
Journal of Information Assurance and Security

ISSN 1554-1010 Volume 11 (2016) pp. 369-384

© MIR Labs, www.mirlabs.net/jias/index.html

MIR Labs, USA

GPU PSO and ACO Applied to TSP for Vehicle

Security Tracking

Olfa Bali1, Walid Elloumi1, Ajith Abraham2,3 and Adel M. Alimi1

1 REGIM-Lab: Research Groups on Intelligent Machines,

University of Sfax, National Engineering School of Sfax (ENIS)

BP 1173, Sfax, 3038, Tunisia

bali.olfa@gmail.com

{walid.elloumi, adel.alimi}@ieee.org

2 Machine Intelligence Research Labs (MIR Labs), P.O. Box 2259, Auburn, WA 98071-2259, USA

3VSB - Technical University of Ostrava, Ostrava, Czech Republic

ajith.abraham@ieee.org

Abstract: The Travelling Salesman Problem (TSP) is a

well-known benchmark problem for many meta-heuristic

algorithms, including security traffic optimization problems.

TSP is known as NP hard complex. It was investigated using

classical approaches as well as intelligent techniques using Ant

Colony Optimization (ACO), Particle Swarm Optimization (PSO)

and other meta-heuristics. The Graphic Processing Units (GPU)

is well suited to the execution of nature and bio-inspired

algorithms due to the rapidity of parallel implementation of

GPUs. In this paper, we present a novel parallel approach to run

PSO and ACO on GPUs and applied to TSP

(GPU-PSO&ACO-A-TSP) for security tracking vehicles in road

traffic. Both algorithms are implemented on the GPUs. Results

show better performance optimization when using GPUs

compared to results using sequential CPU implementation.

Keywords: PSO, ACO, TSP, GPU, CUDA, Optimization,

Security.

I. Introduction

In the field of Engineering, the optimum solution of a problem

is defined using optimality criteria. Mathematical equations

and numerical interpretations are used to quantify optimality.

Numerical interpretations should be fixed with respect to the

problem characteristics, specificities and constraints [1].

While employing optimization techniques, we discriminate

probabilistic and deterministic algorithms; ACO, Ant Colony

Optimization [3], [18] algorithms are probabilistic methods,

PSO particle swarm optimization [2].

Travelling Salesman Problem is a powerful optimization

tool that permits to find the best path using particles and to

track the paths of the vehicles in road traffic monitoring system.

In our system, the vehicles travelling across roads represent

the particles. Such system allows to offer best roads for the

vehicles and to prevent road accidents by tracking vehicles

during their traffic. GPS devices and electronic displays

assure communication between the monitoring center and

vehicles across the road.

Swarm intelligence techniques are bio-inspired methods,

where group comportment is used to solve a problem based on

the individualities of its members. Studies on insects’ social

behaviors have been applied in the field of optimization. Faced

with the threats and dangers of nature, insects represent

complex communication systems, and can show a great

resistance. An individual insect may have only a few

hundred-brain cells but a group of insects can have much more

and is able to represent a well-organized architecture with

better communication and resistance skills. In this case, we can

speak of a complex social group that improves individual

intelligence skills to more developed interactions and

relationships between these groups. The flocks of birds, ants or

fish strips promote a set of skills in artificial intelligence.

The central problem in the socio-biology of insects is the

development of group’s behaviors from the behaviors of

individual ants. Provided that the behavior of a single ant is

almost random, with a stochastic tendency to gravitate towards

paths that have been trodden by other ants; the achievements

of swarms of ants are most incredible. The behavior of an

isolated ant quickly results in the demise of the individual, but

the mass behavior of a colony of ants provides sustenance and

defensive protection for the entire population [4].

An optimality criterion is generally expressed by a

mathematical expression looking for a minimum value; these

formulas are known as objective functions based on the

concept of fitness. The heuristic optimizers are used in order to

get a group of solutions that satisfy these functions.

Kennedy and Eberhart [5] began to develop PSO field that

is based on a population approach using the intelligence of

each particle. Through a flock of birds, they tried to simulate

its behavior, like reaching an unknown destination as birds’

goal (according to fitness), for example searching for food

while flying (space research) [6]. Inspired by nature, the

particles communicate and interact with each other [21]–[23].

Despite its simplicity, in nature, a swarm proceeds naturally

with multi-objective optimization in all its activities, MOPSO,

Bali et al.

370

Multi-objective PSO is a PSO with some multi-objective

optimum criteria. Therefore, solving multi-objective problems,

MOPs, can be considered as the mixture of both searching and

decision-making approaches [7], [19], [20].

Examinations on ants’ behavior showed that if ants have

food located at some distance from the nest, with two unequal

path length leading to it, ants will try both paths then will

choose at the end the swarm having the shortest route. Using

real ants, experiments have shown that when several ants move

the nest to the food with different paths that are uneven; these

ants will find the shortest path through the pheromones

deposited by ants. If an obstacle is added on a path, the ants are

able to move and to choose the shortest path in a definite time.

If two sources are equal for example if both paths are of equal

distance, the ant will choose a path arbitrarily [8].

Recently many works on intelligent security systems have

been published. In [31], authors propose a system of vehicle

anonymity enhancement in vehicular Ad-Hoc networks that

consist in updating the pseudonym of vehicles regularly in

order to preserve their privacy.

A hybrid security system based on naïve Bayes and decision

trees used for network intrusion detection is presented in [29].

In [30], the authors developed a security intrusion detection

program based on the use of evolutionary algorithms,

especially Genetic Algorithm.

The biological studies on natural ant’s shows that ants are

able to produce specific pheromone and to identify the

chemicals emitted substances and the glands that emit them [9].

Dorigo et al. also have painfully identified the fixed action

answers to each of the various pheromones. They found out

that pheromone involves a medium for communication among

the ants, allowing fixed action collaboration; the result shows

that a group behavior is adaptive while the individuals'

behaviors are not. Initially the AS-PSO was proposed by

Elloumi et al, 2009 in [10].

Several recent and important works that used the GPU to

accelerate optimization problems, we can find PSO [26]–[28].

