roles. Tasks can be
divided into two class:

• The first class is the task that does not belong to work-
flow (ta /∈WFS).

A Collaborative Task Role Based Access Control Model 352

Figure. 3: Collaborative Task Role Based Access Control model

Figure. 4: Collaborative session template

• The second one is the task that belongs to workflow
(ta ∈WFS).

WORKFLOWS. The workflow is defined as a set of tasks
that are connected to achieve a common goal. In general, it
means a product or a methodology for supporting a business
process in the enterprise environment. For instance, diagno-
sis in neurology is an example of workflows schema defined
in the telemedicine use case.
USERS. A user is the entity that can perform actions on the
object in the tenant. A user might have different users pro-
files in different tenants. The relationship between the user

and the collaborative session: member(u, cs), which means
that the user u is member of the collaborative session cs.
SESSIONS. An individual session (as defined in RBAC
model [2]) is an instance of activity established by a user.
Each individual session is a mapping between a user and
an activated subset of roles that are assigned to the user. A
collaborative session is associated to multiple individual ses-
sions while an individual session could be connected to one
or multiple collaborative session.
OBJECTS. An object is the resource that the security policy
attempts to control its access from unauthorized users. An
object could be data objects, files, directories, devices, and
ports. The relationship between the object and the collabora-
tive session: shared(o, cs), means that the object o is shared
in the collaborative session cs.
OBJECT TYPES. CTRBAC categorizes objects into views.
An object type represents a kind of resources such as s-
can image.
In this paper, we consider a multi-tenant environment, where
collaborating users and the shared resources might belong to
the same or different tenants. As shown in figures 4, the user5
from the home hospital tenant attempts to join a collaborative
session that turns in the EMS tenant. This user could share
some HHs resources in this collaborative session. In order
to support collaboration and shareability of resources among
tenants, we reuse the role trust relation as defined in [5] and
we define a new trust relation TrustShare().

A. Trust role relation

As defined in MT-RBAC [5] the tenant trust relation (TT) ⊆
T × T is a many-to-many reflexive relation between the
truster Tr and the trustee Te : TrustRole(tr, te : T) → 2R

which means that the truster Tr authorizes the trustee to use
some Tr’s roles so that Te’s issuer can assign Te’s users to

353 Madani et al.

these Tr’s roles. For example: TrustRole(EMS, SH)= neurol-
ogist, radiologist, means that the tenant EMS exposes the two
roles neurologist and radiologist to the tenant SH (as shown
in figure 5).

Figure. 5: The tenant trust role relation

B. Trust share relation

The tenant trust share relation (TT) ⊆ T × T is a
many-to-many relationship between the truster Tr and the
trustee Te. It is defined as TrustShare(Tr, Te) =
∪k(permk(cs)) = ∪ij(ai, objectTypej(cs)), such as ai
is an action, objectTypej is an object type defined by the
tenant Tr and cs is a collaborative session. This relation-
ship means that Tr’s objects with the type objectTypej
could be shared in Te’s collaborative sessions cs only
to execute the action aj . The trust is always estab-
lished by the truster allowing the trustee to use truster’s
dynamic permissions. Therefore, the trustee can as-
sign these permissions to the dynamic roles. For exam-
ple as shown in figure 6, TrustShare(HH,EMS) =
perm1(cs), perm2(cs), perm3(cs), perm4(cs), such as:

• perm1(cs)=(read, MR(cs))

• perm2(cs)=(write, MR(cs))

• perm3(cs)=(read, scan(cs))

• perm4(cs)=(write, scan(cs))

means that the HH’s all resources with the objects type MR
and scan could be shared in EMS’s collaborative sessions, re-
spectively for the actions (read, write) and (read). The tenant
EMS may assign these permissions to the roles in the session
doctor EMS(cs) and neurologist(cs).

