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Abstract: In this paper, we focused on the handwriting-based
biometric to personalize the hand held-devices, mainly used
by one person, to recognize effectively its new writing style.
For this end, we plug-in an adaptation module (AM) with a
writer-independent recognition system (WIRS) to generate a
writer-dependent recognition system. The WIRS response is
then adapted considering the new writing style. The AM ap-
plied a sequential learning algorithm named GARBF-AM using
a significance concept for writer adaptation based on a Radial
Basis Function (RBF) neural network. The proposed GARBF-
AM algorithm defines a new Growing and Adjustment algorith-
m named GARBF-AM. This algorithm can dynamically insert
new hidden neurons under predefined conditions on the signifi-
cance of both the new input and the nearest neuron. Otherwise,
our algorithm adjusts the nearest and the desired contributor
neurons parameters. For experiments, two writer dependent
datasets are used. The first is LaViola dataset and the second is
MEnv-REGIM that is created considering different physical po-
sitions of the writer (sitting, standing, walking, going up/down
stairs and by car). The experimental results based on the two
datasets show that the performance of the generic WIRS has
improved significantly when integrating GARBF-AM algorith-
m. The comparative study highlights the benefits of the using
the GARBF-AM against the well known OAM algorithm.
Keywords: handwriting-based biometric, Incremental learning
RBFNN, Writer adaptation, Information Security, Information as-
surance

I. Introduction

Biometrics emerged from its robustness to recognize and i-
dentify person using his physiological and behavioral char-
acteristic. The physiological biometrics are fingerprints, iris
scans, retina scans, hand geometry, and face recognition, ear
recognition, DNA. The behavioral biometrics are dynamic
keystroke, gait, signature, handwriting.Nowadays, various
applications use efficiently biometric characteristics. The use
of these methods handles the problem of the lost of some
passwords, keys which can be also stolen. For this purpose,
researchers used biometric information due to its availabil-
ity when the person is present. Systems based on physio-
logical biometrics require a specific technology that limits
their use by common person. The choice between all these
modalities depends essentially on traits that will be acquired
from sensors application. Consequently, especially marked
applications for hand held devices, the behavioral biometric-
s seems the more appropriate. Our application consists of
the personalization of the hand held-devices, mainly used by
one person, to recognize effectively its writing. Referring
to [39], three main categories of handwriting-based biomet-
ric approaches can be identified: forensic verification, user
authentication and handwriting recognition. For this we are
focusing on the handwriting recognition approach to reach
our goal.
The hand-held devices have made our life easier and tidi-
er, making them a need in our everyday routines. Such de-
vices as the PDAs, Smartphones, tablets have made the hu-
man machine interaction convivial and rapid. Since the nat-

MIR Labs, USA



An Adaptation Module with Dynamic Radial Basis Function Neural Network Using Significance Concept for Writer
Adaptation 2

ural method of human communication is based on writing
or speaking, we have to go beyond the use of the common
keyboard to interact with these devices. Consequently, the
setting of a writer-independent recognition system turns out
to be essential but not sufficient. These new devices have
become so close to the user they that incite the researchers
not only to propose a recognition system that is learned on a
writer-independent database to ensure generalization but also
try to upgrade the system in such a way that it adapts itself
during the use of the device to a specific writer style has be-
come a need.
Handwriting recognition systems can be divided into two cat-
egories which are Writer-Independent Recognition System-
s (WIRS) and Writer-Dependent Recognition Systems (W-
DRS). A WIRS is trained with a dataset collected from a
wide number of writers to include as many writing styles as
possible to ensure that the recognition system will perform
well. Conversely, the aim of the WDRS is not to consider
all the possible writing styles but to obtain a higher recog-
nition rate for an individual new writing style. In this paper
we focused on the development of a WDRS starting from
a WIRS and carrying out a new writer adaptation approach
that its application is not limited to the used recognizer in
our experiments but can be applied to any writer-independent
recognition system.
There has been a huge amount of research in the field of writ-
er adaptation during the last two decades. All the achieved
works propose systems that depend on either the type of
recognition system or the nature of adaptation process. Pat-
tern based systems reorganize the database prototypes defin-
ing a data management process (addition, modification and
deletion) to improve the response quality. Its worthy to know
that this first group of systems includes the prototype based
systems that can be adapted to a new writing style by re-
organizing the standard prototype set or also using a new
writer-dependent prototype set. In [17], the authors propose
an adaptation method which uses not only misclassified pat-
terns but also correctly-classified patterns as learning sam-
ples. The system in [16] learns new writing styles, by ac-
tivating new prototypes and inactivating erroneous ones to
automatically transform a writer-independent database into a
writer-dependent database of very high quality and compact-
ness. In [18], the used classifier is based on a Fuzzy Inference
System which automatically fits the handwriting style of the
writer who uses the system.
Some other parametric systems update the internal param-
eters of the classifier to permanently change the classifier
structure. This second group of systems includes mainly the
recognition systems that adapt their response by modifying
their parameters values. For the SVM adaptation, [31] used
a biased regularization for personalization as a principle way
of trading off user-dependent versus user-independent infor-
mation. Since the proposed method is a modification of stan-
dard SVMs, [20] achieved an adaptation by re-learning the
different SVMs using virtual examples. The system in [21]
applies an SVM based multiple kernel learning where sup-
port vectors are adapted to better model the decision bound-
ary of a specific writer. For the Hidden Markov Model (HM-
M) adaptation, three techniques were generally used namely
the expectation maximization (EM) retraining, the maximum