In this paper, we investigate an aspect of GPU particle

swarm optimization and ant colony optimization applied to

TSP (GPU-PSO&ACO-A-TSP), focusing only on the

implementation of GPUs on the two algorithms mentioned

above. The remaining of this paper is organized as follows: In

section 2, we review the PSO, ACO algorithms and TSP

problem. Section 3 is dedicated to the presentation of CUDA

programming model. A GPU model is presented in section 4.

Our approach, GPU Particle Swarm Optimization and Ant

Colony Optimization Applied to Travelling Salesman

Problem, is illustrated in Section 5. Section 6 includes

experimental results with discussions of our approach. The

paper is ended by a conclusion and further works openings in

Section 7.

II. Variants of PSO, ACO and TSP

A. Particle swarm Optimization

This optimization technique is based on cooperation between

individuals within a social organization. The group has to face

and resolve the problems, by applying the capabilities of each

individual as well sub-groups capacities. It belongs to a family

of heuristic methods, called; swarm optimizers that include

also the algorithm of ant colony optimization. ACO also relies

on the concept of self-organization [11]. The idea is that a

collection of individuals, who have a small amount of

intelligence, each one, can produce a complex global

organization. Thus, through simple rules of movement (in the

space of solutions), the particles in the group can progressively

converge to a local minimum.

PSO is fundamentally a method of parallel multi-agent

research. The locations and velocities of particle creation, the

updating speed, search of local and global optimums and the

updating location are the four stages of PSO.

The role of PSO in our system is to act as a security

supervisor that permits to identify accidents across the roads,

prevent traffic jam and offer different roads for vehicles.

The research problem can be solved by using the position

vector of a particle with respect to the search space. After a

number of iterations, one can find the best global position of

the particle that is about to fly with a certain speed [12].

For each iteration, each particle can update its velocity

attributes using its best local position (pbest - particle best) and

the best position of its global neighbors (gbest - Global Best),

and then calculate the new location of each "particle" that is

about to fly. Through this algorithm, one can find the global

optimum, based on the trajectory and the behavior of each

particle relative to its neighbors.

The communication between PSO particles is employed to

assure the traffic security. An Ad-Hoc network of vehicles is

used to exchange messages from a vehicle to another. The best

global vehicles send messages to inform its neighbor’s

vehicles about traffic security information in order to prevent

road accident and improve traffic quality.

The route of the particle swarm is calculated using all the

adjacent particles and its past attributes.

During the optimization process, the MOPSO approach

suffer from a loss of diversity, in this case MOSPO have some

problems to maintain the balance between exploitation and

exploration [13].

MOPSO allows use of the principle of density estimator for

choosing the best overall particle and remove particles from

the external archive. In this case, the non-dominated solutions

are ranked in descending order, and a particle will be selected

in a random manner [19]. We have presented our approach

Fuzzy Ant Colony Optimization (FACO) and Multi-objective

Particle Swarm Optimization (MOPSO) [24].

In PSO, the formulation of the velocity and the position, is

given by equations (1) and (2)

1, 1 , ,

,

1

2

(1) () * ()*(() ())

* ()*(() ())

i j i j i jlbest

Gbest i j

V t wV t c rand x t x t

c rand x t x t

 
    



 (1)

1, 1 , 1, 1
(1) () (1)

i j i j i j
x t x t V t

   
   

 (2)

The inertia weight is represented by w ; i = 1, 2,. . ., N :

indicates the number of population particles (swarm); t = 1,

GPU PSO and ACO Applied to TSP for Vehicle Security Tracking

371

2, . . . tmax indicates the number of iterations,
,

i j
V is the symbol

of the speed of the particle , thi j , C1 and C2 are positive

constants that modify the particle velocity while taking into

account local particle
lbest

x and global particle
Gbest

x .

The algorithm starts by dispersing the particles randomly in

search space. Then, the particles form a “bench” and explore

the search space while maintaining cohesion between them

and gathering around the optimum. They no longer run away

from this optimum. Depending on the configuration of the

algorithm, the particles end up in the same spot, which

highlights a global trend to move towards the optimum.

B. Ant Colony Optimization

When moving, ants leave pheromone marks on the way, which

disappear with time and distance. The ants follow the strongest

path having the most amounts of pheromones, which facilitates

for other ants to follow the shortest path [14].

Using the concept of pheromone by ants, it can solve the

Travelling Salesman Problem [15]. The ant moves from the

nest to the food and use the ant colony optimization to find the

shortest path around obstacles.

ACO could be very useful for road traffic enhancement,

even in case of obstacles blocking the roads, ACO continue to

find other secure paths.

In ACO [8], [9] based on the amount of pheromone deposed

on the path, we noticed that the ants follow the path having the

densest amount of pheromone. Where ,i j represents the

amount of pheromone of ,i jant , which depends on the

following probability:

   

   

(1)
, ,()

,
(1)

, ,

()

i

i

n
i j i jn

i j
n

i j i jj

f j

p

 

 

 

 













 (3)

With i is the neighborhood nodes for a given ,i jant . The

constants α and β denote the visibility of magnitude when

switching from one path to another, which allows to move

from node (i) to the node (j). ,i j represents the inverse

distance between node (i) and node (j). In the ACO process,

the update matrix of the amount of pheromone is necessary for

the measurement; this update corresponds to the equation (4),

ρ is the evaporation rate, while Bt represents the fastest lap.

(1) (1) ()
, , ,

(1) (1)
, ,

(,) (1)n n k
t i j i j i j

n n
i j i j

if i j B

else

   

 

 

 

     

 
 (4)

In best tour, Bt, determination several policies could be

applied, the first one, and the simplest, consist in considering

the best solution found from the beginning of the processing.

The second alternative is to define a limited, Bt, that evaluates

only the current procedure or a set of limited samplings to

precedent Bt. The Combination of these two proposals with a

moderation rates are also possible, in this paper the Bt, is

selected using the first strategy.

According to the evaporation, another update of the amount

of pheromone is performed when colonies displacement as

shown in the equation (5).

