
Journal of Information Assurance and Security.
ISSN 1554-1010 Volume 15 (2020) pp. 026-034
© MIR Labs, www.mirlabs.net/jias/index.html

Reverse Engineering for potential Malware
detection: Android APK Smali to Java

Girish Sharma1, Mehul Mahrishi2 , Kamal Kant Hiran3 and Dr. Ruchi Doshi4

1Department of Computer Science & Engineering,
Swami Keshvanand Institute of Technology, Management & Gramothan, Jaipur -302017 India

girish@skit.ac.in

2Department of Computer Science & Engineering,
Swami Keshvanand Institute of Technology, Management & Gramothan, Jaipur -302017 India

kamalhiran@gmail.com

3Department of Computer Science,
Sir Padampat Singhania University, Udaipur, India

Abstract: Emerge of Smartphone technology has
changed the way of communication and processing
the data. These smart phones can perform peculiar
thing which was only limited to calling and texting
previously. This work presents the reverse engineer-
ing of the Android application which is the one of
the most prominent Smartphone technology based
on the Linux kernel. Since it is very difficult to an-
alyze the applications by using intermediate codes
like smali, jimple or bytecode, this approach can be
useful for the reseachers who work on control and
data flow analysis of apps.
The objective of this work is twofold. One is to iden-
tify the components specified by the developer using
the Android application’s Manifest file and also those
class files which have not been specified in the Mani-
fest file . The second objective is to reverse engineer
all the components and classes i.e. to convert them
in respective Java code.
Keywords: Reverse Engineering, Android, Smali, Jimple,
control flow, data flow

I. Introduction

Since the inception of android based systems, is one of
the ubiquitous technologies which are used for sharing
the resources [1]. At the same time these systems can
be exploited by the malicious program writers to exploit
the data or resources intentionally. As these systems
are increasing exponentially the malicious writers mis-
use the private data of the user to fulfill their malicious
activities. Another big possibility is that one applica-
tion may use another apps data and could do malicious
things [2].
Lot of techniques has been developed for the analysis
of an android application which can provide the flow
analysis of the application [3]. For example SOOT based
framework “Flowdroid” is one of the tool which can be

used for static taint analysis [4] which may provide good
precision and recall. Flowdroid uses Jimple intermediate
code to perform the analysis of the applications [5].

II. Android: Impact, Influence and Mo-
tivation

Many tools and technologies have been built to analyze
the Android applications to make the world of users
more and more secure. The question behind it is, “Is
there any ideal tool and methodology which could pro-
vide the entire flow of the application?” In this line,
framework like SOOT [6] provide analysis for the Java
programs by implementing the framework for different
types of applications like concurrent applications, point-
to analysis. This framework has been used for static and
dynamic analysis for intra and inter-procedural features.
Flowdroid, [5] which is based on SOOT framework, is
used for static taint analysis which may provide good
precision and recall. But it is not easy to customize the
framework like SOOT. As the applications are being in-
creased exponentially, the possibility of penetration in
the users’ private data and resources also has increased.
This possibility may occur substantially when an ap-
plication is given a lot of permission than it requires.
Apart from this another possibility is when one app re-
quires the data from another app also increases mali-
cious activities to be done through collusion. Another
side is also there, and also when the coding standards
are not good then also there is a possibility of informa-
tion leakage [7] [8]. One of the technique to make the
malicious code hidden from user or analyst is to use ob-
fuscation. Even the anti malware systems are not able
to detect the code if the code is highly obfuscated [9].
Many techniques have been implemented to make the
anti malware systems more and more robust to detect
malware like Androguard [10] [11].

MIR Labs, USA

27 Sharma et al.

A. Brief About Android

Android is one the highly growing and developing
operating systems and framework for the development
of applications. It is based on Linux operating system
developed and maintained by Open Handset Alliance
which is led by Google. An Android application does not
have a single entry point as in Java applications which
have an entry point. All these communications is done
between or among the activities, services or receivers
known as the component, via the intents. Android dif-
ferent components, an entry point for an application, is
explained in the Fig- 1.
Activity shows a user interface for interaction which
could interact with any of the components. A service
is a component which runs in the background without
user intervention. A broadcast receiver broadcast’s the
message to the system. Basically, there are four types
of components for an android application which serves
the different purpose for the application and have its life
cycle from the beginning to end means its creation to
destroy.

