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Abstract: The Travelling Salesman Problem (TSP) is a 

well-known benchmark problem for many meta-heuristic 

algorithms, including security traffic optimization problems. 

TSP is known as NP hard complex. It was investigated using 

classical approaches as well as intelligent techniques using Ant 

Colony Optimization (ACO), Particle Swarm Optimization (PSO) 

and other meta-heuristics. The Graphic Processing Units (GPU) 

is well suited to the execution of nature and bio-inspired 

algorithms due to the rapidity of parallel implementation of 

GPUs. In this paper, we present a novel parallel approach to run 

PSO and ACO on GPUs and applied to TSP 

(GPU-PSO&ACO-A-TSP) for security tracking vehicles in road 

traffic. Both algorithms are implemented on the GPUs. Results 

show better performance optimization when using GPUs 

compared to results using sequential CPU implementation. 

 
Keywords: PSO, ACO, TSP, GPU, CUDA, Optimization, 

Security. 

 

I. Introduction 

In the field of Engineering, the optimum solution of a problem 

is defined using optimality criteria. Mathematical equations 

and numerical interpretations are used to quantify optimality. 

Numerical interpretations should be fixed with respect to the 

problem characteristics, specificities and constraints [1]. 

While employing optimization techniques, we discriminate 

probabilistic and deterministic algorithms; ACO, Ant Colony 

Optimization [3], [18] algorithms are probabilistic methods, 

PSO particle swarm optimization [2].  

Travelling Salesman Problem is a powerful optimization 

tool that permits to find the best path using particles and to 

track the paths of the vehicles in road traffic monitoring system. 

In our system, the vehicles travelling across roads represent 

the particles. Such system allows to offer best roads for the 

vehicles and to prevent road accidents by tracking vehicles 

during their traffic.  GPS devices and electronic displays 

assure communication between the monitoring center and 

vehicles across the road.  

Swarm intelligence techniques are bio-inspired methods, 

where group comportment is used to solve a problem based on 

the individualities of its members. Studies on insects’ social 

behaviors have been applied in the field of optimization. Faced 

with the threats and dangers of nature, insects represent 

complex communication systems, and can show a great 

resistance. An individual insect may have only a few 

hundred-brain cells but a group of insects can have much more 

and is able to represent a well-organized architecture with 

better communication and resistance skills. In this case, we can 

speak of a complex social group that improves individual 

intelligence skills to more developed interactions and 

relationships between these groups. The flocks of birds, ants or 

fish strips promote a set of skills in artificial intelligence. 

The central problem in the socio-biology of insects is the 

development of group’s behaviors from the behaviors of 

individual ants. Provided that the behavior of a single ant is 

almost random, with a stochastic tendency to gravitate towards 

paths that have been trodden by other ants; the achievements 

of swarms of ants are most incredible. The behavior of an 

isolated ant quickly results in the demise of the individual, but 

the mass behavior of a colony of ants provides sustenance and 

defensive protection for the entire population [4]. 

An optimality criterion is generally expressed by a 

mathematical expression looking for a minimum value; these 

formulas are known as objective functions based on the 

concept of fitness. The heuristic optimizers are used in order to 

get a group of solutions that satisfy these functions. 

Kennedy and Eberhart [5] began to develop PSO field that 

is based on a population approach using the intelligence of 

each particle. Through a flock of birds, they tried to simulate 

its behavior, like reaching an unknown destination as birds’ 

goal (according to fitness), for example searching for food 

while flying (space research) [6]. Inspired by nature, the 

particles communicate and interact with each other [21]–[23]. 

Despite its simplicity, in nature, a swarm proceeds naturally 

with multi-objective optimization in all its activities, MOPSO, 
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Multi-objective PSO is a PSO with some multi-objective 

optimum criteria. Therefore, solving multi-objective problems, 

MOPs, can be considered as the mixture of both searching and 

decision-making approaches [7], [19], [20]. 

Examinations on ants’ behavior showed that if ants have 

food located at some distance from the nest, with two unequal 

path length leading to it, ants will try both paths then will 

choose at the end the swarm having the shortest route. Using 

real ants, experiments have shown that when several ants move 

the nest to the food with different paths that are uneven; these 

ants will find the shortest path through the pheromones 

deposited by ants. If an obstacle is added on a path, the ants are 

able to move and to choose the shortest path in a definite time. 

If two sources are equal for example if both paths are of equal 

distance, the ant will choose a path arbitrarily [8]. 