 () (1) (0)
, , ,1 .n n

i j i j i j     
 (5)

C. The TSP problem

TSP, the traveling salesman problem, which may be defined as

follows: at first we initialize (n) cities that must be visited.

Initially we start from a city chosen randomly and then returns

to the starting city. The objective is to determine the overall

distance and visit every city just once with respect to fixed

start/end locations [16].

In case of traffic accident, TSP optimization allows to

inform other vehicles about the accident in order to follow

better paths to reach destination safely and quickly.

An illustration of this problem with five cities is given in

figure1; it shows two possible solutions, one in red and the

other in green color. The two routes do not have the same

length. A travelling salesman will choose the shortest path to

reduce the cost of the travel. However, the TSP is said

np-complete. In fact, for n cities the number of possible route

is equal to (n − 1)!/2.

Figure 1. TSP possible solutions for a simplified cities

representation, here the number of cities is limited to five

III. CUDA Programming model

A. What is CUDA?

CUDA is a parallel computing design developed by NVIDIA

to multiply the system computing performance by coupling the

power of graphics processors (GPU).

While millions of GPU compatible with CUDA were sold,

thousands of software developers, scientists and researchers

use CUDA in a wide range of areas, including the processing

of images and videos, computational fields and more.

B. Parallel processing with CUDA

Data processing has evolved from the exclusive processing

CPU to co-processing capabilities offered by the combination

of GPU and CPU. To enable this new data processing

paradigm, NVIDIA designed the CUDA parallel processing

architecture, today included in GEFORCE and Tesla thus

Bali et al.

372

offering important material base for application developers.

On the side of the public, most of the major applications of

video processing are or soon will be accelerated by CUDA.

The existing fleet of Tesla GPUs, providing significant

capacity for GPU computing, allows gauging the success of

CUDA. More than 700 GPU clusters are today active

worldwide. The most important companies in the world have

adopted CUDA.

IV. GPU model

A. GPU computing

The GPU computing consists to use the graphics processor

(GPU) in parallel with the CPU to accelerate business

applications of science, analysis, engineering, production and

business. Launched in 2007 by NVIDIA GPU accelerators

have established themselves as an industry standard.

Worldwide, most of the low-energy data centers are used, both

in government and university laboratories in small and

medium enterprises. NVIDIA GPUs to accelerate many

applications on supports as varied as Smartphone’s, tablets,

cars, drones and robotic systems.

B. How to accelerate applications with GPU

The GPU computing allows parallelizing jobs and offering

high performance in several applications. The GPU

accelerates the time-consuming parts of code in computational

tasks, the rest of the application remains assigned to the CPU,

which improves applications computational time.

Figure 2. How GPU Acceleration Works

To understand the fundamental differences between a CPU

and a GPU, just compare their treatment of each operation.

The CPUs include a limited number of cores optimized for

serial processing, whereas the GPU integrate thousands of

cores designed to efficiently handle many simultaneous tasks.

V. GPU-PSO&ACO-A-TSP

In this section, we will study our approach having two

essential parts. The first part explain GPU PSO-A to TSP

while the second part explain GPU ACO-A to TSP.

The vehicle security tracking system based on PSO and ACO

optimization require high CPU computation resources. That’s

explain the necessity to use GPU accelerated system.

A. GPU PSO

Meta-heuristic have emerged along with the paradigm itself,

they are gaining popularity because they have worked well in

some hard optimization problems such as travelling salesman,

vehicle routing problem or the Hamiltonian path.

To design an evolutionary or a swarm solver, the main

difficulties that arise are to determine the individual behavior,

the environment and the social dynamic that govern the

operation of the system to produce the desired collective

response. Genetic algorithms, differential evolution, neural

networks, PSO, ACO, or Bee colony optimization, were

successfully applied to hard optimization problem, algorithms

have shown potential capabilities at producing solutions, while

the quality of the solutions depends on the heuristic parameters

fittings. Classical heuristics used a set of user-designed

parameters, while adaptive ones are trying to overcome this

problem, given to the heuristic a capacity of parameters

self-tuning.

In fact, the main idea that underlies the design of hierarchic

heuristics is simple: for a given optimization problem, we have

two algorithms, each with its strengths and weaknesses, the

first one is used as a solver while the second is used to

optimize to first solver. Classical ACO are used for discrete

optimization while PSO is employed for continuous

optimization problems.

Separately, PSO and ACO showed great potential in solving

a wide range of optimization problems. We use both to solve

optimization problems this is what Elloumi et al. have tried to

do in [10]. The idea is to allow PSO to optimize the optimizer

(ACO), knowing that ACO is used for discrete problems and

PSO generally for continuous problems, and considering their

strengths and their weaknesses. The figure 3 shows roughly the

process of Graphical Process Unit Particle Swarm

Optimization Applied to Travelling Salesman Problem.

The use of GPU acceleration in PSO security supervisor

allows in case of traffic blocking to choose quickly other path

for vehicles and to prevent from accidents.

Our goal is to cover all cities (designated nodes) once (if the

particle passes through the city i to j it does not cross the town

in the other direction, from j to i). Finally, the particle returns

to the starting city, so we get a cycle.

The “gpuArray()” function allows copying data from the

memory of the CPU to the GPU memory brings us to

manipulate the table on the GPU memory.

Afterwards, we take the overall particle represented by

Gbest
x and local particle referenced

lbest
x each particle speed

and positions are changed respectively in Equation 1 and

Equation 2.

We had to repeat these steps until reaching the maximum

number of iterations; it is assigned to each node. This allows us

to obtain an archive, according to the latter; we can make a

comparison between the different obtained paths. We choose

the best way in terms of its execution time. Finally, we return

GPU PSO and ACO Applied to TSP for Vehicle Security Tracking

373

the GPU data to the CPU through the control “gather()” (see

Figure 3).

B. GPU ACO

The heuristic is directly related to the physical problem and try

to solve it, while the meta-heuristic adjusts the parameters of

the heuristics.

The running of the classical ACO is based on parameters

that are often set by the user of the algorithm. Thus, to found

parameters that are appropriate for a problem, the user needs

to perform many tests.