C. CTRBAC Model

A CTRBAC model has the following components:

• I , T , U , R, P , S, CS, M, TA, TI, WS, WI, O, B and TT are
finite sets of issuers, tenants, users, roles, permissions,
sessions, collaborative sessions, collaborative session-
s templates, tasks, task instances, workflows schema,
workflows instances, objects, objects types and tenant
trust relation respectively;

Figure. 6: The tenant trust share relation

• TO ⊆ T × I , a many-to-one relation mapping each
tenant to its owner issuer, tenantOwner(t : T) → I
, a function mapping a tenant to its owner issuer where
issuerOwner(t) = i iff (t, i) ∈ TO;

• MO ⊆ M × T , a many-to-one relation mapping
each collaborative session template to its owner tenan-
t, CSTOwner(m : M) → T , a function mapping a
collaborative session template to its owner tenant where
CSTOwner(m) = t iff (m, t) ∈MO

• UO ⊆ U × T , a many-to-one relation mapping each
user to its owner tenant, userOwner(u : U) → T
, a function mapping a user to its owner tenant where
userOwner(u) = t iff (u, t) ∈ UO;

• RO ⊆ R × T , a many-to-one relation mapping each
role to its owner tenant, roleOwner(r : R) → T ,
a function mapping a role to its owner tenant where
roleOwner(r) = t iff (r, t) ∈ RO;

• TAO ⊆ TA×T , a many-to-one relation mapping each
task to its owner tenant, TaskOwner(ta : TA) → T
, a function mapping a task to its owner tenant where
TaskOwner(ta) = t iff (ta, t) ∈ TAO;

• WSO ⊆ WS × T , a many-to-one relation map-
ping each workflow schema to its owner tenant,
WorflowOwner(ws : WS) → T , a function map-
ping a worfkflow schema to its owner tenant where
WorkflowOwner(ws) = t iff (ws, t) ∈WSO;

• PO ⊆ P × T , a many-to-one relation mapping each
permission to its owner tenant, permOwner(p : P)→
T , a function mapping a permission to its owner tenant
where permOwner(p) = t iff (p, t) ∈ PO;

• OT ⊆ O × T , a many-to-one relation mapping each
object to its owner tenant, ObjectOwner(o : O)→ T ,
a function mapping an object to its owner tenant where
ObjectOwner(o) = t iff (o, t) ∈ OO;

A Collaborative Task Role Based Access Control Model 354

• BO ⊆ B × T , a many-to-one relation mapping each
object type to its owner tenant, ObjectTypeOwner(b :
B) → T , a function mapping an object type
to its owner tenant where ObjectTypeOwner(b) =
t iff (b, t) ∈ BO;

• OB ⊆ O × B a many-to-one relation mapping each
object to its type, objectType(o : O) → B , a func-
tion mapping an object to its type where objectType
(o : O) = y iff (o, b) ∈ OB;

• Instances(cst : CST) → 2CS , a many-to-one rela-
tion mapping each collaborative session template to its
collaborative session instances. For example, the rela-
tionship Instance(NeuroEmergency) = {cs1, cs2}
means that the collaborative sessions cs1 and cs2 are in-
stances of the template neuroEmergency;

• TaskInstances(ta : TA)→ 2TI , a many-to-one rela-
tion mapping each task to its task instances. For exam-
ple, the relationship TaskInstances(observation) =
{obs(cs1), obs(cs2)} means that the task instances
obs(cs) and obs(cs2) are instantiated from the task
observation;

• WorkflowInstances(ws : WS) → 2wi, a many-
to-one relation mapping each workflow schema to
its workflow instances. For example, the relation-
ship workflowInstances(cliniccollaboration) =
{clinical(cs1), clinical(cs2)} means that the work-
flow instances clinical(cs) and clinical(cs2)
are instantiated from the workflow schema
cliniccollaboration;

• UA ⊆ U × R, a many-to-many user-to-role as-
signment relation requiring (u, r) ∈ UA only if
userOwner(u) = roleOwner(r);

• RTA ⊆ R × TA, a many-to-many role-to-task as-
signment relation requiring (r, ta) ∈ RTA only if
roleOwner(r) = taskOwner(ta);