Activity Service Content Broadcast

Receivers

Application Components

Executes in the
background to perform
operations/remote
process

Provides data to the
app through file
system, database,
web etc.

Response to broadcast
messages from the app
or from the system

screen for
User interface per

interaction

Provider

Figure. 1: Android application components

III. Related Work

[12] prepared a novel Eclipse based framework called
as VAnDroid which is based on Model Driven Reverse
Engineering (MDRE). The model is capable of auto-
matically extracting security-related information from
an Android app.
[13] proposed an assembly like language Smali+̂, which
generates Assembly code for reverse engineering An-
droid applications.
[14] finds the anti pattern at the design and strutural
level by using UML modeling. The method finds the
15 different anti-patterns applied on the 29 the mobile
apps which divides the ant pattern into four groups. [15]
states that malicious code is always different from the
syntax of the code due to compiler dependency and
therefore decompiled source code can be incorporated

for malicious code classification. This not only provides
penetration malware analysis but also helps in under-
standing its nature.
[16] builds an Android vulnerability detection frame-
work which uses a hybrid approach of static and dy-
namic analysis of Android applications. The framework
analyzes the uploaded APK for Information Leaks, In-
tent Crashes, Http Requests, Exported Android Com-
ponents, Enabled Backup Mode, and Enabled Debug
Mode.
[17] uses an online authentication mechanism to ensure
the security mechanism improvement of the APK secu-
rity. The apk file is encrypted, loaded and executed in
the Android system after successful dynamic debugging
and decompiling.

IV. Reverse Engineering

Understanding the Dalvik bytecode contained by
the apk file is not easy to understand. To make the
code user understandable form reverse engineering can
be done to make the bytecode in readable form.
Lots of intermediate code has been generated for mak-
ing the bytecode into a intermediate form that can be
used for the analysis. Android applications can be dis-
assembled by using Android-Apktool, dex2jar and Soot
tools [18] which generate intermediate code in the form
of Smali, Jasmin and Jimple respectively. The disas-
sembly of apk by different tools is shown in the Fig-
2.

Disassemble

Disassemble

Disassemble

Input

.apk

android−apktool

dex2jar

Soot JIMPLE

(Java Simplified)

JASMIN

(Java Assembler)

SMALI Code
(Dalvik bytecode

 Assembler)

Figure. 2: Dissassembled output by different
tools for .apk

1. Baksmali/Smali: These are disassembler and as-
sembler which is used by Dalvik for dex format, also
used for Virtual Machine implementation for An-
droid Systems. Baksmali performs disassembly of
dex.classes into smali form so that developer could
make changes easily. Finally, Smali performs the
assembly of edited smali code into dex.classes so
the android system could understand.

2. Jasmin: It is one of the standard instruction for-
mats for Java used for assembling these instruc-
tions into .class so that Java RunTime Environment
could understand it.

Reverse Engineering for potential Malware detection: Android APK Smali to Java 28

3. Jimple: One of the intermediate code for Java code
similar to Three Address Code uses only fifteen op-
erations only, so the flow of the code easily be un-
derstood by the analyst. This code is especially
useful in code optimization.

4. Grimp: One of the intermediate code for Java code
which is in unstructured form. It is more readable
form than the respective Jimple code.

5. Baf : It is much like the Java bytecode based on the
stack representation. It is less complicated than the
bytecode.

A comparative study says that disassembling done
by Android-Apktool which generates the smali as an
intermediate code preserves the code at the most and
depicts the behavior as in the original code [18]. The
comparative study of these intermediate codes can be
shown in the Table
1Table 1 : Program behavior for different interme-
diate code

S. No. Intermediate
Code

Program Behavior
Preservation

1. SMALI 97.69
2. JIMPLE 85.58
3. JASMIN 81.92

V. Proposed Technique

This Section discusses proposed technique for converting
the Smali code into Java code. The approach for this
can be explained as:

A. Identifying Components and Classes

The proposed approach for finding components and
classes can be explained as:

1. Convert Classes.dex: The approach first con-
verts the .apk file into a readable form by using
Android apktool which generates an intermediate
smali form for classes.dex for the application by us-
ing Baksmali.