We have proposed an Ant colony algorithm on GPU applied

to TSP.

The purpose is identical to that shown in PSO. We begin by

initializing the ACO parameters; the number of iterations, the

number of Ant particle is initialized every particle of ants on a

start node randomly selected. The use of “gpuArray()”

function allows us to transfer data to the CPU to GPU.

Each ant is chosen the next node according to probability

calculated in Equation 3, if there are other nodes to visit we

return to the previous step that is the second step.

The use of GPU acceleration in ACO helps to quickly

suggest new paths for vehicles circulating on the roads to use

these secure paths in case of obstacles.

Otherwise, it returns to the chief starting city and changing

the amount of pheromone in a cycle. Assign each node a thread

and repeat these steps until reaching the maximum number of

iteration. If we arrive at stopping criterion the concept of

pheromone placing procedure that includes data on the

efficiency previous balance sheet, guides the building

procedure to each thread. Solutions to the intermediate partial

problems are seen that we display the best lap, otherwise we

return in step 2.

The main steps above are designated for non-natural ants,

simple calculation of individual agents and iterative used to

build solutions to the problem that was been modelled as a

graph.

The particles of Ants travel visiting the nodes, which are

connected by arcs. Solutions of the problematic represent an

ordered sequence of nodes. The research procedure is

performed in parallel on multiple computational practical

threads.

The dynamic memory structure that is inspired by the

movement of the ant k at each iteration of the algorithm, (See

Figure 4).

Distinctly, PSO and ACO showed a high resolution for

optimization problems. To solve the ongoing problems in an

efficient manner, this article introduces a new approach GPU

PSO and ACO algorithm.

The proposed algorithm reduces the likelihood that

minimizes falling into local optimum and improves the

capacity and research accuracy. Definite steps that were

followed to the end to keep the strength of our approach.

First, we start by resetting the search space, then the number

of iterations for PSO and its cost function. The second step is

to initialize the particle ant, the cost of this function.

Thereafter we use the function “gpuArray()”. Then follows the

steps of the ACO or PSO. We try to change the position and

speed of PSO particles, and Ant positions too. If the conditions

are fulfilled, we arrive at our goal, which is the end, otherwise

we return to the second step.

With GPU, displays the processing steps of the two

algorithms ACO & PSO algorithm in which we can identify

the various stages of operation of the algorithm.

Figure 3. The process of GPU-PSO-A-TSP

GPU

Choose the shorter path

Return from GPU to CPU using

gather

End

Start

- Initialize parameter of PSO to TSP

- n_max iterations

- Number of particles

- Fitness functions

- Initialize positions and velocities

Transfer data function from CPU to

GPU using gpuArray

Elect Pig

Elect Pil

Update velocities

Update positions

Assigned for N data N thread

Lp

Bali et al.

374

Figure 4. The process of GPU-ACO-A-TSP

The proposed algorithm reduces the likelihood that

minimizes falling into local optimum and improves the

capacity and research accuracy. Definite steps that were

followed to the end to keep the strength of our approach.

First, we start by resetting the search space, then the number

of iterations for PSO and its cost function. The second step is

to initialize the particle ant, the cost of this function.

Thereafter we use the function “gpuArray()”. Then follows the

steps of the ACO or PSO. We try to change the position and

speed of PSO particles, and Ant positions too. If the conditions

are fulfilled, we arrive at our goal, which is the end, otherwise

we return to the second step.

With GPU, displays the processing steps of the two

algorithms ACO & PSO algorithm in which we can identify

the various stages of operation of the algorithm.

VI. Experimental Results

In our approach, we begin by resetting the parameters feature

of PSO applied to the TSP; to say the number of nodes

contained in a graph, a weight of every particle and the

coefficients of acceleration. In the proposed vehicles tracking

system security, the nodes represent the departure and arrival

cities and the particles represent the vehicles in roads. The

maximum number of iterations in this case was taken as 1000

iterations. The number of used particles depends on the graph.

For example, for a graph with 22 cities, the possible number of

particles of the population to use in this first test is 22, the

second test is 70 for the third test is 100.

We had 1000 iteration because we have tests by using 2000

and 3000 iterations.

Our method consists in using 1000 iterations because the

number and the time of the cycle are proportional among

iterations to avoid the wasting

Our approaches GPU Optimization Swarm of particles and

Ant Colony Optimization applied to the TSP (GPU-PSO

ACO-A-TSP) is coded in Matlab 2014b and executed on a

processor Intel ® Core T i7-4700MQ (6MB cache memory,

3.40 GHz) PC with memory of 12GB and NVIDIA GeForce

480M and Windows 7. There is many parameters used for our

approach. The size of the population, which we are three times

going to increase, is the number of knots of the social and

cognitive probability, having c1 and c2, defined as c1 = c2 = 2.

The mass of inertia w is taken as 0.9 and the maximum of the

speed live taken as 100 and the dimension of the space as 10.

Every cycle of TSP is executed during five replications and

1000 iterations. Both has and ß control the relative importance

of pheromone trail and the distance between cities TSP where

has α= 1.5, ß = 2 Refers to the speed of pheromone

evaporation ρ = 0.7. Each test TSP is performed for 5

replications iterations and 1000.

A. TSP solved by PSO and GPU PSO

To solve the TSP using PSO, the following processing can

steps can be used. A particle is the position of a node, the

nodes represent a city, and the route is the path between city (i)

and city (j). The fitness functions are the distances between

nodes; and finally, the ultimate multi-objective purpose, which

is to minimalize the distances of the paths that relate and time

[17].

Because of the large number of vehicles on the road and the

large number of cities, the use of GPU acceleration with TSP

is essential to delivery of messages to vehicles in real time to

assure their security.