• PTA ⊆ P × TA, a many-to-many permission-to-task
assignment relation requiring (p, ta) ∈ PTA only if
permOwner(p) = taskOwner(ta);

• TAWS ⊆ TA × WS, a many-to-many
task-to-workflow-schema assignment rela-
tion requiring(ta, ws) ∈ TAWS only if
taskOwner(ta) = workflowOwner(ws);

• Users(cs : C)→ 2U , a function mapping each collab-
orative session to a subset of users that are members of
this session, Users(cs) = ∪u∈U{u|Member(u, cs)};

• Sessions(cs : C) → 2S , a function mapping
each collaborative session to a subset of sessions,
Sessions(cs) = ∪s∈S{s|Member(user(s), cs)};

• Role in the session r(CS): is the role that will be ac-
tivated when a user join a collaborative session. In
the same session, we may have a set of members that
play the same or different roles : (u, r(cs)) ∈ UA if
(u, r) ∈ UA ∧member(u, cs)

• ObjectType in the session ObjType(cs): are the ob-
jects with the type objType that are shared in the
collaborative session cs : obj ∈ objType(cs) if
(obj, objType) ∈ OB ∧ shared(obj, cs)

• Permission in the session P (CS): is the permissions
that will be activated when a user joins a collaborative
session, p(cs) = (a, objType(cs)) : (u, p(cs)) ∈ UP
if (u, r(cs)) ⊆ UA ∧ (p(cs), r(cs), cst) ∈ PRA

• PTAM ⊆ P × TA × M , a many-to-many-to-
many permission-to-task-to-template assignment re-
lation requiring (p(cs), ta(cs),m) ∈ PTAM on-
ly if permOwner(p) = taskOwner(ta) =
templateOwner(m) and cs ∈ instances(m);

• ∀ tij ∈ TI is an instance of task taj such as
tij ∈ taskInstances(taj); tij is an active task, denote
active(tij) if only if:

– taj /∈WFS or

– taj ∈ WFS ∧ (ta1, ta2, , tan → taj) ∧
Completed(ti1, ti2, , tin)

• TrustRole(tr, te : T)→ 2R , a new function mapping
a pair of truster and trustee tenants to a set of roles;

• TrustShare(tr, te : T) → 2P , a new function map-
ping a pair of truster and trustee tenants to a set of per-
missions related to the shared resources.

Access control permissions are modeled by the follow-
ing rule: u ∈ U, p ∈ P, r ∈ R, cs ∈ CS, cst ∈
CST, ta ∈ TA, obj ∈ O, objType ∈ B such as: if
cs ∈ Instance(cst) ∧
(u, r(cs)) ∈ UA ∧
(r, ta) ∈ RTA ∧
(p(cs), ta(cs), cst) ∈ PTAM ∧
ta(cs) ∈ taskInstances(ta) ∧
Active(ta(cs))
→ (u, p(cs)) ∈ UP
p(cs) = (a, objType(cs))
→ (u, (a, obj)) ∈ UP

– [(u, r(cs)) ∈ UAif(u, r) ∈ UA ∧
member(u, cs)]

– [obj ∈ objType(cs)ifType(obj, objType) ∧
Shared(obj, cs)]

which means that the user u has permission to perfor-
m the action a on the object obj, if an only if : (1)
There is a collaborative session cs that is an instance
of the template cst; (2) The user u plays the role r in
the session cs; (3) The task ta is assigned to the role r;
(4) The permission p(cs)=(a, objType(cs)) is assigned
to the task instance ta(cs) in the collaborative session
template cst; (5) ta(cs) is an instance of the task ta ;
(6) The task instance ta(cs) is active; (7) The object
obj is of type ObjType1 and is shared in the collabo-
rative session cs. For instance, we define the security
permission related to the rule: The radiologist mem-
ber in the collaborative session of the template Neu-
roEmergency is authorized to read all the objects (of