2. Component identification: The approach iden-
tifies the components of the application by scanning
AndroidManifest.xml.

3. Identify other classes: Identify those classes
which have not been specified in the AndroidMan-
ifest.xml by scanning complete dex of the appli-
cation which has been converted into intermediate
smali form.

1) System Architecture for finding the Components/-
Classes:

The Fig. 3 shows the engine which takes multiple apk
files as the input and identifies all the components and
classes.

Read
Classes.smali

Android apktool

Disassemble apk file

(Generates Smali code and AndroidManifest.xml)

Input files (.apks)

Engineering

Disassembled
Files

Reverse

Read

Output

to retrieve those

AndroidManifest.xml

Read

names with packages

Retrieves Component

invoke−direct,<init>
components which have
not been specified in

(names retrieved from the
AndroidManifest.xml)

All components and classes identified

identify those lines having

AndroidManifest.xml

Figure. 3: Components/Classes Identification

B. Proposed Approach for Converting classes.smali into
Java

This Section V-B discuss proposed the technique for
converting the Android applications’ classes into respec-
tive Java code. The approach for this can be explained
in brief as:

1. Components/Classes: The section V-A shows
identification of components and classes which is
stored in the list. The list provides the names of
the components to which reverse engineering is to
be applied.

2. Read Smali files:Identify the location of each
Smali file whose names with packages are stored
in the list. Read all the Smali file from the dex of
the application.

3. Generate .java files: Generate the java files for
the components identified for the app by scanning
and applying reverse engineering to those files.

1) System Architecture for Reverse Engineering Smali
Code

The main objective of this work to apply reverse engi-
neering mechanism to Smali classes and to convert them
into Java code.
The Fig. 4 shows the engine to convert Smali files of
multiple apk files into respective Java files. There is no
restriction in the number of input files.

2) Phase I: Identify All The Information Within The
Method

This Phase V-B.2 identifies all the information within
the method. This can be explained as:

(i) Read list: The section V-A shows identification
of components and classes which is stored in the

29 Sharma et al.

Android apktool

Disassemble apk file

(Generates Smali code and AndroidManifest.xml)

Input files (.apks)

Engineering

Disassembled
Files

Reverse

Read

Phase I

Reverse Engineering Engine

Create files from

list of components

on disk

Read the respective
smali file from dex
(generated by

apktool)

Identify all the locals,

Read

The list having names
of components/classes

Retrieve each method
from the smali file

string, objects,
parameters,new
instances,constants etc.

store all these
information into

lists

Output (Lists having al locals, string etc.)

Read the completeIdentify their all
params, constants,

in phase I

Read

Component/Class

Method name

store it into

respective file.

methodstrings etc. identified

Identify all the
istructions like
method, ifs, for etc.

Retrieve its name

and parameters

Output

Phase II

Respective Java file for each component and class of each apk

Put the instruction in its proper form and store it into respective file

Figure. 4: Architecture: Reverse Engineering
Smali

list. The list provides the names of the compo-
nents/classes to which reverse engineering is to be
applied.

(ii) Read Smali files: Read each of the Smali file spec-
ified by the list.

(iii) Read method: Identify the method from the
.smali file. The start and end of the method can
be easily known since a method starts with the line
having .method and ends with .end method

(iv) Identify instructions: Within the method iden-
tify all the instructions having const-string, .lo-
cal, move-result, new-array, const/4, const/high16,
new-instance etc. Identify their respective variable
or constant information and store them in their re-
spective list which will be used further when the
complete method is scaned in Phase II of the en-
gine.

In phase I the engine identifies the following instructions
and stores their information into the list.

(i) const-class: Provides the name of the classes used
within the method which are used to invoke method
of other class.

(ii) const-string: Provides the Strings with the name
of their object.

(iii) .local: Provides the local variable used within the
method with their names.

(iv) iput-object: Provides the information regarding
the objects stored in another object.