a posteriori (MAP) adaptation and the maximum likelihood
linear regression (MLLR) technique [30, 22, 32, 33, 19]. We
also find a writer adaption method based on an incremen-
tal linear discriminant analysis (ILDA) [11] where the writer
adaptation is performed by updating the LDA transformation
matrix and the classifier prototypes in the discriminative fea-
ture space. using, the maximum a posteriori (MAP) adapta-
tion and the maximum likelihood linear regression (MLLR)
technique. The two subsequently described system groups
are based on a permanent change of the system behaviour.
This choice is based on the fact that devices are personal and
mono-user. This fact limits the system reliability for more
than one user on the same system, or for more than one ses-
sion for the same user. Helpfully, such systems give the user
the possibility to reset their recognition system to start a new
adaptation session but do not generally give the possibility to
save specific adaptation contexts or to manage multiple ses-
sions.
Few further systems take up an independent adaptation mod-
ule to adjust their response without modifying their clas-
sifiers internal parameters. This type of group includes
systems adapting themselves without modifying the writer-
independent system parameters values. Some systems used
an adaptation module based on Radial Basis Function Neu-
ral Network (RBF-NN) with a sequential learning algorithm
[4, 12, 13, 14]. The adaptation module is placed on the top
of a recognition system. Moreover, [10] used a Style Trans-
fer Mapping where the data of different writers are projected
onto a style-free space, and the writer-independent classifi-
er needs no change to classify the transformed data and can
achieve a significantly higher accuracy. The system in [23]
developed a representative symbol recognizer that uses a set
of binary classifiers based on AdaBoost as part of an allpairs
recognition algorithm. AdaBoost takes a series of weak or
base classifiers and calls them repeatedly in a series of rounds
on the training data to generate a sequence of weak hypothe-
ses. Each weak hypothesis has an associated weight that is
updated after each round, based on its performance on the
training set.
The aim of this paper was to define a distinct adaptation
module separately from the initial handwriting recognition
system. This is very useful to ensure the portability of the
adaptation system, in such a way that it can be added to any
existing system and after that adapts its response to the new
context. A context oriented approach can also be useful to
generalize both multi-session and multi-user options and to
give more portability and reusability to the adaptation sys-
tem.
This paper presents the development of a new sequential
learning algorithm using the neuron significance concept for
a writer adaptation that uses an adaptation module based on
Radial Basis Function (RBF) neural network. The neuron
significance is defined as the contribution made by that neu-
ron to the network output averaged over all the input data
received so far. The proposed adaptation module defines
a new Growing and Adjustment algorithm named GARBF-
AM. First, we estimate the significance of the new added
neuron which is the contribution made by that neuron to the
network output averaged over a certain number of already
received observations. Second, we used a new formula to es-
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timate the nearest neuron significance which is based on the
contribution of the nearest neuron to the output layer for the
current input. The nearest neuron significance is always used
for neuron pruning [6, 7, 8] but will be used, in our algorith-
m, as a criterion for network growth. Moreover, compared
to our previous work, we added a new step for the network
growth where we resize the width of the nearest unit to mini-
mize the overlap between the new added unit and the nearest
unit. This algorithm can dynamically insert new hidden neu-
rons under predefined conditions on the significance of both
the new input and the nearest neuron. Otherwise, our algo-
rithm adjusts the nearest and the desired contributor neurons
parameters. The module adaptation is associated to writer-
independent recognition systems (WIRS) to generate a con-
figurable writer-dependent recognition system (WDRS). The
original WIRS response is then adapted considering the new
writing style.
The remaining of the paper is organized as follows; in Sec-
tion 2, we depicted different methods for neural network on-
line learning methods. The third Section was devoted to the
description of our adaptation system and the GARBF-AM al-
gorithm. In the fourth Section the experimental results that
validate the consistency and the performance amelioration of
a writer recognition system were reported. The last section
presented some concluding remarks and suggested some in-
teresting perspectives.

II. Related work

The first suggested incremental learning algorithm of RBF-
NN was that of Platt [1] named Resource Allocating Net-
work (RAN). The RAN algorithm allows a sequential learn-
ing of the RBF-NN that initially contains no hidden units,
and can add hidden units in the RBF-NN to extend the ap-
proximation ability when errors classification are reported.
In fact, this algorithm is made up of two actions depend-
ing on how the network performs on a presented pattern. If
the network performs poorly, a new unit is allocated satis-
fying some growth criteria. If the network performs well,
the existing network parameters are updated using standard
Least mean squares (LMS) gradient descent algorithm. Sub-
sequently, an enhancement of the RAN in which the extended
Kalman filter (EKF) algorithm is used instead of the LM-
S algorithm [2]. The MRAN algorithm [5] combines the
growth criterion of the RAN with a pruning strategy based
on the relative contribution of each hidden unit to the over-
all network output. The resulting network leads toward a
minimal topology for the RBFNN. The MRAN has recently
been used in [24] combined with a growing gaussian mix-
ture model (GGMM) for classification problems. Besides in
[27], the algorithm was used to avoid the catastrophic inter-
ference in incremental learning between Resource Allocating
Network and the Long Term Memory (RAN-LTM). In RAN-
LTM, not only a new training sample but also some memory
items stored in Long-Term Memory are trained based on a
gradient descent algorithm. On the other hand, [3] presents
a new algorithm which uses accumulated error information
to determine where to insert new units. The diameter of the
localized units is chosen relying on the mutual distances of
the units. In [6], the generalized growing and pruning (G-
GAP) training algorithm for RBF-NN is applied. GGAP is

a RAN algorithm but introducing a formula for computing
the significance of the network units. So, the growing and
pruning strategy is based on linking the required learning ac-
curacy with the significance of nearest or new units. [7, 8]
present improved GAP-RBF for enhancing its performance
in both accuracy and speed and the resulting algorithm is
referred to as Fast GAP-RBF. Then, the significance of the
network units is estimated by the recently received M train-
ing samples. [28] used the idea to exploit a memory that
corresponds to representative input-output pairs. These pairs
are selected from the training data, and they are learned with
newly given training data to avoid forgetting. The sequen-
tial learning of RBF-NN presented in [29] is applied for the
parameterization of freeform surfaces from larger, noisy and
unoriented point clouds. The algorithm allows neurons to
be dynamically inserted and fully adjusted (e.g. their loca-
tions, widths and weights), according to mapping residuals
and data point novelty associated to the underlying geome-
try. Pseudo-neurons, exhibiting very limited contributions,
can be removed through a pruning procedure. Additionally,
a neighborhood extended Kalman filter (NEKF) was devel-
oped to significantly accelerate parameterization. Added to
that, the system in [9] used a self-adaptive error based con-
trol parameters to alter the training data sequence, evolve the
network architecture, and learn the network parameters. In
addition, the algorithm removes the training samples which
are similar to the stored knowledge in the network.

III. Writer adaptation through sequential
learning RBF-NN

In order to achieve a writer adaptation that can be applied
to any system independently of the implemented classifiers
type, we opted to use a module to adapt the on-line hand-
writing recognition system (OHRS). The Adaptation Module
(AM) is based on the Radial Basis Function Neural Network
(RBF-NN) because it is considered as the most convenient
network in sequential learning by reason of its simplicity, lo-
cal learning, robustness, optimal approximation [34]. The
architecture of the on-line handwriting recognition system
with writer adaptation (WDRS), presented in Fig. 1, is made
up of the Writer-independent Recognition System (WIRS)
and the Adaptation Module (AM). The AM is added below
the WIRS, and its role is to examine the writer-independent
output (WI output) and produce a more correct output vec-
tor close to the desired response of the user. In this way,
the AM adds to WI output of the recognition system an
adaptation vector (A) to produce a writer-dependent output
(WD output) using Eq.(1).

WD output = WI output+A (1)

Where A is the adaptation module output. A =
(A1, ..., AL) ∈ RL.

The AM, presented in Fig. 2, is an RBF-NN with N hidden
neurons. The output (A) of the adaptation module for an
observation (I,D) is calculated using Eq.(2, 3).

A =

N∑
n=1

Wnφn(I) (2)
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φn(I) = exp

(
−‖I − Cn‖2

σ2
n

)
(3)

The used notations in the equations are presented below:
I: Input observation which is the output of the WIRS, I =
(I1, ..., IL) ∈ RL where L is the dimension of an input ob-
servation,
N : Number of neurons in a hidden layer, (n = 1, ..., N ),
σn: Width of the nth hidden neuron,
φn: The response of the nth hidden neuron of an input vector
I ,
Cn: Center of the nth hidden neuron, Cn =
(Cn,1, ..., Cn,L) ∈ RL,
Wn: Weight connecting the nth hidden neuron to the ouput
layer,
D: Desired output corresponding to the input I . In our exper-
iments the target vector (D) is 1 for the neuron corresponding
to the correct class and 0 otherwise.

Figure. 1: Architecture of Adaptive recognition System

In this section, we present the adaptive sequential learning
GARBF-AM algorithm (section III-A), definition and esti-
mation of the neurons’s significance (section III-B), network
growth strategy (section III-C) and network adjustment strat-
egy (section III-D).