Recently many works on intelligent security systems have 

been published. In [31], authors propose a system of vehicle 

anonymity enhancement in vehicular Ad-Hoc networks that 

consist in updating the pseudonym of vehicles regularly in 

order to preserve their privacy. 

A hybrid security system based on naïve Bayes and decision 

trees used for network intrusion detection is presented in [29].  

In [30], the authors developed a security intrusion detection 

program based on the use of evolutionary algorithms, 

especially Genetic Algorithm. 

The biological studies on natural ant’s shows that ants are 

able to produce specific pheromone and to identify the 

chemicals emitted substances and the glands that emit them [9]. 

Dorigo et al. also have painfully identified the fixed action 

answers to each of the various pheromones. They found out 

that pheromone involves a medium for communication among 

the ants, allowing fixed action collaboration; the result shows 

that a group behavior is adaptive while the individuals' 

behaviors are not. Initially the AS-PSO was proposed by 

Elloumi et al, 2009 in [10]. 

Several recent and important works that used the GPU to 

accelerate optimization problems, we can find PSO [26]–[28]. 

In this paper, we investigate an aspect of GPU particle 

swarm optimization and ant colony optimization applied to 

TSP (GPU-PSO&ACO-A-TSP), focusing only on the 

implementation of GPUs on the two algorithms mentioned 

above. The remaining of this paper is organized as follows: In 

section 2, we review the PSO, ACO algorithms and TSP 

problem. Section 3 is dedicated to the presentation of CUDA 

programming model. A GPU model is presented in section 4. 

Our approach, GPU Particle Swarm Optimization and Ant 

Colony Optimization Applied to Travelling Salesman 

Problem, is illustrated in Section 5. Section 6 includes 

experimental results with discussions of our approach. The 

paper is ended by a conclusion and further works openings in 

Section 7. 

II. Variants of PSO, ACO and TSP 

A. Particle swarm Optimization 

This optimization technique is based on cooperation between 

individuals within a social organization. The group has to face 

and resolve the problems, by applying the capabilities of each 

individual as well sub-groups capacities. It belongs to a family 

of heuristic methods, called; swarm optimizers that include 

also the algorithm of ant colony optimization. ACO also relies 

on the concept of self-organization [11]. The idea is that a 

collection of individuals, who have a small amount of 

intelligence, each one, can produce a complex global 

organization. Thus, through simple rules of movement (in the 

space of solutions), the particles in the group can progressively 

converge to a local minimum.  

PSO is fundamentally a method of parallel multi-agent 

research. The locations and velocities of particle creation, the 

updating speed, search of local and global optimums and the 

updating location are the four stages of PSO. 

The role of PSO in our system is to act as a security 

supervisor that permits to identify accidents across the roads, 

prevent traffic jam and offer different roads for vehicles. 

The research problem can be solved by using the position 

vector of a particle with respect to the search space. After a 

number of iterations, one can find the best global position of 

the particle that is about to fly with a certain speed [12]. 

For each iteration, each particle can update its velocity 

attributes using its best local position (pbest - particle best) and 

the best position of its global neighbors (gbest - Global Best), 

and then calculate the new location of each "particle" that is 

about to fly. Through this algorithm, one can find the global 

optimum, based on the trajectory and the behavior of each 

particle relative to its neighbors. 

The communication between PSO particles is employed to 

assure the traffic security. An Ad-Hoc network of vehicles is 

used to exchange messages from a vehicle to another. The best 

global vehicles send messages to inform its neighbor’s 

vehicles about traffic security information in order to prevent 

road accident and improve traffic quality. 

The route of the particle swarm is calculated using all the 

adjacent particles and its past attributes. 

During the optimization process, the MOPSO approach 

suffer from a loss of diversity, in this case MOSPO have some 

problems to maintain the balance between exploitation and 

exploration [13]. 

MOPSO allows use of the principle of density estimator for 

choosing the best overall particle and remove particles from 

the external archive. In this case, the non-dominated solutions 

are ranked in descending order, and a particle will be selected 

in a random manner [19]. We have presented our approach 

Fuzzy Ant Colony Optimization (FACO) and Multi-objective 

Particle Swarm Optimization (MOPSO) [24].  