In Table 1, N refers to the number of nodes, CPU-T.PSO

Return from GPU to CPU using

gather

Assigned for N data N thread

End

Update pheromone level using the

tour cost for each ant

Return to original cities

Print best tour

Stoppi

ng

More

Cities

yes

no

Start

- Initialize parameter of ACO to TSP

- n_max iterations

- Number of particles

- Put each ant in a city randomly

selected

Transfer data function from CPU to

GPU using gpuArray

Take the next city (for each ant)l

For each ant

GPU

GPU PSO and ACO Applied to TSP for Vehicle Security Tracking

375

refers to the best time for PSO (per seconds) and CPU-L.PSO

refers to CPU-PSO the length for PSO. The same indices for

GPU.

In the same table, we have tried to represent the different

numbers of nodes, after that, we have attempted to increase the

population of PSO keeping the same number of nodes. Thus, It

was found from number 22 to 70 nodes, that the route of the

shortest path decreases when the number of PSO population

increases. Therefore, when the execution time increases, the

number of (CPU-GPU) PSO population increases too.

Therefore, we found it necessary to use TSP-ACO to improve

results.

B. Comparative study with CPU and GPU for PSO

In Figure 5, the x-axis indicates the size of the population of

PSO, The y-axis represents the execution time per seconds.

When selecting the number of nodes 22, 29, 30, 48, 52, 70

and the number of the population size PSO 22, 70, 100, it has

been proven that the computation time decrease when

executing the GPU-PSO.

In Figure 6, the x-axis shows the number of nodes and

population, the y-axis shows the execution time per seconds.

There after the implementation rate ((GPU T.PSO) / (CPU

T.PSO)) *100 is very important, to choose for example, nodes

22 and 22 population, the rate is 60.31%.

In Figure 7, the x-axis shows the number of nodes and

population, the y-axis shows the execution time per seconds.

While selecting the number of nodes as equal to the number

of population, it was found that the execution time of the

T.PSO -GPU compared to T.PSO-CPU decreases.

In Figure 8, the x-axis shows the number of nodes and

population, the y-axis shows the execution time per seconds.

The rate of execution ((GPU T.PSO) / (CPU T.PSO)) *100 is

very important, as an example, for 29 nodes and 29 population

the rate is 56, 11%.

In Figure 9, the x-axis shows the nodes, the y-axis shows the

execution time per seconds.

While selecting the number of nodes 22, 29, 30, 48, 52, 70

and the number of the size of population of PSO 70, 100, it has

been verified that execution of the GPU PSO decreases

compared to the execution time of CPU PSO.

In Figure 10, the x-axis shows the nodes, the y-axis shows

the execution time per seconds. The rate of execution ((GPU

PSO) / (CPU PSO)) * 100 is very important, as an example, for

22 nodes and 70 population the rate is 61, 26%.

C. TSP solved by ACO and GPU ACO

To solve the TSP using ACO, the following processing can be

used. A particle is the position of a node, the nodes represent a

city, and the route is the path between node (i) and (j). The

adapting functions are the distances between nodes; and the

ultimate multi-objective function is to minimize the distances

of the paths that are related to time.

In Table 2, N refers to the number of nodes, T.ACO refers to

the best Time for ACO (per seconds), L.ACO is the best

Length for ACO. We have not used the length of GPU in Table

2, because the same values are replicated.

In order to accelerate finding secure roads path for vehicles

and to reduce road accident we propose to use TSP based GPU

ACO.

In Table 2, we have tried to represent the different numbers

of nodes. After that we have tried to increase the number of

people of ACO keeping the same number of nodes. In this

Table it was found that the route of the shortest path decreases

when the number of ACO population increases. When the

execution time increases the number of population increases

too. The execution time depends on the complexity of the TSP

as well.

Now comparing the results of the two tables we notice that the

results of the shortest path of (CPU-GPU) ACO are better

compared to the (CPU-GPU) PSO, but the best performance is

that of (CPU-GPU) PSO compared to that of (CPU-GPU)

ACO time.

D. Comparative study with CPU and GPU for ACO

In Figure 11, the x-axis indicates the size of the population of

ACO, The y-axis represents the execution time per seconds.

When selecting the number of nodes 22, 29, 30, 48, 52,70

and the number of the population size ACO 22, 70, 100, it has

been proven that when executing the GPU ACO a time

decreases.

The results in Figure11 show that the running time of the GPU

ACO less than the time of the execution by CPU ACO. For a

number of nodes 22 and population size 30, the CPU-T. ACO

is 0, 3724 while the GPU-T. ACO is 0.2933. These results

prove that we have a very import gain time using the GPU.

E. TSP solved by our approach

Figure 12, present a set of probable results by using our

method, giving to the similar number of nodes and the

configuration of the problem. This figure represents the best

TSP for our approach chosen.

In Figure 13, the x-axis indicates the size of the population

of ACO, The y-axis represents the execution time per seconds.

When selecting the number of nodes 100 and the number of

the population size of ACO 22, 29, 30, 48, 52, 70, it has been

proven the Average length ACO of decrease

The results in figure13 show that average length ACO (100)

less than the average length by PSO. For a number of nodes 30

and population size, the Average length ACO is 508.8037 Km

while the average length PSO is 563.9448 Km.

In Table 3 we prove that the average length of ACO is below

the average length of PSO.

VII. Conclusions, Discussions and further

works

In this paper was given two approaches the GPU-PSO–A-TSP

and GPU-ACO–A-TSP. Our system is applied to vehicles

traffic to increase road security and reduce accidents. PSO is a

heuristic continuous ACO is a discrete, MOPSO is PSO

multi-objective, all these algorithms belong to the heuristics

family while GPU-PSO is meta-heuristic applied to a set of

TSP configurations at 22 to 70 nodes, ACO has a shorter

length compared to PSO. In 22 cities, the average length of

CPU-PSO (90.20), while CPU-ACO gives (77.33) represented

Bali et al.

376

in table 3, the same constraints are made for different size

nodes (see Table 1 and 2 in accordance with the nodes 22-70).

According to the results explained above in the two tables

(table 1 and table 2) we note that the time of GPU-PSO and

better than the GPU-ACO time in all cases. But, for the length

that is the opposite that is to say that GPU ACO length is

smaller relative to the length of GPU PSO. For this reason, we

will try to achieve hybridization between PSO and ACO using

the GPU based on [25].