Figure. 2: Architecture of the adaptation module (AM)

A. The Adaptive Sequential Learning of the Adaptation
Module (AM)

At the beginning the Adaptation Module (AM), presented in
Fig. 2, contains no hidden neurons. After each misclassifi-
cation, we applied an incremental learning algorithm, named
GARBF-AM later on, so that the AM learns to correct the
mistakes caused by the WIRS. The GARBF-AM is a super-
vised and incremental algorithm, working in two phases: the
growing and the adjustment. The adaptation steps are sum-
marized in algorithm 1.

Algorithm 1 GARBF-AM Algorithm: Adaptive Sequential
Learning

For each observation (I,D)
Compute the overall writer-dependent recognition system
output using Eq.(1)
Calculate the Significance of the new input and the nearest
neuron using Eq.(4, 5) (section III-B)
Apply the criteria for adding or adjusting neurons
if cr1 and (cr2 or cr3) then

Call Growing Algorithm (section III-C)
else

Call Adjustment Algorithm (section III-D)
end if

In algorithm 1, we point out the two adaptation strategies us-
ing cr1, cr2 and cr3 as criteria (detailed in section III-C) to
decide the novelty of the new input. As the adapted system
learns to correct the errors made by the WIRS, the GARBF-
AM algorithm allocates new neurons only for novel errors
that the WDRS has not seen before. Otherwise, the algorith-
m adjusts parameters of hidden neurons. Consequentely, the
number of hidden neurons grows sub-linearly with the num-
ber of errors.
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B. Definition and Estimation of Neurons’s Significance

The salient properties of a writer adaptation are its speed and
efficiency, using a few examples of a specific writer, without
WIRS performance degradation [4]. These properties can
be satisfied by leading to an optimal positioning of the ba-
sis functions (hidden neurons number and centers location)
by growing its architecture incrementally [36]. In our work,
we are focused on neuron’s significance concept applied to
incremental learning algorithms for RBF networks.
The neurons significance was proposed by [6] and used and
improved by these later works [7, 8]. According to [6]
(GGAP-RBF algorithm), the significance gives a measure of
the information content in the neuron about the function to
be learned and is defined as the contribution made by that
neuron to the network output averaged over all the input data
received so far. This definition is applied successfully in the
fields of function approximation and classification problem-
s. To reduce the computational complexity, [7] (FGAP-RBF
algorithm) proposed a simplified formula to estimate the sig-
nificance of neurons. In this case, the neuron significance
can be estimated using a certain limited number of recent-
ly received training samples. The neuron significance was
usually used for classification problems.
Our algorithm GARBF-AM (algorithm 1) is developed aim-
ing at overcoming the writer adaptation problem by using
a simple significance estimation of two neurons (the added
new neuron and the nearest neuron). These two significance
values will be used separately on two novelty conditions (cr2
and cr3) to optimize the growing cases. Bearing in mind the
observation (I , D), we find the nearest unit to it from the
existing units in the RBF-NN. After that, we estimate the
significance of the intentionally added new unit and the sig-
nificance of the nearest unit. These two significant units are
detailled below.

i) The significance of an intentionally added new unit

GARBF-AM learning algorithm allocates new hidden neu-
rons and adjust the nearest neuron parameters. An ob-
servation should give rise to a new hidden neuron if it is
novel. We use the significance of the new added neuron
(Esignovelty(N + 1)), which is calculated using the Eq.(4),
to make the decision about the novelty of a new observation
(I,D).

Esignovelty(N+1) =
‖er‖
M

K∑
s=B

exp

(
− ‖Is − I‖2

κ2 ‖Is − Cnearest‖2

)
(4)

Where: K: is the total number of inputs already seen,
I: is the current received input ,
Is: is an input from the recently received inputs that should
be remerbred, Cnearest: is the center of the hidden neuron
nearest to the current input I ,
M : is the number of recently received inputs and has to be
remembered, B = K −M + 1,
er = D −WD output: is the error produced by I ,
κ: is an overlap factor that determines the overlap of the re-
sponses of the hidden neurons in the input space.
From a statistical viewpoint, the significance of the added
neuron is the average information content of a neuron over

all inputs seen so far, and also the contribution of that neuron
to the overall performance of the RBF network [6]. To reduce
the complexity load of the learning algorithm and avoid the
difficulty of knowing the input distribution, the significance
of the new neuron is estimated using only a memory contain-
ing the M recently received inputs [7]. If the current input is
far from most of the recently received inputs Ms, the signifi-
cance of the new neuron will be high enough to be allocated
to the neural network. The value of M and its impact on the
adapted system performance is discussed in section IV-A.2.

ii) The significance of the nearest unit

The significance of the nearest neuron is its contribution to
the output layer. To this end, we compute the product of the
norm of the weights vector by the output of the nearest neu-
ron. In our work, the significance of the nearest neuron will
be used in the network growth. We provide a new formu-
la Eq.(5) to calculate this significance using only the current
input. For the current observation, if the significance of the
nearest neuron is not high enough, that it means that it is in-
significant for the current observation. This case should give
rise to a new hidden neuron.

Esignr(Cnearest) = ‖Wnearest‖ × φnearest (5)

Where Wnearest is the weights between output layer and n-
earest unit, φnearest is the output of the nearest unit.
Contrastly, in the already achieved research [6, 7, 8] calcu-
late the significance of the nearest neuron after adjusting its
parameters. If the nearest neuron becomes insignificant it
should be removed from the network. In the same way as
the significance of the new added neuron, the nerarest neu-
ron significance is estimated using the M recently received
inputs.
In fact, the removal of a hidden neuron is relevant in clas-
sification problems but doesn’t have the same impact on a
writer adaptation problem. In a writer adaptation context,
the network learns a new writing style with a small number
of samples and should remember an already seen example.
Removing a hidden neuron will deeply increase the forget-
ting and the error classification.

C. Network Growth

Basically, the RBF-NN begins with no hidden neurons. The
training inputs are sequentially exposed to the system and the
user has to report the misclassification and specifiy the cor-
rect class. If it’s the first time an error is mentioned, a new
RBF unit is automatically allocated. Otherwise,we study the
novelty of the current input by estimating its significance us-
ing Eq.(4). Then, we estimate the significance of the nearest
unit compared to the current input applying Eq.(5). To per-
form a writer adaptation with a small number of RBF units,
we used the following growing criteria (cr1, cr2 and cr3) : ‖I − Cnearest‖ > dmin cr1

(Esignovelty(N + 1) > e1min) cr2
(Esignr(Cnearest) < e2min) cr3

where dmin is a threshold corresponding to the minimal dis-
tance, Cnearest is the center of the nearest unit to the input I
and e1min and e2min are the desired approximation accuracy.
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• The criterion cr1 : It is the basic criterion that is always
used for a growth network [1, 4, 6, 7, 8, 24]. It allows
to test if the current input is far from the existing units.
This criterion guarantees a well balanced neurons dis-
tribution because neurons are inserted ensuring at least
a threshold minimal distance from each other.

• The criterion cr2 : It verifies if the current input is
written with a novel style since Esignovelty(N + 1)
is greater than the constrained approximation accuracy
e1min.

• The criterion cr3 : It checks if the nearest unit is in-
significant to the current input when Esignr(Cnearest)
is less than an approximation accuracy e2min.

Algorithm 2 GARBF-AM Growing Case Algorithm

Allocate a new hidden unit (N+1) with:

1. The input becomes the center of the new unit.

CN+1 = I (6)

2. The weight values of connections between the new
unit and the output layer correspond to the desired
output.

WN+1 = DN+1 (7)

3. To avoid the overlap of different regions of the RBF
units, the width of the new unit is fixed to the distance
between the input and the unit which is the nearest to
it.