In PSO, the formulation of the velocity and the position, is 

given by equations (1) and (2) 

1, 1 , ,

,

    

1

2
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* ()*( ( ) ( ))

i j i j i jlbest

Gbest i j
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The inertia weight is represented by w  ; i = 1, 2,. . ., N : 

indicates the number of population particles (swarm); t = 1, 
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2, . . . tmax indicates the number of iterations, 
,

    

i j
V is the symbol 

of the speed of the particle , thi j  , C1 and C2 are positive 

constants that modify the particle velocity while taking into 

account local particle 
lbest

x  and global particle 
Gbest

x . 

The algorithm starts by dispersing the particles randomly in 

search space. Then, the particles form a “bench” and explore 

the search space while maintaining cohesion between them 

and gathering around the optimum. They no longer run away 

from this optimum. Depending on the configuration of the 

algorithm, the particles end up in the same spot, which 

highlights a global trend to move towards the optimum.  

 

B. Ant Colony Optimization 

When moving, ants leave pheromone marks on the way, which 

disappear with time and distance. The ants follow the strongest 

path having the most amounts of pheromones, which facilitates 

for other ants to follow the shortest path [14]. 

Using the concept of pheromone by ants, it can solve the 

Travelling Salesman Problem [15]. The ant moves from the 

nest to the food and use the ant colony optimization to find the 

shortest path around obstacles.  

ACO could be very useful for road traffic enhancement, 

even in case of obstacles blocking the roads, ACO continue to 

find other secure paths. 

In ACO [8], [9] based on the amount of pheromone deposed 

on the path, we noticed that the ants follow the path having the 

densest amount of pheromone. Where ,i j  represents the 

amount of pheromone of ,i jant , which depends on the 

following probability: 
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             (3) 

With i  is the neighborhood nodes for a given ,i jant . The 

constants α and β denote the visibility of magnitude when 

switching from one path to another, which allows to move 

from node (i) to the node (j). ,i j  represents the inverse 

distance between node (i) and node (j). In the ACO process, 

the update matrix of the amount of pheromone is necessary for 

the measurement; this update corresponds to the equation (4), 

ρ is the evaporation rate, while Bt represents the fastest lap. 

 
( 1) ( 1) ( )
, , ,

( 1) ( 1)
, ,

( , ) (1 )n n k
t i j i j i j

n n
i j i j

if i j B

else

   

 

 

 

     

 
        (4) 

 

In best tour, Bt, determination several policies could be 

applied, the first one, and the simplest, consist in considering 

the best solution found from the beginning of the processing. 

The second alternative is to define a limited, Bt, that evaluates 

only the current procedure or a set of limited samplings to 

precedent Bt. The Combination of these two proposals with a 

moderation rates are also possible, in this paper the Bt, is 

selected using the first strategy.   

According to the evaporation, another update of the amount 

of pheromone is performed when colonies displacement as 

shown in the equation (5). 

 

 ( ) ( 1) (0)
, , ,1 .n n

i j i j i j     
              (5) 

 

C. The TSP problem 

TSP, the traveling salesman problem, which may be defined as 

follows: at first we initialize (n) cities that must be visited. 

Initially we start from a city chosen randomly and then returns 

to the starting city. The objective is to determine the overall 

distance and visit every city just once with respect to fixed 

start/end locations [16]. 

In case of traffic accident, TSP optimization allows to 

inform other vehicles about the accident in order to follow 

better paths to reach destination safely and quickly.    

An illustration of this problem with five cities is given in 

figure1; it shows two possible solutions, one in red and the 

other in green color. The two routes do not have the same 

length. A travelling salesman will choose the shortest path to 

reduce the cost of the travel. However, the TSP is said 

np-complete. In fact, for n cities the number of possible route 

is equal to (n − 1)!/2.  

 

 
Figure 1. TSP possible solutions for a simplified cities 

representation, here the number of cities is limited to five 

III. CUDA Programming model 

A. What is CUDA? 

CUDA is a parallel computing design developed by NVIDIA 

to multiply the system computing performance by coupling the 

power of graphics processors (GPU). 

While millions of GPU compatible with CUDA were sold, 

thousands of software developers, scientists and researchers 

use CUDA in a wide range of areas, including the processing 

of images and videos, computational fields and more. 

 

B. Parallel processing with CUDA  

Data processing has evolved from the exclusive processing 

CPU to co-processing capabilities offered by the combination 

of GPU and CPU. To enable this new data processing 

paradigm, NVIDIA designed the CUDA parallel processing 

architecture, today included in GEFORCE and Tesla thus 
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offering important material base for application developers. 