Execution time of the proposed system is critical for the

safety of vehicles that why we have proposed to use GPU

acceleration to assure finding secure paths and sending

messages to vehicles in appropriate time.

In a typical scheme, GPU is applied repeatedly with the

same settings and the same initialization of ants. Then the best

test results are supposed to be the solution of the problem.

With GPU-PSO the execution time is improved compared to

the execution time with GPU-ACO.

Acknowledgment

The authors would like to acknowledge the financial

support of this work by grants from General Direction of

Scientific Research (DGRST), Tunisia, under the ARUB

program.

Figure 5. CPU-PSO and GPU-PSO comparative for different nodes (22, 29, 30, 48, 52 and 70)

Figure 6. Taux= ((GPU T.PSO) / (CPU T.PSO))*100 for number nodes 22 and number population (22, 70, 100)

GPU PSO and ACO Applied to TSP for Vehicle Security Tracking

377

Figure 7. CPU PSO and GPU PSO comparative for different the number of nodes = the number of size of population of PSO

Figure 8. Taux= ((GPU T.PSO) / (CPU T.PSO))*100 for number nodes 22, 29, 30, 48, 52 and 70

Bali et al.

378

Figure 9. CPU T.PSO and GPU T.PSO comparative for different number of size of population of PSO (70 and 100)

Figure 10. Taux= ((GPU T.PSO) / (CPU T.PSO))*100 for number nodes 22 and number population 70

GPU PSO and ACO Applied to TSP for Vehicle Security Tracking

379

Figure 11. CPU ACO and GPU ACO comparative results for nodes number of 22, 29, 30, 48, 52 and 70

Bali et al.

380

Figure 12. Results of best GUP-PSO and GPU-ACO applied to TSP

Figure 13. Average length ACO (100) and average length PSO (100) comparative results for 22, 29, 30, 48, 52 and 70.

GPU PSO and ACO Applied to TSP for Vehicle Security Tracking

381

Table 1. PSO and GPU PSO for TSP

 CPU GPU

N Size of population of PSO T.PSO (sec) L.PSO (Km) T.PSO (sec) L.PSO (Km)

22

22 0.1406 90.6884 0.0848 90.6884

70 0.4556 90.4220 0.2791 90.4220

100 0.5707 89.4898 0.3950 89.4898

29

29 0.4181 1.1761e+004 0.2346 1.1761e+004

70 0.9632 1.0900e+004 0.5831 1.0900e+004

100 1.2177 1.0472e+004 0.7763 1.0472e+004

30

30 0.3577 584.0341 0.2736 584.0341

70 0.7334 562.0160 0.5969 562.0160

100 1.1059 545.7844 0.8535 545.7844

48

48 3.0961 4.5973e+004 0.6366 4.5973e+004

70 4.3249 4.4654e+004 0.9269 4.4654e+004

100 4.8480 4.1158e+004 1.4414 4.1158e+004

52

52 4.0960 1.0404e+004 1,5657 1.0404e+004

70 5.5387 1.0191e+004 2,1006 1.0191e+004

100 7.9181 1.0099e+004 3,0056 1.0099e+004

70

70 15.9345 910.6275 4,6413 910.6275

100 27.2070 848.9480 6,6228 848.9480

150 24.8191 845.9768 9,9574 845.9768

Bali et al.

382

Table 2. ACO and GPU ACO for TSP

 CPU GPU

N Size of population of ACO T.ACO (sec) L.ACO (km) T.ACO (sec)

22

22 0.2438 77.8000 0.0930

70 0.4969 77.1834 0.2964

100 0.6866 76.1212 0.4223

29

29 0.4190 1.1621e+004 0.2602

70 1.0881 1.0530e+004 0.6132

100 1.3713 1.0432e+004 0.9036

30

30 0.3724 537.9874 0.2933

70 0.7652 495.5985 0.6699

100 1.4225 491.7651 1.0160

48

48 4.0005 4.2086e+004 1,1433

70 4.5047 4.1420e+004 1,6658

100 6.8139 4.0585e+004 2.3992

52

52 5.5777 9.0578e+003 1,5830

70 5.5446 9.0068e+003 2,1048

100 8.1787 8.9425e+003 3,0164

70

70 14.2154 855.4880 4.6827

100 28.6257 834.5480 6,6411

150 35.3854 810.3874 9,9887

Table 3. Comparative for a need number of (100)

N Size of population Average Length ACO

(100)

Average Length PSO

(100)

22

100 77.3367 90.2000

29

100 1.0910 e+004 1.1044e+004

30

100 508.8037 563.9448

48

100 4.1502e+004 4.3928e+004

52 100 9.0023e+003 1.0231e+004

70 100 833.4744 868.5174

GPU PSO and ACO Applied to TSP for Vehicle Security Tracking

383

References

[1] N. Rokbani and A. M. Alimi. "IK-PSO, PSO Inverse

Kinematics Solver with Application to Biped Gait

Generation.International", Journal of Computer

Applications, p 33-39, November 2012.

[2] Y. Shi and R. Eberhart. "A modified particle swarm

optimizer", In Proc of the IEEE World Congress on

Computational Intelligence and IEEE International

Conference on Evolutionary Computation, p 69-73, 1998.

[3] M. Dorigo, M. Birattari, and T. Stutzle. "Ant colony

optimization", IEEE Computational Intelligence

Magazine, p 28-39, 2006.

[4] K. Vittori, G. Talbot, J. Gautrais, V. Fourcassié, A. F.

Araujo, and G. Theraulaz. "Path efficiency of ant foraging

trails in an artificial network", Journal of heoretical

Biology, p 507-515, 2006.

[5] R. C. Eberhart and J. Kennedy. "A New Optimizer Using

Particle Swarm Theory", In Proceedings of International

Symposium on Micro Machine and Human Science, p

39-43, 1995.

[6] S. S. Kim, J. H. Byeon, H. Liu, A. Abraham and S. F.

McLoone. "Optimal job scheduling in grid computing

using efficient binary artificial bee colony optimization",

Soft Computing, p 867-882, 2013.