355 Madani et al.

the type scan: scans images) shared in this collabora-
tive session in the task ta6(Interpret the scans images);
cs1 is a collaborative session such as :
cs1 ∈ Instance(neuroEmergency) ∧
(user1, radiologist(cs1)) ∈ UA ∧
(radiologist, ta6) ∈ RTA ∧
((read, scan(cs1)), ta6(cs1), neuroEmergency) ∈
PTAM ∧
ta6(cs) ∈ taskInstances(ta6) ∧
Active(ta6(cs))
→ (user1, (read, scan(cs1)) ∈ UP
[shared(scan1, cs1) ∧ scan1 ∈ scan(cs1)]
→ (user1, (read, scan1)) ∈ UP

• Active(ta6(cs1)) if Completed(ta1(cs1), ta2(cs1),
ta3(cs1), ta4(cs1), ta5(cs1)

V. ADMINISTRATIVE MODEL

In this section, we define the administrative model for the
suggested approach. This model allows to the administrators
to perform some administrative operations. Each administra-
tive operation requires certain preconditions. In the follow-
ing, we propose the formal specification of each administra-
tive operation for a single issuer along with the correspond-
ing preconditions:

• AssignUser(t, u, r)
Precondition: (t, i) ∈ TO ∧ (u, t) ∈ UO ∧ [(r, t) ∈
RO ∪ tx ∈ T, r ∈ TrustRole(tx, t), where(r, tx) ∈
RO] ∧ (u, r) /∈ UA

• RevokeUser(t, u, r)
Precondition: (t, i) ∈ TO ∧ (u, t) ∈ UO ∧ (r, t) ∈
RO ∪ tx ∈ T, r ∈ TrustRole(tx, t), where(r, tx) ∈
RO] ∧ (u, r) ∈ UA

• AssignRoleTask(t, r, ta)
Precondition : (t, i) ∈ TO ∧ (ta, t) ∈ TAO ∧ [(r, t) ∈
RO∪∀tx ∈ T, r ∈ TrustRole(tx, t), where(r, tx) ∈
RO] ∧ (r, ta) /∈ RTA

• revokeRoleTask(t, r, ta)
Precondition : (t, i) ∈ TO ∧ (ta, t) ∈ TAO ∧ [(r, t) ∈
RO∪∀tx ∈ T, r ∈ TrustRole(tx, t), where(r, tx) ∈
RO] ∧ (r, ta) ∈ RTA

• AssignPerm(t, ta, p)
Precondition: (t, i) ∈ TO ∧ (ta, t) ∈ TAO ∧ (p, t) ∈
PO ∧ (p, ta) /∈ PTA

• revokePerm(t, ta, p)
Precondition: (t, i) ∈ TO ∧ (ta, t) ∈ TAO ∧ (p, t) ∈
PO ∧ (p, ta) ∈ PTA

• AssignPermCS(t, p(cs), ta(cs), m)
Precondition: (t, i) ∈ TO ∧ (m, t) ∈ MO ∧
∀cs ∈ Instances(m) ∧ (ta, t) ∈ TAO ∧ ta(cs) ∈
taskInstances(ta) ∧ [(p(cs), t) ∈ PO ∪ ∀ty ∈ T ∧
P (cs) ∈ TrustShare(ty, t)] ∧ (p(cs), ta(cs),m) /∈
PTAM

• RevokePermCS(t, p(cs), ta(cs), m)
Precondition: (t, i) ∈ TO ∧ (m, t) ∈ MO ∧

∀cs ∈ Instances(m) ∧ (ta, t) ∈ TAO ∧ ta(cs) ∈
taskInstances(ta) ∧ [(p(cs), t) ∈ PO ∪ ∀ty ∈ T ∧
P (cs) ∈ TrustShare(ty, t)] ∧ (p(cs), ta(cs),m) ∈
PTAM

• AssignObject(t, obj, objType)
Precondition: (t, i) ∈ TO ∧ (obj, t) ∈ OO ∧
(obTypej, t) ∈ BO