σN+1 = d(I,Cnearest) (8)

4. Resize the width of the nearest unit to minimize the
overlap between the new added unit and the nearest
unit.

σnearest = min(σnearest, d(I,Cnearest)) (9)

Therefore, in the case of satisfactory growing criteria : cr1
and (cr2 or cr3), a new hidden unit will be allocated relying
on the steps described in algorithm 2.
The objective of our system is the learning of a new writing
style of only one user. The user can write the same character
intermittently and the writer-independent recognition system
responds similarly each time, even if it is an error classifica-
tion. The adaptive system should remember the same errors
to correct it without forgetting the already learnt. This com-
promise is workable by using the memory to store the M
last characters and estimating the novelty of the current one.
By focusing on the criteria of GARBF-AM algorithm, cr1
ensures a well separated and scattered neuron distribution to
ovoid the adding of superfluous neurons. cr2 enforces that
a neuron is generated only if the error made by the adapt-
ed system is novel. The combination of these two criteria
strictly limits the network growth ensuring a minimal num-
ber of allocated hidden neurons (proved in section IV-A.3,
IV-B.2). Consequently, having a little number of neurons s-
traightly affects the recognition rate of the adaptive system.
To have the optimal number of hidden neurons that minimize

the recognition error rate, we used cr3 which considers the
nearest hidden neuron significance. The significance of the
nearest neuron is its contribution to the adaptive system re-
sponse. Then, more this significance is unimportant means
that the neuron is insignificant to the current input. The im-
pact of each of these three criteria is discussed in section IV.

D. Network Adjustment

When an observation is presented and the growing criteria
are not satisfied, the network adjustment needs to check the
desired contributor (Dc) neuron in addition to the nearest
unit. The Dc is the neuron that contributes relatively much
to the erroneous writer-dependent output. So, to find the Dc
unit we used Eq.10 where o is the desired maximum output
position.

Dc = Maxj(φj ×Wjo) (10)

Thus, we update only the parameters (center and weights)
of either the nearest neuron or the two neurons: Cnearest

and Dc. These two cases are distinguished according to the
distance value, d(Cnearest,Dc), between both the nearest and
the desired contributor units. Basically, only the nearest unit
is adjusted, but if d(Cnearest,Dc) is lower than the threshold
minimal distance dmin then the Dc unit is also updated. The
adjustment case is described in the algorithm 3.

Algorithm 3 GARBF-AM Adjustment Case Algorithm

if Growing criteria are not satisfied then
Adjust parameters of the nearest unit using Eq.(12, 13)
if d(Cnearest,Dc) < dmin then

Adjust parameters of the Desired Contributor unit
using Eq.(12, 13)

end if
end if

The research achieved in the field of sequential learning
of RBF-NN generally used either the standard least mean
square (LMS) gradient descent or the Extended Kalman Fil-
ter (EKF) algorithm. Therefore, having an adaptation time
and memory size constraints, we opted for the standard LMS
gradient descent to minimize the error each time no new u-
nit is allocated. The error, made by the adapted system and
should be corrected, is calculed as follows:

Er = ‖D −WD output‖2 . (11)

Where D is the desired output corresponding to the current
input I , WD output is the writer-dependent output.
Whenever a new unit is not allocated, we adjusted the center
position of a hidden neuron using Eq.(12).

∆Cn = 2
α

σn
(I − Cn)φn[(D −WD output)×Wn] (12)

In addition, we adjusted the weights of a hidden neuron using
Eq.(13).

∆Wn = α(D −WD output)φn (13)

Where Cn, σn, Wn and φn of a neuron n respectively in-
dicate center position, width, weights to the output layer.
WD output the reponse of the adapted system correspond-
ing to the input I . α is a learning rate.
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IV. Experimental Results

To test the performance of our Writer Adaptation strategy
applying the (GARBF-AM) algorithm as sequential learning
of the adaptation module, it was connected to the output of
a writer-independent recognition system for alphanumerical
characters. This system is developed using a generic toolkit
(LipiTk) whose aim is to facilitate the development of on-
line handwriting recognition engines [15] 1. The IRONOFF
handwriting database [35] was used to train the recognizer.
In principle, the number of inputs in the adaptation module
must be the same as the number of outputs response of the
writer-independant recognizer. However, the two datasets
used for the experiment include 36 class characters (digits
and lower case letters). Thus, the adaptation module consists
of 36 inputs and outputs.
In this section, we present the results that demonstrate the
performance of our writer-dependent recognition system us-
ing a Benchmarking dataset (section IV-A) and a Multi-
Environment dataset (section IV-B).

A. Writer adaptation using a Benchmarking dataset

1) LaViola dataset description

To test the efficiency of our writer adaptation system, we
used a benchmarking dataset named LaViola. The LaVi-
ola dataset [23] contains samples of handwritten digits (0-
9),characters (a-z) and mathematical symbols written by 11
people taken with an (HP) Compaq tc1100 Tablet PC. This
dataset involves two sets for training. Each training dataset
contains few training samples (10 per class and per writer).
In this case we have 720 examples per writer. The result-
s on this dataset have been reported in [23, 25]. The av-
erage recognition rate without adaptation using the writer-
independent alphanumerical recognition system is 80%.

2) Analysis of the algorithm parameters

To get the upper performance of our algorithm GARBF-
AM, we have to choose the right values of its parameters.
The algorithm works with four weighty parameters which
are: the memory size M , the threshold dmin and the de-
sired approximation accuracy e1min and e2min. The values
of dmin, e1min and e2min are important for the topology
updating procedure. The common parameters of GARBF-
AM are fixed for the two writer-dependent datasets as: the
threshold dmin=0.2, the learning rate α=0.02 and approxi-
mation accuracy e1min=0.2 and e2min=0.25, κ=0.8. Also
we used the Euclidian distance to caculate the distance be-
tween unit centers and inputs. Moreover, to show the effec-
tiveness of the GARBF-AM we have resorted to the cumu-
lative classification errors made during the real interactive
use of the tactile apparatus. In this section, we analized the
impact of the memory factor M on the adapted system per-
formance using LaViola dataset as shown in Fig. 3. This
analysis helps us to determine the best value of M that opti-
mizes the adaptation performance and the network size. We
set the parameter M from 2 to 40, and the average neuron-
s allocated and the average cumulative errors reached by all
the writers (w1...w11) dataset is shown in Fig. 3. Clearly, it

1available at http://lipitk.sourceforge.net

is observed from Fig. 3 that increasing M can significantly
reduce the average number of hidden neurons for the writer-
dependent dataset; meanwhile, the average cumulative errors
is increased in accordance with the increase of the parameter
M .
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Figure. 3: The effect of memory size on adaptation perfor-
mance using the average of cumulative errors and neurons
number obtained from all writers of LaViola dataset

These results prove that when increasing the memory size,
a new input has less opportunities to be novel compared to
the M examples. In these cases the growing criterion (cr2)
will not be satisfied which leads to the decrease the number
of the allocated hidden neurons. Having a reduced number
of the resulting hidden neurons slows down learning which
increases the cumulative errors. From this experiment, we
deduce that when M is 10 we can reach the lowest error rate.