[7] M. Ali, M. Pant and A. Abraham. "Unconventional

initialization methods for differential evolution", Applied

Mathematics and Computation, p 4474-4494, 2013.

[8] M. Dorigo, V. Maniezzo and A. Colorni. "The ant system:

Optimization by a colony of cooperating agents", IEEE

Transaction System Man Cybern B, Cybern, p 29-41,

1996.

[9] S. Nonsiri and S. Supratid. "Modifying Ant Colony

Optimization", IEEE Conference on Soft Computing in

Industrial Applications, 2008.

[10] W. Elloumi, N. Rokbani and A. M. Alimi. "Ant

supervised by PSO", In Proc of International symposium

on Computational Intelligence and Intelligent Informatics,

Egypt, cairo, p 161-166, 2009.

[11] P. Winker, P and M. Gilli. "Applications of optimization

heuristics to estimation and modelling problems",

Computational Statistics & Data Analysis, p 211-223,

2004.

[12] B. Yue, H. Liu and A. Abraham. "Dynamic Trajectory

and Convergence Analysis of Swarm Algorithm",

Computing and Informatics, p 371-392, 2012.

[13] B. Iglesia, A. Reynolds, and V. J. R. Smith.

"Developments on a multi-objective metaheuristic (momh)

algorithm for finding interesting sets of classification

rules", In: C. A. C. Coello, A. Hern ández Aguirre and E.

Zitzler (eds.) EMO, Springer, Heidelberg, p 826-840,

2005.

[14] T. Vigneswari, M. Mohamed. "Optimal Grid Scheduling

Using Improved Artificial Bee Colony Algorithm ",

International Journal of Computer, Electrical,

Automation, Control and Information Engineering, p

2055-2063, 2014.

[15] M. Dorigo and L. M. Gambardella. "Ant colony system:

A cooperative learning approach to the travelling

salesman problem", IEEE Transactions on Evolutionary

Computation, 1997.

[16] B. Gavish and S. C. Graves. "The travelling salesman

problem and related problems", 1978.

[17] W. Elloumi and A. M. Alimi."Combinatory Optimization

of ACO and PSO", International Conference on

Metaheuristique and Nature Inspired Computing, Tunis,

Hammamet, p 1-8, 2008.

[18] M. Reimann and M. Laumanns. "A hybrid aco algorithm

for the capacitated minimum spanning tree problem",

Proceedings of first international workshop on hybrid

metaheuristics, 2004.

[19] W. Elloumi and A. M. Alimi. "A More Efficient MOPSO

for Optimization", The eight ACS/IEEE International

Conference on Computer Systems and Applications,

Tunis, Hammamet, p 1-7, 2010.

[20] C. Coello. "Evolutionary multiobjective optimization: A

historical view of the field", IEEE Computational

Intelligence Magazine, p 28-36, 2006.

[21] R. Thangaraj, M. Pant, A. Abraham and P. Bouvry.

"Particle Swarm Optimization: Hybridization

Perspectives and Experimental Illustrations", Applied

Maths and Computation, Elsevier Science, Netherlands, p

5208-5226, 2011.

[22] Y. Maheshkumara, V. Ravi and A. Abraham. "A Particle

Swarm Optimization Threshold Accepting Hybrid

Algorithm for Unconstrained Optimization", Neural

Network World, 2013.

[23] H. Liu, A. Abraham, V. Snasel and S. McCloone.

"Particle Swarm Scheduling for Work-Flow Applications

in Distributed Data-Intensive Computing Environments",

Information Sciences, Elsevier Science, Netherlands, p

228-243, 2012.

[24] W. Elloumi, N. Baklouti, A. Abraham and A. M. Alimi.

"The Multi-Objective Hybridization of Particle Swarm

Optimization and Fuzzy Ant Colony Optimization",

Journal of Intelligent and Fuzzy Systems, 27(1) p 515-525,

2014.

[25] W. Elloumi, H. ElAbed, A. Abraham and A. M. Alimi.

"A comparative study of the improvement of

performance using a PSO modified by ACO applied to

TSP”. Journal Applied Soft Computing 25: 234-241,

2014.

[26] P. Krömer, J. Platoš·and V. Snášel. "Nature-Inspired

Meta-Heuristics on Modern GPUs: State of the Art and

Brief Survey of Selected Algorithms". International

Journal of Parallel Programming, p 681-709, 2014.

[27] P. Krömer, V. Snášel, J. Platoš and A. Abraham.

"Many-threaded implementation of differential evolution

for the CUDA platform". Proceedings of the 13th annual

conference on Genetic and evolutionary computation, p

1595-1602, 2011.

[28] P. Krömer, J. Platos and V. Snášel. "Differential

evolution for the linear ordering problem implemented

on CUDA". IEEE Congress on Evolutionary

http://scholar.google.com/scholar?oi=bibs&hl=en&cluster=501872457221289753&btnI=Lucky
http://scholar.google.com/scholar?oi=bibs&hl=en&cluster=501872457221289753&btnI=Lucky
http://dblp.uni-trier.de/pers/hd/a/Abed:Haikal_El
http://dblp.uni-trier.de/pers/hd/a/Abraham:Ajith
http://dblp.uni-trier.de/pers/hd/a/Alimi:Adel_M=
http://dblp.uni-trier.de/db/journals/asc/asc25.html#ElloumiAAA14
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5949700
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5949700
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5949700

Bali et al.

384

Computation (CEC), p 796-802, 2011.

[29] M. Panda, A. Abraham and M. R. Patra, "Hybrid

Intelligent Systems for Detecting Network Intrusions".

Journal of Security and Communication Networks, 8(16):

2741-2749, 2015.

[30] A. Abraham, C. Grosan and C. M. Vide. "Evolutionary

Design of Intrusion Detection Programs", International

Journal Network Security, p 328-339, 2007.

[31] B. K. Chaurasia, S. Verma, G. Tomar and A.

Abraham. "Optimizing Pseudonym Updation in

Vehicular Ad-Hoc Networks", Transactions on

Computational Science, Special Issue on Security in

Computing, Springer Berlin / Heidelberg, p 136-148,

2009.