• addTenant(t)
Precondition : i ∈ I ∧ t ∈ T

• deleteTenant(t)
Precondition: (t, i) ∈ TO ∧ t ∈ T

• addCSTemplate(t,m)
Precondition: (t, i) ∈ TO

VI. IMPLEMENTATION

For the implementation of our approach we used OpenStack
Swift environment. It is a multi-tenant, highly scalable and
durable software defined storage system designed to store
files, videos, analytics data, web content, backups, images,
virtual machine snapshots and other unstructured data. It
allows building, operating, monitoring, and managing dis-
tributed object storage systems that can scale up to millions
of users.
Swift enables users to store, retrieve, and delete objects (with
their associated metadata) in containers via a RESTful HTTP
API. Swift can be accessed with HTTP requests directly to
the API or by using one of the many Swift client libraries
such as Java, Python, Ruby, or JavaScript [16]. This makes
it ideal as a primary storage system for data that needs to be
stored and accessed via web based clients, devices and ap-
plications. The Account Server is responsible for listings of
containers, while Container Server is responsible for listings
of objects (Figure 7).
In our scenario, we consider we have three collaborating ten-
ants: the school hospital tenant (SH), the emergency medical
services tenant (EMS), and the home hospital tenant (HH).
We specify the scenario within Swift component in the open
source cloud-computing platform OpenStack [16]. We con-
sider that each tenant is associated to an ACCOUNT (e.g.
the accounts ACC SH, ACC EMS and ACC HH represent the
tenants SH, EMS and HH respectively).
A container is a mechanism that stores data objects. An ac-
count might have many containers, whereas a container name
must be unique. This API enables a client to create a contain-
er, to set access controls and metadata, to retrieve a contain-
ers contents, and to delete a container.
A user is the entity that can perform actions on the object
in the Account. Each user has its owner account and is as-
sociated to a single tenant. The account ACC SH has four
users:

• ACC user1

• ACC user2

• ACC user3

• ACC user4

A Collaborative Task Role Based Access Control Model 356

Figure. 7: Swift architecture[16]

In our example, each Account has many containers, and each
container has a set of objects. For instance, the account AC-
C HH has four containers: MR, DEC, SCAN, and DIAG.
Swift uses the access control lists (ACL) to define the securi-
ty permissions that regulate the usage of the container. Swift
ACLs just assign permissions to users regarding the use of
the objects of the account.

• swift post -w ’<ACL>’ <container> [-A AUTH URL]
[-U user] [-K password]

• curl -X <PUT—POST> -i -H “X-Auth-Token:
<TOKEN>” -H “X-Container-Write: <ACL>”
<STORAGE URL>/<container>

• curl -H “X-Auth-Token: <TOKEN>” -X PUT
<STORAGE URL>/<container>/<object> –data-
binary @<filename>

The collaborative applications requirements in Cloud envi-
ronment are as follows:

• Swift ACLs support lists for read and write accesses.
However, Swift does not allow specifying dynamic se-
curity rules defined in our approach such as: the User
Role assignment, the permission role assignment and
the relationships related to the collaboration sessions.

• It is necessary to have a component to manage collabo-
rative sessions (Create collaborative sessions, Join/leave
the session, Add users in sessions and share objects in
the sessions).

• Trust relations among tenants, the truster exposes some
trusters roles to the trustee, and this trustee assigns their
users to these trusters roles so these users can access to
the truster’s resources by activating the trusters roles.

• It is necessary to have a component to support tasks and
workflows. This component should enable the granting
and revoking of permissions to be automated with the
progression of the tasks in business process.

In order to support these requirements related to collabora-
tive applications, we propose to add, in the swift environmen-
t, a new Policy module developed in shell language (figure 8).
The policy module is composed of nine components: URT

component, RT component, PA component, entities com-
ponent, tasks component, object types component, session
members component, tenant Trust Relations and shared ob-
jects components. In the following we describe each compo-
nent of this module:

• URT component: in this component the security admin-
istrator defines the relationship between the tenant, the
user and the role. (ACC SH: ACC user1: neurologist)
means that in the tenant ACC SH, the user ACC user1
plays the role neurologist.