On the side of the public, most of the major applications of 

video processing are or soon will be accelerated by CUDA. 

The existing fleet of Tesla GPUs, providing significant 

capacity for GPU computing, allows gauging the success of 

CUDA. More than 700 GPU clusters are today active 

worldwide. The most important companies in the world have 

adopted CUDA. 

IV. GPU model 

A. GPU computing 

The GPU computing consists to use the graphics processor 

(GPU) in parallel with the CPU to accelerate business 

applications of science, analysis, engineering, production and 

business. Launched in 2007 by NVIDIA GPU accelerators 

have established themselves as an industry standard. 

Worldwide, most of the low-energy data centers are used, both 

in government and university laboratories in small and 

medium enterprises. NVIDIA GPUs to accelerate many 

applications on supports as varied as Smartphone’s, tablets, 

cars, drones and robotic systems. 

 

B. How to accelerate applications with GPU  

The GPU computing allows parallelizing jobs and offering 

high performance in several applications. The GPU 

accelerates the time-consuming parts of code in computational 

tasks, the rest of the application remains assigned to the CPU, 

which improves applications computational time.  

 

 
 

Figure 2. How GPU Acceleration Works 

 

 

To understand the fundamental differences between a CPU 

and a GPU, just compare their treatment of each operation. 

The CPUs include a limited number of cores optimized for 

serial processing, whereas the GPU integrate thousands of 

cores designed to efficiently handle many simultaneous tasks. 

V. GPU-PSO&ACO-A-TSP 

In this section, we will study our approach having two 

essential parts. The first part explain GPU PSO-A to TSP 

while the second part explain GPU ACO-A to TSP. 

The vehicle security tracking system based on PSO and ACO 

optimization require high CPU computation resources. That’s 

explain the necessity to use GPU accelerated system. 

 

A. GPU PSO 

Meta-heuristic have emerged along with the paradigm itself, 

they are gaining popularity because they have worked well in 

some hard optimization problems such as travelling salesman, 

vehicle routing problem or the Hamiltonian path. 

To design an evolutionary or a swarm solver, the main 

difficulties that arise are to determine the individual behavior, 

the environment and the social dynamic that govern the 

operation of the system to produce the desired collective 

response. Genetic algorithms, differential evolution, neural 

networks, PSO, ACO, or Bee colony optimization, were 

successfully applied to hard optimization problem, algorithms 

have shown potential capabilities at producing solutions, while 

the quality of the solutions depends on the heuristic parameters 

fittings. Classical heuristics used a set of user-designed 

parameters, while adaptive ones are trying to overcome this 

problem, given to the heuristic a capacity of parameters 

self-tuning. 

In fact, the main idea that underlies the design of hierarchic 

heuristics is simple: for a given optimization problem, we have 

two algorithms, each with its strengths and weaknesses, the 

first one is used as a solver while the second is used to 

optimize to first solver. Classical ACO are used for discrete 

optimization while PSO is employed for continuous 

optimization problems. 

Separately, PSO and ACO showed great potential in solving 

a wide range of optimization problems. We use both to solve 

optimization problems this is what Elloumi et al. have tried to 

do in [10]. The idea is to allow PSO to optimize the optimizer 

(ACO), knowing that ACO is used for discrete problems and 

PSO generally for continuous problems, and considering their 

strengths and their weaknesses. The figure 3 shows roughly the 

process of Graphical Process Unit Particle Swarm 

Optimization Applied to Travelling Salesman Problem. 

The use of GPU acceleration in PSO security supervisor 

allows in case of traffic blocking to choose quickly other path 

for vehicles and to prevent from accidents. 

Our goal is to cover all cities (designated nodes) once (if the 

particle passes through the city i to j it does not cross the town 

in the other direction, from j to i). Finally, the particle returns 

to the starting city, so we get a cycle. 

The “gpuArray()” function allows copying data from the 

memory of the CPU to the GPU memory brings us to 

manipulate the table on the GPU memory. 

Afterwards, we take the overall particle represented by 

Gbest
x  and local particle referenced 

lbest
x  each particle speed 

and positions are changed respectively in Equation 1 and 

Equation 2. 

We had to repeat these steps until reaching the maximum 

number of iterations; it is assigned to each node. This allows us 

to obtain an archive, according to the latter; we can make a 

comparison between the different obtained paths. We choose 

the best way in terms of its execution time. Finally, we return 
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the GPU data to the CPU through the control “gather()” (see 

Figure 3). 