Author Biographies

Olfa Bali Received the BS degree in computer science

from the Faculty of Sciences of Sfax-Tunisia (FSS) in

2005 and Master's degrees in Computer Science from the

National School of Engineers of Sfax - Tunisia (ENIS), in

2007. In September 2008, she joined the Sfax University

(USS), where she was Assistant Professor Computer

analyst at the Higher Institute of Nursery Sciences of Sfax,

Tunisia.

Walid Elloumi Received the B.S. degree in computer

science from The Faculty of Sciences of Sfax-Tunisia

(FSS) in 2003, and the Master degrees in Computer

Science from the National Engineering School of Sfax -

Tunisia (ENIS), in 2005. In September 2005, he joined the

Sfax University (USS), where he was an assistant

professor in the Department of Computer science of the

Preparatory Institute being studied of Engineers of Sfax

(IPEIS). Between 2006 and 2009 he was an assistant

professor in the Department of Computer science of

Institute Higher Electronic Communication of Sfax

(ISECS) and for the year 2009 2010 he served in National

Engineering School of Sfax (ENIS).

 In 2010 he joined Gabes University where he is currently

an Assistant professor on Computer science on the High

Institute of Industrial Systems of Gabes (ISSIG), Tunisia,

Department of Computer science. He is member of the

REsearch Group on Intelligent Machines (REGIM). His

research interests include Computer Vision, pattern

recognition and Swarm Intelligence. These research

activities are centered now on Swarm Intelligence. He is an

IEEE member. He is member of the Organizing

Committee of ACIDCA-ICMI’05, he participated

in: IEEE/CIS Distinguished lecturers 2009, Training in

English "Writing Reasearch Articles" 2008, Training in

English "Listening For Academic settings" 2007, School

of Spring on the Systems of Management of Quality for

Teaching, Industry and the Services (SYMAQ) 2007,

School of Winter on the Valorisation of the Innovation by

the Patents (EHVIB) 2006, School of UNIX

formation/LINUX 2006, School of Winter on wavelets

2005, Cycle of formation teaching 2005, University spring

(time) of teaching 2004.

Ajith Abraham is the Director of Machine Intelligence

Research Labs (MIR Labs), a Not-for-Profit Scientific

Network for Innovation and Research Excellence

connecting Industry and Academia. The Network with

Head quarters in Seattle, USA has currently more than

1,000 scientific members from over 100 countries. He also

works as a Research Professor in VSB-Technical

University of Ostrava, Czech Republic.

As an Investigator / Co-Investigator, he has won research

grants worth over 100+ Million US$ from Australia, USA,

EU, Italy, Czech Republic, France, Malaysia and China.

Dr. Abraham works in a multi-disciplinary environment

involving machine intelligence, cyber-physical systems,

Internet of things, network security, sensor networks, Web

intelligence, Web services, data mining and applied to

various real world problems. In these areas he has authored

/ coauthored more than 1,000+ research publications out

of which there are 100+ books covering various aspects of

Computer Science. One of his books was translated to

Japanese and few other articles were translated to Russian

and Chinese. About 800+ publications are indexed by

Scopus and over 450 are indexed by Thomson ISI Web of

Science. Some of the articles are available in the

ScienceDirect Top 25 hottest articles. He has 700+

co-authors originating from 40+ countries. Dr. Abraham

has more than 20,000+ academic citations (h-index of 70

as per google scholar). He has given more than 100 plenary

lectures and conference tutorials (in 20+ countries). For

his research, he has won seven best paper awards at

prestigious International conferences held in Belgium,

Canada Bahrain, Czech Republic, China and India. Since

2008, Dr. Abraham is the Chair of IEEE Systems Man and

Cybernetics Society Technical Committee on Soft

Computing (which has over 200+ members) and served as

a Distinguished Lecturer of IEEE Computer Society

representing Europe (2011-2013. Under his direct

academic supervision, 8 students received Ph.D. degrees

and is currently supervising 10 Ph.D. students in different

Universities in Europe, USA, Africa and India. He has

examined over 100 Ph.D. theses. Currently Dr. Abraham is

the editor-in-chief of Engineering Applications of

Artificial Intelligence (EAAI) and serves/served the

editorial board of over 15 International Journals indexed

by Thomson ISI. He is actively involved in the

organization of several academic conferences, and some of

them are now annual events. Dr. Abraham received Ph.D.

degree in Computer Science from Monash University,

Melbourne, Australia (2001) and a Master of Science

Degree from Nanyang Technological University,

Singapore (1998). More information at:

http://www.softcomputing.net/

Adel M. Alimi He graduated in Electrical Engineering in

1990. He obtained a Ph.D. and then an HDR both in

Electrical Computer Engineering in 1995 and 2000,

respectively. He is full Professor in Electrical Engineering

at the University of Sfax, ENIS, since 2006.

Prof. Alimi research interests include:

- iBrain (Evolutionary computing, Swarm

intelligence, Artificial immune systems, Fuzzy Sets,

Uncertainty analysis, Fractals, Support vector machines,

Artificial neural networks, Case Based, Reasoning,

Wavelets, Hybrid intelligent systems, Nature inspired

computing techniques, Machine learning, Ambient

intelligence, Hardware implementations, Multi-Agent

Systems, iRobotics, Multi-Robots, Autonomous Robots)

- iPerception (Classification, Classifiers

Combination, Features Extraction, High Dimension

Classification Problems, Handwriting Recognition,

Handwriting Modeling, Motor Control, Perception, OCR,

Arabic Script, Historical Documents

Analysis, iDocument, iVision, Remote Sensing, Affective

Computing) & iData (Big Data, iWeb, Biometry, Data

Mining, Web Mining, Cloud Computing).

http://www.softcomputing.net/lncst2009.pdf
http://www.softcomputing.net/lncst2009.pdf
http://www.springer.com/computer/lncs?SGWID=0-164-6-151275-0
http://www.springer.com/computer/lncs?SGWID=0-164-6-151275-0