• RT component: in this component the security admin-
istrator defines the relationship between the tenant, the
role and the task. For example, (ACC SH: neurologist:
Take decision) means that in the tenant ACC SH, the
task Take decision is assigned to the role neurologist.

• PA Component: In this component, the administrator
can specify the permissions tasks assignment. In our
scenario, we consider that the tenant EMS defines the
policy rules. Note that at this level, we suppose that the
security policy rules are valid and conflict-free. (A for-
mal work is proposed by our team, based on finite-state
machine in order to resolve conflicts problems detected
in the security rules intra-tenants and cross-tenants).

• Entities Component: In this component, the administra-
tor may define all the entities of the model (collaborative
session templates, roles, users, objects and object type-
s); and the relationships between these entities and their
owner tenants.

• Object Types Component: In this component, the ad-
ministrator may define all the relationships between ob-
jects and their types. These relationships are specified
as follows: (MR:mr1), which means that the object mr1
is of the type MR.

• Sessions members component: this component is re-
sponsible to manage users in the session such as
Join/Leave collaborative sessions. The members of the
collaborative sessions are specified in this component as
follows: (CS1: ACC user1).

• Tasks component: In this component, the adminis-
trator specifies the relationship between tasks and the
workflows schema can define the entities tasks and
workflows schema. Moreover, the administrator de-
fines the succession of tasks in the workflows schema.
For example, (ACC SH: Take decision: neurologydi-
agnosis) means that in the tenant ACC SH, the task
Take decision is assigned to the workflow neurologydi-
agnosis.

• Tenant Trust Relations: In this component, the admin-
istrator can specify the tenant trust relation established
by the truster. These relationships are specified in this
component as follows: (ACC EMS: ACC SH: neurol-
ogist), which means that the tenant ACC EMS autho-
rizes the tenant ACC SH to use the role neurologist.
(ACC HH:ACC EMS:perm1(cs)) means that the tenan-
t ACC HH authorizes the tenant ACC EMS to use the
permission perm1(cs).

357 Madani et al.

• Shared objects Components: This component is respon-
sible for the management of the shared resources in the
session. Example: (CS1:MR1) means that the medical
record MR1 is shared in CS1.

Figure. 8: Swift implementation

These components will be used by the Shell engine to evalu-
ate the access request to resource in the collaborative session.
When a user sends a request to access to a resource stored in
the cloud swift, the Shell engine component evaluates this re-
quest according to the policy rules in order to decide whether
the user is authorized to access to this resource or not. If the
user is permitted to perform this action, then the policy mod-
ule will execute an ACL command to assign this permission
(read, medical record) to the user in swift environment.

VII. CONCLUSION

In this paper, we formally define a new model CTRBAC
that ensures access control to the shared resources within a
collaborative session in multi-tenants environments, which
means that collaborating users and the shared resources be-
long to the same or different tenants. In this model, we intro-
duce new entities and trust relationships to support the shar-
ing rules. These rules are used to secure resources sharing
among users in collaborative sessions.
Furthermore, the suggested CTRBAC model introduces tasks
and workflows in order enable the granting and revoking of
permissions to be automated with the progression of the tasks
in business process. Finally, we demonstrated the feasibili-
ty of our suggestion by an implementation in the SwiftStack
environment. As a future work, we plan to extend this ap-
proach to ensure access control during collaborative sessions
in heterogeneous multi-clouds environments.

References

[1] P. Mell and T. Grance, The NIST Definition of
Cloud Computing. NIST Special Publication 800-
145 (Draft), Retrieved September 10, 2011, from

http://csrc.nist.gov/publications/drafts/800-145/Draft-
SP-800-145 cloud definition.pdf

[2] R. Sandhu, E. J. Coyne, H. L. Feinstein and
C.E.Youman, Role-based access control models, IEEE
Computer, 29(2):38-47, 1996.

[3] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn and R.
Chandramouli, Proposed NIST Standard for Role-Based
Access Control, ACM Transactions on Information and
System Security, 4(3), pp. 222-274, AUGUST 2001.