B. GPU ACO 

The heuristic is directly related to the physical problem and try 

to solve it, while the meta-heuristic adjusts the parameters of 

the heuristics.  

The running of the classical ACO is based on parameters 

that are often set by the user of the algorithm. Thus, to found 

parameters that are appropriate for a problem, the user needs 

to perform many tests.  

We have proposed an Ant colony algorithm on GPU applied 

to TSP.  

The purpose is identical to that shown in PSO. We begin by 

initializing the ACO parameters; the number of iterations, the 

number of Ant particle is initialized every particle of ants on a 

start node randomly selected. The use of “gpuArray()” 

function allows us to transfer data to the CPU to GPU. 

Each ant is chosen the next node according to probability 

calculated in Equation 3, if there are other nodes to visit we 

return to the previous step that is the second step. 

The use of GPU acceleration in ACO helps to quickly 

suggest new paths for vehicles circulating on the roads to use 

these secure paths in case of obstacles.  

Otherwise, it returns to the chief starting city and changing 

the amount of pheromone in a cycle. Assign each node a thread 

and repeat these steps until reaching the maximum number of 

iteration. If we arrive at stopping criterion the concept of 

pheromone placing procedure that includes data on the 

efficiency previous balance sheet, guides the building 

procedure to each thread. Solutions to the intermediate partial 

problems are seen that we display the best lap, otherwise we 

return in step 2. 

The main steps above are designated for non-natural ants, 

simple calculation of individual agents and iterative used to 

build solutions to the problem that was been modelled as a 

graph. 

The particles of Ants travel visiting the nodes, which are 

connected by arcs. Solutions of the problematic represent an 

ordered sequence of nodes. The research procedure is 

performed in parallel on multiple computational practical 

threads. 

The dynamic memory structure that is inspired by the 

movement of the ant k at each iteration of the algorithm, (See 

Figure 4).  

Distinctly, PSO and ACO showed a high resolution for 

optimization problems. To solve the ongoing problems in an 

efficient manner, this article introduces a new approach GPU 

PSO and ACO algorithm. 

The proposed algorithm reduces the likelihood that 

minimizes falling into local optimum and improves the 

capacity and research accuracy. Definite steps that were 

followed to the end to keep the strength of our approach.  

First, we start by resetting the search space, then the number 

of iterations for PSO and its cost function. The second step is 

to initialize the particle ant, the cost of this function. 

Thereafter we use the function “gpuArray()”. Then follows the 

steps of the ACO or PSO. We try to change the position and 

speed of PSO particles, and Ant positions too. If the conditions 

are fulfilled, we arrive at our goal, which is the end, otherwise 

we return to the second step. 

With GPU, displays the processing steps of the two 

algorithms ACO & PSO algorithm in which we can identify 

the various stages of operation of the algorithm. 

 
Figure 3. The process of GPU-PSO-A-TSP 

 

 

GPU 

Choose the shorter path 

Return from GPU to CPU using 

gather 

End 

Start 

 

- Initialize parameter of PSO to TSP 

- n_max iterations 

- Number of particles 

- Fitness functions 

-  Initialize positions and velocities 

 

Transfer data function from CPU to 

GPU using gpuArray 

Elect Pig 

Elect Pil 

 

Update velocities 

 

Update positions 

 

Assigned for N data N thread 

 

Lp 
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Figure 4. The process of GPU-ACO-A-TSP 

 

The proposed algorithm reduces the likelihood that 

minimizes falling into local optimum and improves the 

capacity and research accuracy. Definite steps that were 

followed to the end to keep the strength of our approach.  

First, we start by resetting the search space, then the number 

of iterations for PSO and its cost function. The second step is 

to initialize the particle ant, the cost of this function. 

Thereafter we use the function “gpuArray()”. Then follows the 

steps of the ACO or PSO. We try to change the position and 

speed of PSO particles, and Ant positions too. If the conditions 

are fulfilled, we arrive at our goal, which is the end, otherwise 

we return to the second step. 

With GPU, displays the processing steps of the two 

algorithms ACO & PSO algorithm in which we can identify 

the various stages of operation of the algorithm. 