3) Results

In this section we present the quantitative results using both
of the GARBF-AM and OAM [4] algorithms. Compared to
OAM, GARBF-AM resizes the width of the nearest neuron
when a new hidden neuron is allocated and updates the pa-
rameters of the desired contributor neuron in an adjustment
case. For evaluation,we looked at the computation load taken
by these two algorithms to process each set of data. It’s obvi-
ous that the time taken to process a new input varies accord-
ing to the network size. Because the reponse time is crucial
in adaptation for handwriting recognition, we displayed not
only the recognition rate, but also the total number of hid-
den neurons allocated in the adaptation process using both
the OAM and the GARBF-AM algorithms. Moreover, we
showed the results that demonstrate the performance of the
proposed sequential algorithm GARBF-AM taking into ac-
count its growing criteria. We should remind that our algo-
rithm is based on three criteria which are cr1, cr2 and cr3
(Section III-C). To study the impact of the nearest signifi-
cance criterion (cr3) on adaptation performance, we defined
two variants of our algorithm. The first was defined by sev-
eral systems [6, 7, 8] and uses only two criteria (cr1 and
cr2). We call it here Restricted GARBF-AM. The second
is GARBF-AM that uses the following combination of the
three criteria (cr1 and (cr2 or cr3)). The results of these t-
wo variants are compared to those obtained using the OAM
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algorithm which uses only cr1 as growing criterion.
In this section we present the results of three studies. We
focus, in the first study, on the performance evaluation of
the GARBF-AM by referring to the recognition rate and
the error rate reduction using each of the three algorithm-
s (GARBF-AM, OAM and Restricted GARBF-AM). More-
over, we compute precision and recall to analyze the overall
performance of the adapted system. The second study con-
sists of the statistical comparison of accurate adaptation of
the GARBF-AM over the other two algorithms: OAM and
Restricted GARBF-AM. Finally, the last study presents the
adaptation efficiency of the proposed GARBF-AM.

• Performance evaluation of GARBF-AM using accuracy:

To study the performance of our algorithm, we report, in Ta-
ble 1, the recognition rate and the number of hidden neuron-
s allocated in the adaptation module using OAM, Restrict-
ed GARBF-AM and GARBF-AM. From the results shown
in Table 1, we observe that the Restricted GARBF-AM de-
creases significantly the number of hidden neurons, but this
was achieved at the expense of decreasing the recognition
rate for the majority of writers. Furthermore, the GARBF-
AM outperforms the system by increasing slightly the num-
ber of hidden units (average 43 neurons) compared to Re-
stricted GARBF-AM (average 37 neurons). Taking writer
w3 as an example, the recognition rate without adaptation is
80.83% and is increased using OAM, Restricted GARBF-
AM and GARBF-AM by 9.62%, 12.37% and 14.78% re-
spectively. On the other hand, OAM allocates a high num-
ber of hidden neurons (Nb neur=52) which decreased when
we applied Restricted GARBF-AM and GARBF-AM by
44.23% and 32.69% respectively. This example shows that
GARBF-AM allocates an optimal number of hidden neuron-
s to reach a best recognition rate. Moreover, compared to
the writer-independent recognition system, the GARBF-AM
achieves the highest percentage recognition rate improve-
ment for writer w1 (21.93%) and the lowest percentage im-
provement for writer w11 (6.88%). We consider this im-
provement a result of writer’s handwriting style that is well
represented with the different hidden neurons allocated in the
adaptation module.
In Fig. 4 (a) we plot, for writer w10, the baseline cumula-
tive error without adaptation and the cumulative character
errors from the time when the adaptation started to give an
estimated instantaneous error rate.The goal is to compare the
strategy of adding hidden neurons of each used method to
understand its impact on the cumlative errors vs. the number
of used hidden units. OAM, using only cr1 as a growing cri-
terion, generates a high number of neurons in the adaptation
module. Restricted GARBF-AM, using a growing criteria
which is true in such cases, more adjustment of the exist-
ing neurons will be achieved than adding new ones. In this
case the slope of cumulative hidden neuron decreases consid-
erably but generates the increase of the slope of cumulative
error. By introducing the cr3, the GARBF-AM growing con-
dition is broader and the algorithm adds just the necessary
number of neurons to be more efficient.
Table 2 reports the error rate reduction using OAM and
GARBF-AM algorithms. It is clearly observed that our writ-
er adaptation algorithm GARBF-AM reduces the error rate
reduction compared to the OAM algorithm. Using GARBF-
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Figure. 4: Effectiveness of writer adaptation for writer w10
from LaViola dataset (a) cumulative character errors during
adaptation against without adaptation (b) cumulative hidden
units allocated during adaptation

Table 2: Error rate reduction on LaViola dataset using OAM
and GARBF-AM

writer Error rate (%) Error rate reduction (%)
without adaptation OAM GARBF-AM

w1 26.81 55.97 59.60
w2 25.14 36.47 44.19
w3 19.17 44.94 62.34
w4 21.81 38.87 50.34
w5 17.09 46.36 55.30
w6 19.45 35.73 52.85
w7 18.48 45.89 52.65
w8 16.67 38.35 50.87
w9 19.87 41.98 55.26
w10 22.23 39.40 45.30
w11 13.20 35.82 45.30
Average 20.00 41.79 52.33

AM learning algorithm and taking writer w3 as an example,
the recognition rate is improved from 80.83% to 92.78% in-
dicating a very high error reduction of 62.34%. Similarly, for
writer w11 the recognition rate is improved from 86.80% to
92.78% resulting a lower error reduction of 45.30%. Further-
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Table 1: Recognition rate (RR) and number of hidden neurons (Nb neur) on LaViola dataset using OAM, Restricted GARBF-
AM and GARBF-AM

writer RR (%)
without OAM Restricted

GARBF-AM GARBF-AM

adaptation RR (%) Nb neur RR (%) Nb neur RR (%) Nb neur
w1 73.19 88.18 64 85.56 35 89.17 52
w2 74.86 84.00 76 84.72 52 85.97 63
w3 80.83 89.44 52 90.83 29 92.78 35
w4 78.19 86.67 58 85.42 36 89.17 44
w5 82.91 90.83 48 92.08 32 92.36 36
w6 80.55 87.50 61 88.33 39 90.83 43
w7 81.52 90.00 48 89.58 28 91.25 34
w8 83.33 89.72 48 91.81 27 91.81 42
w9 80.13 88.40 58 88.19 52 91.11 43
w10 77.77 86.53 71 87.50 45 88.19 48
w11 86.80 91.53 43 90.14 26 92.78 29
Average 80.00 88.43 57 88.56 37 90.94 43

more, GARBF-AM carried out for writer w1 the lowest error
rate reduction of 8.38% compared to OAM algorithm. These
results confirm that our algorithm is very useful and effective
for the performance improvement of the writer-independent
recognition system.

• Performance evaluation of GARBF-AM using recall and
precision:

To conclude the performance evaluation, we present addi-
tional results with LaViola dataset using other performance
measures which are recall, precision and F-score. Since we
are in a multi-class context precision and recall are defined
as follows. Precision for a class cl is the number of items
correctly labeled as belonging to the positive class divided
by the total number of elements labeled as belonging to the
positive class. Recall for a class cl is the number of items
correctly labeled as belonging to the positive class divided
by the total number of elements that actually belong to the
positive class. Precision and recall for a class cl are calculat-
ed using equations Eq.14.