[4] S. I. Gavrila and J. F. Barkley, Formal specification for
Role Based Access Control User/Role and Role/Role
Relationship Management, Third ACM Workshop on
Role-Based Access Control, pp. 81-90, October 1996.

[5] R. Thomas and R. Sandhu, Task-based Authorization
Controls (TBAC): A Family of Models for Active and
Enterprise-oriented Authorization Management, 11th I-
FIP WorkingConference on Database Security, Lake
Tahoe, California, USA, 1997.

[6] O.H. Sejong, S.Park, Task-role-based Access Control
Model, In: Information Systems, 28(6): pp. 533-562,
2003.

[7] J. M. A. Calero, N. Edwards, J. Kirschnick, L. Wilcock,
and M. Wray, Toward a multi-tenancy authorization sys-
tem for cloud services, IEEE Security and Privacy, vol.
8, no. 6, pp. 4855, Nov/Dec 2010.

[8] B. Tang, R. Sandhu, and Q. Li, Multi-tenancy autho-
rization models for collaborative cloud services, in IEEE
International Conference on Collaboration Technologies
and Systems, 2013.

[9] B. Tang, and R. Sandhu, A Multi-Tenant RBAC Model
for Collaborative Cloud Services, in PST, 229-238, 2013.

[10] A. Almutairi, M. Sarfraz, S. Basalamah, W. Aref, A
Ghafoor, A Distributed Access Control Architecture for
Cloud Computing, IEEE Software 29(2): 36-44, 2012.

[11] M. Singhal, S. Chandrasekhar, T. Ge, R. Sandhu, R.
Krishnan, E. Bertino, Collaboration in Multicloud Com-
puting Environments: Framework and Security Issues,
IEEE Computer 46(2): 76-84, 2013.

[12] F. Cuppens, Cuppens-Boulahia, N. B. Talbi, M. Moruc-
ci, S. Essaouni, Smatch: Formal dynamic session man-
agement model for RBAC, J. Inf. Sec. Appl. 18 (1) , 30-
44, 2013.

[13] H. Takabi, J. B. D. Joshi, and G. J. Ahn, Security and
Privacy Challenges in Cloud Computing Environments,
IEEE Security and Privacy, Vol. 8, No. 6, pp. 25-31,
2010.

[14] H. Takabi, J. B. D. Joshi, and G. J. Ahn, Secure-
Cloud: Towards a Comprehensive Security Framework
for Cloud Computing Environments, In Proc. of the 1st
IEEE International Workshop Emerging Applications for
Cloud Computing, pp. 393-398, Seoul, South Korea,
2010.

A Collaborative Task Role Based Access Control Model 358

[15] A. Tanvir, A. R. Tripathi, Specification and verification
of security requirements in a programming model for de-
centralized CSCW systems, ACM Trans. Inf. Syst. Se-
cur. 10(2) (2007).

[16] OpenStack Swift Architecture,
https://swiftstack.com/openstack-swift/architecture/.

[17] R. Thomas, TMAC: A primitive for Applying RBAC
in collaborative environment, 2nd ACM, Workshop on
RBAC, pp. 13-19, Fairfax, Virginia, USA, November
1997.

[18] O.H. Sejong, S.Park, Task-role-based Access Control
Model, Information Systems, 28(6): pp. 533-562, 2003.

[19] Y.Zhang, J.Joshi, Access Control and Trust Manage-
ment for Emerging Multidomain En-vironments, in An-
nals of Emerging Research in Information Assurance,
Security and Pri-vacy Services, Editors: S.Upadhyaya,
R. O. Rao 2009.

[20] D. Lin, P. Rao, E. Bertino, N. Li, J. Lobo, Policy de-
composition for collaborative access control, SACMAT
2008: 103-112

[21] A.Madani, M.Erradi, Y.Benkaouz, Access Control in a
Collaborative Session in Multi Tenant Environment, 11th
International Conference on Information Assurance and
Security, Marrakech, December 2015