VI. Experimental Results 

In our approach, we begin by resetting the parameters feature 

of PSO applied to the TSP; to say the number of nodes 

contained in a graph, a weight of every particle and the 

coefficients of acceleration. In the proposed vehicles tracking 

system security, the nodes represent the departure and arrival 

cities and the particles represent the vehicles in roads. The 

maximum number of iterations in this case was taken as 1000 

iterations. The number of used particles depends on the graph. 

For example, for a graph with 22 cities, the possible number of 

particles of the population to use in this first test is 22, the 

second test is 70 for the third test is 100. 

We had 1000 iteration because we have tests by using 2000 

and 3000 iterations. 

Our method consists in using 1000 iterations because the 

number and the time of the cycle are proportional among 

iterations to avoid the wasting 

Our approaches GPU Optimization Swarm of particles and 

Ant Colony Optimization applied to the TSP (GPU-PSO 

ACO-A-TSP) is coded in Matlab 2014b and executed on a 

processor Intel ® Core T i7-4700MQ (6MB cache memory, 

3.40 GHz) PC with memory of 12GB and NVIDIA GeForce 

480M and Windows 7. There is many parameters used for our 

approach. The size of the population, which we are three times 

going to increase, is the number of knots of the social and 

cognitive probability, having c1 and c2, defined as c1 = c2 = 2. 

The mass of inertia w is taken as 0.9 and the maximum of the 

speed live taken as 100 and the dimension of the space as 10. 

Every cycle of TSP is executed during five replications and 

1000 iterations. Both has and ß control the relative importance 

of pheromone trail and the distance between cities TSP where 

has α= 1.5, ß = 2 Refers to the speed of pheromone 

evaporation ρ = 0.7. Each test TSP is performed for 5 

replications iterations and 1000. 

 

A. TSP solved by PSO and GPU PSO 

To solve the TSP using PSO, the following processing can 

steps can be used. A particle is the position of a node, the 

nodes represent a city, and the route is the path between city (i) 

and city (j). The fitness functions are the distances between 

nodes; and finally, the ultimate multi-objective purpose, which 

is to minimalize the distances of the paths that relate and time 

[17]. 

Because of the large number of vehicles on the road and the 

large number of cities, the use of GPU acceleration with TSP 

is essential to delivery of messages to vehicles in real time to 

assure their security.    

In Table 1, N refers to the number of nodes, CPU-T.PSO 
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For each ant  
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refers to the best time for PSO (per seconds) and CPU-L.PSO 

refers to CPU-PSO the length for PSO. The same indices for 

GPU. 

In the same table, we have tried to represent the different 

numbers of nodes, after that, we have attempted to increase the 

population of PSO keeping the same number of nodes. Thus, It 

was found from number 22 to 70 nodes, that the route of the 

shortest path decreases when the number of PSO population 

increases. Therefore, when the execution time increases, the 

number of (CPU-GPU) PSO population increases too. 

Therefore, we found it necessary to use TSP-ACO to improve 

results. 

 

B. Comparative study with CPU and GPU  for PSO 

In Figure 5, the x-axis indicates the size of the population of 

PSO, The y-axis represents the execution time per seconds. 

When selecting the number of nodes 22, 29, 30, 48, 52, 70 

and the number of the population size PSO 22, 70, 100, it has 

been proven that the computation time decrease when 

executing the GPU-PSO. 

In Figure 6, the x-axis shows the number of nodes and 

population, the y-axis shows the execution time per seconds. 

There after the implementation rate ((GPU T.PSO) / (CPU 

T.PSO)) *100 is very important, to choose for example, nodes 

22 and 22 population, the rate is 60.31%. 

In Figure 7, the x-axis shows the number of nodes and 

population, the y-axis shows the execution time per seconds. 

While selecting the number of nodes as equal to the number 

of population, it was found that the execution time of the 

T.PSO -GPU compared to T.PSO-CPU decreases. 

In Figure 8, the x-axis shows the number of nodes and 

population, the y-axis shows the execution time per seconds. 

The rate of execution ((GPU T.PSO) / (CPU T.PSO)) *100 is 

very important, as an example, for 29 nodes and 29 population 

the rate is 56, 11%. 

In Figure 9, the x-axis shows the nodes, the y-axis shows the 

execution time per seconds. 

While selecting the number of nodes 22, 29, 30, 48, 52, 70 

and the number of the size of population of PSO 70, 100, it has 

been verified that execution of the GPU PSO decreases 

compared to the execution time of CPU PSO. 