Pcl =
TPcl

TPcl + FPcl
, Rcl =

TPcl

TPcl + FNcl
(14)

P =

∑L
cl=1 Pcl

L
, R =

∑L
cl=1Rcl

L
(15)

When we average the values Pcl and Rcl we get the overall
precision and recall (Eq.15). The F-score is calculated using
Eq. 16.

F =
2 ∗ P ∗R
P +R

(16)

The Fig. 5 show the overall performance of the recognition
system with and without adaptation using recall and preci-
sion measures. From Fig. 5, for all writers, we state that the
precision is slightly larger to equal compared to recall. This
proves that our adaptation system is precise as well as it is
performing. Also, the curvatures (without and with adapta-
tion) have almost the same slopes which show clearly that the
writer adaptation improves the racall without the deteriora-
tion of the precision. The most higher enhancement is made
for writer w1, for this reason we analyzed deeply its confu-
sion matrix in the both cases without and with adaptation. We
remind that every writer wrote 20 times each character. From
the confusion matrix without adaptation we remark that the
WIRS incorrectly labelled the majority of characters really
belonging to a class1 to another class2. Which means the

Figure. 5: Overall system recall and precision without and
with adaptation per writer on LaViola dataset

classifier is somehow confused between class1 and class2.
To carry out this analyze, we extract the following confusion
between classes, shown in Table 3.

Table 3: Extracted confusion matrix of writer w1 using LaVi-
ola dataset

Without Adaptation
’f ’g’ ’o’ ’p’ ’0’ ’7’ ’8’ ’9’ Pcl Rcl

’f’ 1 0 0 19 0 0 0 0 0.5 0.05
’g’ 0 1 0 0 0 0 0 19 1 0.05
’7’ 0 0 9 0 1 0 10 0 0 0
With Adaptation

’f’ ’g’ ’o’ ’p’ ’0’ ’7’ ’8’ ’9’ Pcl Rcl

’f’ 18 0 0 2 0 0 0 0 1 0.9
’g’ 0 17 0 0 0 0 0 3 0.94 0.85
’7’ 0 0 0 0 4 13 3 0 0.86 0.65

The striking confusion between classes made by the WIRS
on the writing style of writer w1 are the pairs (’f’,’p’),
(’g’,’9’) and (’7’,’8’). From the Table 3 we make out the
ability of the adapted system to correct the majority of er-
rors. So, without adaptation and taking the character ’7’ as
an example, the precision and the recall are Pcl = 0 and
Rcl = 0. With adaptation the recognition system perfor-
mance was improved to reach a precision of Pcl = 0.86 and
recall of Rcl = 0.65. Which means that for precision, out
of the times character ’7’ was predicted, 86% of the time the
system was in fact correct. And for recall, it means that out
of all the times character ’7’ should have been predicted only
65% of the characters were correctly predicted. In the same
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way, we plotted in Fig 6 the F-score reached by each writer’s
writing style in both cases without and with adaptation. We
state that the overall performance of the recognition system
is improved using GARBF-AM where the F-score is moved
up at least by 0.62% for writer w11 and at the most by 2.10%
for writer w1.

Figure. 6: Overall system F-score without and with adapta-
tion per writer on LaViola dataset

• Statistical comparison using a binomial test:

We conducted in this study a statistical comparison of
the GARBF-AM algorithm over the OAM and Restricted
GARBF-AM algorithms. To this end, we used the binomial
test [37, 38] using eq.(17). To explain this formula, we take
as an example the binomial test between GARBF-AM and
OAM.

E =

Kd∑
j=S

Kd!

j!(Kd − j)!
pjqKd−j (17)

Where:
E: The p-value (probability of S success in Kd trials) using
a binomial distribution,
Kd: The number characters for which the proposed GARBF-
AM and OAM produce different results,
S (Success): The number of times GARBF-AM predicts the
class label correctly rather than OAM,
F (Failure): The number of times OAM predicts the class
label correctly rather than GARBF-AM,
p and q are the probability of success for GARBF-AM and
OAM. In our case we assume that no difference between the
two algorithms then p = q = 0.5.
The probability of S success inKd trials (p-value) using a bi-
nomial distribution is reported in Table 4. First, we achieve
the binomial test between the proposed algorithm GARBF-
AM and the OAM algorithm. For writer w3, from the 720
test examples, the GARBF-AM and the OAM differ only in
22 characters. Among the 22 characters, GARBF-AM clas-
sifies accurately 17 characters (S=17) and OAM classifies
accurately 5 characters (F=5).
The propability (E) for this case is 8.5 10−3. From this re-
sult, we can say that the proposed GARBF-AM is better than
OAM with a high confidence for writer w3. Likewise for the
other writers, the proposed GARBF-AM is marginally better
than OAM. Similarly, we conducted the binomial test for Re-
stricted GARBF-AM and results are given in Table 4. From

Table 4: Performance comparison using binomial test on
LaViola dataset

Algorithms: GARBF-AM and OAM

Writer Binomial test Writer Binomial test
S F E S F E

w1 7 5 0.38 w7 11 7 0.24
w2 16 12 0.28 w8 13 6 0.08
w3 17 5 8.5 e−3 w9 12 9 0.33
w4 9 8 0.5 w10 17 7 3.2 e−2

w5 10 6 0.22 w11 8 10 0.75
w6 11 8 0.32
Algorithms: GARBF-AM and Restricted GARBF-AM

Writer Binomial test Writer Binomial test
S F E S F E

w1 19 8 2.6 e−2 w7 8 9 0.68
w2 23 10 1.7 e−2 w8 25 11 1.44 e−2

w3 5 0 0.03 w9 16 6 2.62 e−3

w4 8 6 0.39 w10 24 6 7.15 e−4

w5 10 1 5.9 e−3 w11 9 2 3.27 e−2

w6 13 6 8.35 e−2

the result, we can say that the performance of the GARBF-
AM is better than Restricted GARBF-AM with high confi-
dence.
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• Efficiency evaluation of GARBF-AM algorithm:

We explored in this part another area of interest analyzing
how the adaptation algorithm GARBF-AM reacts to errors
made by the writer-independent recognition system (WIRS).
In this experiment, for each writer of LaViola dataset we
dealt with four pieces of information that are illustrated in
Table 5:

ñ Performance deterioration (Perf-D): is the number of
correct classifications by the WIRS and that becomes
incorrect during adaptation.

ñ Performance improvment (Perf-I): is the number of in-
correct classifications by the WIRS and that becomes
correct during adaptation.

ñ Persistent error (Pers-E): is the number of incorrect clas-
sifications by the WIRS and that remains incorrect dur-
ing adaptation.

ñ Persistent correct (Pers-C): is the number of correc-
t classifications by the WIRS and that remains correct
during adaptation.

Table 5: Efficiency analysis of GARBF-AM using the LaVi-
ola dataset

Writer Pers-C Perf-I Perf-D Pers-E FCR (%) TCR (%)

w1 517 125 10 68 1.90 64.77
w2 518 101 21 80 3.90 55.80
w3 575 93 7 45 1.20 67.39
w4 553 89 10 68 1.78 56.69
w5 585 80 12 43 2.01 65.04
w6 572 82 8 58 1.38 58.57
w7 574 83 13 50 2.21 62.41
w8 589 72 11 48 1.83 60.00
w9 564 92 13 51 2.25 64.34
w10 546 89 14 71 2.50 55.63
w11 615 53 10 42 1.60 55.79

The performance of a writer adaptation is estimated by it-
s ability to identify and adapt unreliable WIRS responses.
From Table 5, it can be seen that the performance deteri-
oration (Perf-D) is too small compared to the performance
Improvment (Perf-I). Moreover, from the persistent correct
(Pers-C) information, we ascertain that the module adapta-
tion using GARBF-AM algorithm keeps the efficiency of the
WIRS without any performance degradation. On the other
hand, to obtain a deeper analysis of the errors with adapta-
tion, we calculated the false classified rate (FCR) given by
eq.18 and the true classified rate (TCR) given by eq.19.