In Figure 10, the x-axis shows the nodes, the y-axis shows 

the execution time per seconds. The rate of execution ((GPU 

PSO) / (CPU PSO)) * 100 is very important, as an example, for 

22 nodes and 70 population the rate is 61, 26%. 

 

C. TSP solved by ACO and GPU ACO 

To solve the TSP using ACO, the following processing can be 

used. A particle is the position of a node, the nodes represent a 

city, and the route is the path between node (i) and (j). The 

adapting functions are the distances between nodes; and the 

ultimate multi-objective function is to minimize the distances 

of the paths that are related to time. 

In Table 2, N refers to the number of nodes, T.ACO refers to 

the best Time for ACO (per seconds), L.ACO is the best 

Length for ACO. We have not used the length of GPU in Table 

2, because the same values are replicated. 

In order to accelerate finding secure roads path for vehicles 

and to reduce road accident we propose to use TSP based GPU 

ACO.    

In Table 2, we have tried to represent the different numbers 

of nodes. After that we have tried to increase the number of 

people of ACO keeping the same number of nodes. In this 

Table it was found that the route of the shortest path decreases 

when the number of ACO population increases. When the 

execution time increases the number of population increases 

too. The execution time depends on the complexity of the TSP 

as well. 

Now comparing the results of the two tables we notice that the 

results of the shortest path of (CPU-GPU) ACO are better 

compared to the (CPU-GPU) PSO, but the best performance is 

that of (CPU-GPU) PSO compared to that of (CPU-GPU) 

ACO time. 

 

D. Comparative study with CPU and GPU for ACO 

In Figure 11, the x-axis indicates the size of the population of 

ACO, The y-axis represents the execution time per seconds. 

When selecting the number of nodes 22, 29, 30, 48, 52,70 

and the number of the population size ACO 22, 70, 100, it has 

been proven that when executing the GPU ACO a time 

decreases. 

The results in Figure11 show that the running time of the GPU 

ACO less than the time of the execution by CPU ACO. For a 

number of nodes 22 and population size 30, the CPU-T. ACO 

is 0, 3724 while the GPU-T. ACO is 0.2933. These results 

prove that we have a very import gain time using the GPU. 

 

E. TSP solved by our approach 

Figure 12, present a set of probable results by using our 

method, giving to the similar number of nodes and the 

configuration of the problem. This figure represents the best 

TSP for our approach chosen. 

In Figure 13, the x-axis indicates the size of the population 

of ACO, The y-axis represents the execution time per seconds. 

When selecting the number of nodes 100 and the number of 

the population size of ACO 22, 29, 30, 48, 52, 70, it has been 

proven the Average length ACO of decrease 

The results in figure13 show that average length ACO (100) 

less than the average length by PSO. For a number of nodes 30 

and population size, the Average length ACO is 508.8037 Km 

while the average length PSO is 563.9448 Km. 

In Table 3 we prove that the average length of ACO is below 

the average length of PSO. 

VII. Conclusions, Discussions and further 

works 

In this paper was given two approaches the GPU-PSO–A-TSP 

and GPU-ACO–A-TSP. Our system is applied to vehicles 

traffic to increase road security and reduce accidents. PSO is a 

heuristic continuous ACO is a discrete, MOPSO is PSO 

multi-objective, all these algorithms belong to the heuristics 

family while GPU-PSO is meta-heuristic applied to a set of 

TSP configurations at 22 to 70 nodes, ACO has a shorter 

length compared to PSO. In 22 cities, the average length of 

CPU-PSO (90.20), while CPU-ACO gives (77.33) represented 
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in table 3, the same constraints are made for different size 

nodes (see Table 1 and 2 in accordance with the nodes 22-70). 

According to the results explained above in the two tables 

(table 1 and table 2) we note that the time of GPU-PSO and 

better than the GPU-ACO time in all cases. But, for the length 

that is the opposite that is to say that GPU ACO length is 

smaller relative to the length of GPU PSO. For this reason, we 

will try to achieve hybridization between PSO and ACO using 

the GPU based on [25]. 

Execution time of the proposed system is critical for the 

safety of vehicles that why we have proposed to use GPU 

acceleration to assure finding secure paths and sending 

messages to vehicles in appropriate time.  

In a typical scheme, GPU is applied repeatedly with the 

same settings and the same initialization of ants. Then the best 

test results are supposed to be the solution of the problem. 

With GPU-PSO the execution time is improved compared to 

the execution time with GPU-ACO. 
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Figure 5. CPU-PSO and GPU-PSO comparative for different nodes (22, 29, 30, 48, 52 and 70) 
 

 

 
 

Figure 6. Taux= ((GPU T.PSO) / (CPU T.PSO))*100 for number nodes 22 and number population (22, 70, 100) 
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Figure 7. CPU PSO and GPU PSO comparative for different the number of nodes = the number of size of population of PSO 

 

 

 

Figure 8. Taux= ((GPU T.PSO) / (CPU T.PSO))*100 for number nodes 22, 29, 30, 48, 52 and 70 
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Figure 9. CPU T.PSO and GPU T.PSO comparative for different number of size of population of PSO (70 and 100) 
 

 
 

Figure 10. Taux= ((GPU T.PSO) / (CPU T.PSO))*100 for number nodes 22 and number population 70 

 



GPU PSO and ACO Applied to TSP for Vehicle Security Tracking 

 

379 

 
 

Figure 11. CPU ACO and GPU ACO comparative results for nodes number of 22, 29, 30, 48, 52 and 70 
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Figure 12. Results of best GUP-PSO and GPU-ACO applied to TSP 

 

 

 
 

Figure 13. Average length ACO (100) and average length PSO (100) comparative results for 22, 29, 30, 48, 52 and 70. 
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Table 1. PSO and GPU PSO for TSP 
 

 CPU GPU 

N Size of population of PSO T.PSO (sec) L.PSO (Km) T.PSO (sec) L.PSO (Km) 

22 

22 0.1406 90.6884 0.0848 90.6884 

70 0.4556 90.4220 0.2791 90.4220 

100 0.5707 89.4898 0.3950 89.4898 
 

29 

29 0.4181 1.1761e+004 0.2346 1.1761e+004 

70 0.9632 1.0900e+004 0.5831 1.0900e+004 

100 1.2177 1.0472e+004 0.7763 1.0472e+004 
 

30 

30 0.3577 584.0341 0.2736 584.0341 

70 0.7334 562.0160 0.5969 562.0160 

100 1.1059 545.7844 0.8535 545.7844 
 

48 

48 3.0961 4.5973e+004 0.6366 4.5973e+004 

70 4.3249 4.4654e+004 0.9269 4.4654e+004 

100 4.8480 4.1158e+004 1.4414 4.1158e+004 
 

52 

52 4.0960 1.0404e+004 1,5657 1.0404e+004 

70 5.5387 1.0191e+004 2,1006 1.0191e+004 

100 7.9181 1.0099e+004 3,0056 1.0099e+004 
 

70 

70 15.9345 910.6275 4,6413 910.6275 

100 27.2070 848.9480 6,6228 848.9480 

150 24.8191 845.9768 9,9574 845.9768 
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Table 2. ACO and GPU ACO for TSP  

 

 CPU GPU 

N Size of population of ACO T.ACO (sec) L.ACO (km) T.ACO (sec) 

 

22 

22 0.2438 77.8000 0.0930 

70 0.4969 77.1834 0.2964 

100 0.6866 76.1212 0.4223 
 

 

29 

29 0.4190 1.1621e+004 0.2602 

70 1.0881 1.0530e+004 0.6132 

100 1.3713 1.0432e+004 0.9036 
 

 

30 

30 0.3724 537.9874 0.2933 

70 0.7652 495.5985 0.6699 

100 1.4225 491.7651 1.0160 
 

 

48 

48 4.0005 4.2086e+004 1,1433 

70 4.5047 4.1420e+004 1,6658 

100 6.8139 4.0585e+004 2.3992 
 

 

52 

52 5.5777 9.0578e+003 1,5830 

70 5.5446 9.0068e+003 2,1048 

100 8.1787 8.9425e+003 3,0164 
 

 

70 

70 14.2154 855.4880 4.6827 

100 28.6257 834.5480 6,6411 

150 35.3854 810.3874 9,9887 

 

 

 

Table 3. Comparative for a need number of (100) 

 

N Size of population  Average Length ACO 

(100) 

Average Length PSO 

(100) 

22 

 

100 77.3367 90.2000 

   
 

29 

 

100 1.0910 e+004 1.1044e+004 

   
 

30 

 

100 508.8037 563.9448 

   
 

48 

 

100 4.1502e+004 4.3928e+004 

   
 

52 100 9.0023e+003 1.0231e+004 

   
 

70 100 833.4744 868.5174 
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