FCR =
Perf D

Pers C + Perf D
(18)

TCR =
Perf I

Pers E + Perf I
(19)

From Table 5, we can see that using GARBF-AM, the
degradation of the recognition system performance is mean-
ingless compared to its significant increase. The average
FCR (2.05%) is meaningless compared to the average TCR
(60.58%).

B. Writer adaptation using Multi-Environment dataset

The handwriting is the many spontaneous movements
through which we can observe the ever-changing environ-
ment of the writer. During the process of writing, the word-
s that we shape show how we feel (excitement, fear, anxi-
ety, irritability or anger) and how we are (standing, sitting,
lay down on the sofa, going up/down stairs, on train, by
car, ...). Because, handheld devices can be used especial-
ly while the user is settled (sitting, standing, lay down on the
sofa), while he is in mobile settings (walking, going up/down
stairs) or when he is in a car, on a train or subway, our
work is limited to the physical positions of the writer. How-
ever, the physical positions (environments) affect the users
writing style with different degrees. The developed writer-
dependent recognition systems used the written data while
the user is sitting. To perform the writer adaptation we need
to consider these environments to increase the performance
of the writer-independent systems. In this section we de-
scribe the multi-environment dataset REGIM-MEnv which
contains handwritten samples written in different environ-
ments (section IV-B.1) and we evaluate the performance of
the proposed writer adaptation system using REGIM-MEnv
dataset (section IV-B.2).

1) REGIM-MEnv dataset description

The REGIM-MEnv is a multi-environment writer-dependent
dataset consisting of 36 different characters (a-z and 0-9),
handwritten on a Samsung N5100 GALAXY Note 8.0. We
collected some handwriting samples from five writers (three
females and two males) using the Android application ISIg-
raphy [26] which is developped for the generation of online
handwriting sample databases on touchscreen based devices.
The REGIM-MEnv dataset contains five environments. T-
wo mobile environments (walking, going up/down stairs) and
three stationary environments (sitting at a desk, standing and
in a car). Without any guidance or constraint, each person
was asked to write ten times each character in each environ-
ment. The total number of characters contained in the dataset
is 1800 per writer.
When the user is in mobile environments or standing, he/she
holds a device with the nondominant hand and write charac-
ters using the other hand. This situation is exhausting. For
this reason and to have a real dataset, the writer was asked
to write during different periods in a day, at most four char-
acters ten times each period. Fig. 7 displays the effect of
the writers environment on his handwriting style. The ISIg-
raphy application is designed well enough to store handwrit-
ten data samples in large scales in user-given file names for
specific users. Each file is made up of successive columns
of data comprising x, y coordinates along the pen trajectory,
pen pressure and time stamps. To carry out our experimental
evaluation we have to convert files generated by ISIgraphy
to UNIPEN format to be tested by the writer-independent
recognition system.

2) Results

To test the effictiveness of the proposed writer-dependent
recognition system with the multi-environment dataset
REGIM-MEnv, we used the same parameters value as those
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(a) (b) (c) (d) (e)

Figure. 7: Example characters written by writer w10 in each
environment : (a) sitting, (b) standing, (c) walking, (e) going
up/down stairs , (d) in a car

used for testing LaViola dataset (Section IV-A.2). In this sec-
tion, we conducted the three studies as previously described
(section IV-A.3) and we presented the experimental results
on the multi-environment dataset using both OAM, Restrict-
ed GARBF-AM and GARBF-AM algorithms for sequential
learning of the adaptation module.

• Performance evaluation of GARBF-AM using accuracy:

The performance comparison is displayed in Table 6. This
table provides the recognition rate of the writer-independent
recognition system (without adaptation) and the writer-
dependent recognition system. Taking writer w4 as an ex-
ample, the recognition rate without adaptation is 87.44%
and was increased using OAM, Restricted GARBF-AM and
GARBF-AM by 7.79%, 8.89% and 9.72%, respectively.
Moreover, compared to OAM the Restricted GARBF-AM
and GARBF-AM reduced the number of hidden neurons by
20.68% and 27.58%, repectively.
For more details, using GARBF-AM learning algorithm the
minimal percentage of increase of the recognition rate is
for writer w2 (6.68%) and the best percentage is for writ-
er w5 (8.52%). Moreover, the proposed GARBF-AM de-
creased the number of hidden neurons by 4% for writer w2
and increased it slightly (1.85%) for writer w5. These result-
s confirm that GARBF-AM algorithm, compared to OAM,
performs the classification accuracy and reduces the num-
ber of hidden units. An exception made for the writer w5
where OAM and GARBF-AM reached almost the same per-
formance. Furthermore, Fig. 8 shows the cumulative errors
without and with adaptation and the total number of hidden
neurons allocated depending on the used algorithm, for writ-
er w1. From Fig. 8 we observe that GARBF-AM reduces the
cumulative errors by allocating an optimal number of hidden
neurons.
In addition, from Table 7, we can see that GARBF-AM
increases the average error rate reduction from 55.93% to
59.96% compared to the OAM. Taking writer w4 as an ex-
ample, the error rate reduction was improved using GARBF-
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Figure. 8: Effectiveness of writer adaptation for writer w1
from REGIM-MEnv dataset (a) cumulative character errors
during adaptation against without adaptation (b) cumulative
hidden units allocated during adaptation

AM compared to OAM from 58.83% to 67.68% resulting in
a higher error reduction of 15.03%. For writers w1, w2, w3
the error rate was reduced by 23.38%, 2.44% and 2.88%, re-
spectively. From this performance study, we can assume that
the GARBF-AM outperforms the writer-independent recog-
nition system. The hidden units allocated in the adaptation
module represent well the possible diversity of writing styles
of each writer by environment.

Table 7: Error rate reduction on REGIM-MEnv dataset using
OAM and GARBF-AM

writer Error rate (%) Error rate reduction (%)
without adaptation OAM GARBF-AM

w1 12.18 44.85 55.34
w2 10.00 61.30 62.80
w3 13.17 58.23 59.91
w4 12.56 58.83 67.68
w5 14.77 54.46 54.10
Average 12.53 55.53 59.96
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Table 6: Recognition rate (RR) and number of hidden neurons (Nb Neur) on REGIM-MEnv dataset using OAM, Restricted
GARBF-AM and GARBF-AM

writer RR (%)
without OAM Restricted

GARBF-AM GARBF-AM

adaptation RR (%) Nb neur RR (%) Nb neur RR (%) Nb neur
w1 89.61 94.27 86 94.50 66 94.56 69
w2 90.00 96.13 50 96.22 40 96.28 46
w3 86.83 94.50 64 94.56 46 94.72 49
w4 87.44 94.83 58 95.22 46 95.94 42
w5 85.22 93.27 54 92.83 51 93.22 51
Average 87.82 94.60 63 94.66 50 94.94 51

• Performance evaluation of GARBF-AM using recall and
precision:

Apart from using accuracy to judge the performance of the
adapted system in the multi-environment context, it is al-
ways important to look at the confusion matrix to analyze
the results by computing precision, recall and F-score using
Eq.14, Eq.15 and Eq.16. The Fig. 9 show the overall perfor-
mance of the recognition system on REGIM-MEnv dataset
with and without adaptation using recall and precision mea-
sures. From Fig. 9, for all writers, we state that the precision
and recall are improved when we adapt the response of the
WIRS using the GARBF-AM. The highest amelioration is
reached for writer w5. The precision is moved up by 10.58%
and the recall by 9.41%. This case was further analyzed by
exposing to the view an extract from the matrix confusion of
writer w5 across the five environments. We remind that ev-
ery writer wrote 10 times each caracter in each environment;
so up to 50 characters. The objective of this analyze is to
show and study how the GARBF-AM reacts in front of the
confusion between classse made by the WIRS. The Table 8
reports the striking confusion between classes which are the
following four pairs (’l’,’e’), (’n’,’m’), (’r’,’n’) and (’1’,’l’).

Figure. 9: Overall system recall and precision without and
with adaptation per writer on REGIM-MEnv dataset

From the Table 8 we state the adapted system’s ability to
increase its performance by handling perfectly the various
class confusions to correct the majority of errors. So, with-
out adaptation and taking character ’1’ as an example, the
precision and the recall are Pcl = 0 and Pcl = 0. With
adaptation the recognition system performance is improved
to reach a precision of Pcl = 0.93 and Pcl = 0.82. Which
means that for precision, out of the times character ’1’ was
predicted, 93% of the time the system was in fact correct.
And for recall, it means that out of all the times character
’1’ should have been predicted only 82% of the character-
s were correctly predicted. In the same way, we plotted in

Fig 10 the F-score reached by each writer’s writing style in
both cases without and with adaptation. We state that the
overall performance of the recognition system is improved
using GARBF-AM where the F-score is moved up at least
by 6.14% for writer w1 and at the most by 9.99% for writer
w5.

Figure. 10: Overall system F-score without and with adap-
tation per writer on REGIM-MEnv dataset

• Statistical comparison using binomial test:

We conducted in this study a statistical comparison of
the GARBF-AM algorithm over the OAM and Restricted
GARBF-AM algorithms using the binomial test and apply-
ing eq.(17). The results are reported in Table 9. For writer
w4, from 1800 characters, the GARBF-AM and OAM differ
only in 30 characters. Out of the 30 characters GARBF-AM
classifies 25 characters correctly (S = 25). OAM, however,
classifies 5 characters accurately (F = 5). For this case, the
probability is E = 1.62 10−4.
For the same writer w4, the propability using the binomi-
al test between GARBF-AM and Restricted GARBF-AM is
E = 6.4 10−3. These results prove that the proposed algo-
rithm is better than other algorithms with high confidence.
Similarly, we conducted the binomial test for the other writ-
ers and we concluded that the performance of GARBF-AM
is better than OAM and Restricted GARBF-AM.

Table 9: Performance comparison using binomial test on
REGIM-MEnv dataset

Algorithms: GARBF-AM
and OAM

Algorithms: GARBF-AM
and Restricted GARBF-AM

Writer Binomial test Writer Binomial test
S F E S F E

w1 17 12 0.22 w1 13 10 0.33
w2 5 9 0.9 w2 9 9 0.59
w3 15 11 0.27 w3 13 10 0.33
w4 25 5 1.62 e−4 w4 14 3 6.4 e−3

w5 8 10 0.75 w5 24 11 0.02
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Table 8: Extracted confusion matrix of writer w5 using REGIM-MEnv dataset

Without Adaptation
’a’ ’c’ ’e’ ’i’ ’l’ ’m’ ’n’ ’p’ ’q’ ’r’ ’x’ ’y’ ’1’ Pcl Rcl

’l’ 0 0 36 0 14 0 0 0 0 0 0 0 0 0.22 0.28
’n’ 0 0 0 0 0 38 12 0 0 0 0 0 0 0.19 0.24
’r’ 0 0 0 0 0 0 36 0 0 10 0 0 4 0.83 0.20
’1’ 1 0 0 0 44 0 0 2 2 0 1 0 0 0 0
With Adaptation using GARBF-AM

’a’ ’c’ ’e’ ’i’ ’l’ ’m’ ’n’ ’p’ ’q’ ’r’ ’x’ ’y’ ’1’ Pcl Rcl

’l’ 0 0 17 0 33 0 0 0 0 0 0 0 0 0.91 0.66
’n’ 0 0 0 0 0 21 29 0 0 0 0 0 0 0.55 0.42
’r’ 0 0 0 1 0 0 15 0 0 33 0 0 1 0.91 0.66
’1’ 0 2 0 0 3 0 0 0 2 0 0 2 41 0.93 0.82

• Efficiency evaluation of GARBF-AM algorithm:

Table 10 reflects the deep analysis on REGIM-MEnv dataset
for each environment (sitting, standing, walking, going
up/down stairs and by car). Each writer wrote 360 charac-
ter in each environment. The behaviour of the adaptation
to each input character was analysed to check four parame-
ters : persistent correct (Pers-C), performance improvmen-
t (Perf-I), performance deterioration (Perf-D) and persistent
error (Pers-E). Also, we calculated the FCR (eq.18) and the
TCR (eq.19).
From Table 10 we can see that there is no degradation of
the writer-independent recognition system performance with
our adaptation algorithm when referring to Perf-D informa-
tion. In a sitting environment for writer w1, we reach the
maximum Perf-D (8 characters) which generates an FCR of
2.44%. Considering the 5 environments, using Perf-I infor-
mation, the average number of characters that are correctly
classified after adaptation and are initially misclassified by
the writer-independent recognition sytem is 20, 24, 29, 30
and 29 respectively for w1, w2, w3, w4, and w5. On the oth-
er hand, referring to Perf-D information, the average number
of characters that are misclassified after adaptation and are
initially correctly calssified by the writer-independent recog-
nition system are 3, 2, 2, 2 and 2 respectively for w1, w2,
w3, w4, and w5. From these results, we conclude that the
proposed GARBF-AM outperforms the writer-independent
recognition system without performance degradation. The
performance of the adaptation system depending on Pers-E
information, indicates how many characters were incorrect
during adaptation. We remark that, for writer w5, the Pers-E
rose a little bit which explains why the recognition rate de-
crease slightly compared to OAM (Table 6).

V. Conclusions

In this paper, a sequential learning algorithm called GARBF-
AM for writer adaptation was presented. The principle of our
work was to use an architecture of writer adaptation that can
be applied to any recognition system. The writer-dependent
recognition system incorporates an adaptation module (AM)
at the output of any writer-independent recognition system.
The AM, based on RBF-NN, operates with GARBF-AM and
converts the writer-independent output into writer-dependent
output. The GARBF-AM consists of two strategies which are
growing and adjustment. The growing criteria use the idea of
significance of hidden neurons. The adjustment consists of
the update of two specific units (nearest and desired contrib-

utor) parameters using the standard LMS gradient descent to
decrease the error each time no new unit is allocated. The
writer adaptation performance was tested using the LaViola
dataset and a multi-environment dataset REGIM-MEnv. The
comparison with other sequential learning algorithms clear-
ly shows that the proposed GARBF-AM, using the neuron
significance concept in the growth criteria, improves the per-
formance of the writer-dependent recognition system.
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