(v) iput-object: Provides the information for an ob-
ject having the value of another object.

(vi) move-result-object: Provides the information for
statement or method whose resultant is object.

(vii) move-result: Provides the information for state-
ment or method whose resultant is a basic type.

(viii) new-instance: Provides the information for the
new-instances of the objects.

3) Phase II: Reverse Engineering Smali Code

This Phase V-B.3 generates adjacency list for each the
application by scanning complete dex file generated by
the apktool.

(i) The engine first reads the Components/Classes as
mentioned in the Section V-A. These components
are stored in the list. The engine reads and scans
them one by one.

(ii) The system creates the files in the disk at the
specific location specified for these components
which will contain the Java code for respective
smali(component) files.

(iii) The engine reads the smali for each of the compo-
nents and identifies different types of instructions
like method calling, if statements, loop statements
in the smali code and generates its equivalent Java
code.

(iv) The engine reads each and every smali file specified
in the manifest and called classes and converts them
in java file.

In phase II the engine converts the following methods in
the smali code into java code.

(i) invoke-direct: If a smali instruction starts
with invoke-direct, then it means it is a con-
structor or a private method. For example
if a line in samli code is “ invoke-direct
{v4, p0, v5}, Landroid/content/Intent;-
⟩⟨init⟩(Landroid/content
/Context;Ljava/lang/Class;)V”, this means
there is a constructor call (⟨init⟩) by creating an
object for the class Intent and passing this(p0) and
v5 parameter and receiving the result in variable
v4.

(ii) invoke-virtual: It looks the virtual table of meth-
ods associated with the object’s class. For example
if a smali instructions line is “invoke-virtual
{v4, v5, v1}, Landroid/content/Intent;-
⟩putExtra(Ljava/lang/String;Ljava/lang/String;
)Landroid/content/Intent;”, this means there
is function call putExtra through Intent’s object
(v4) in which two strings are passed (v5,v1).

Reverse Engineering for potential Malware detection: Android APK Smali to Java 30

(iii) invoke-super: It looks the virtual table of the su-
per class associated with the method being called.
For example if a smali instructions line is “invoke-
super {p0, p1}, Landroid/app/Activity;-
⟩onCreate(Landroid/os/Bundle;)V”, this
means it is calling method onCreate() through
object p0(this) and passing the object Bundle(p1).

(iv) invoke-static: This is used to invoke static
method. For example “ invoke-static
{p1, v1, v0}, Landroid/widget/Toast;-
>makeText(Landroid/content/Context;
Ljava/lang/CharSequence;I)Landroid/widget
/Toast;” calls a method makeText() through class
Toast passing three parameters Context(p1),
CharSequence(v1) and integer value(v0).

 invoke−virtual {p0, v1}, Lorg/cert/echoer/MainActivity;−>setContentView(I)V

 const/high16 v1, 0x7f030000

 setContentView(R.layout.activity_main);

Smali Code

Generated Code

The parameter v1 is mapped using public.xml

Value for parameter v1

Figure. 5: Mapping using public.xml

VI. Test Results

To check the efficacy of the system, various tests on dif-
ferent Android applications have been performed. This
section discusses various input application apks used by
the system to perform analysis of outputs. It also dis-
cusses the test suite Droidbench [19] one of the highly
used open source Android applications with Java code
for performing static taint analysis and dynamic anal-
ysis of the applications by researchers and analyst [20].
Apart from this, the system’s performance have been
checked with the real world and some developed appli-
cations too.

A. Test Data Set

This work uses Droidbench test suite, Google’s Play
Store applications and some developed applications for
determining the efficacy of the system. Droidbench con-
tains more than 150 applications having data leaks, re-
flection calls, etc. The system’s test has been performed
with the Play Store applications like Instagram, Face-
book, IRCTC, Whats-app and more applications. The
test suite used for system’s analysis is shown in Table 2.
The test cases used for the system’s analysis identifies
the Java code for the respective Smali files.

B. Results for Apk Files

This work shows the system generated for converting
the Smali files into Java files. Echoer.apk application

Table 2 : Test cases used by the system

S. No. Test Suite Description

1. Droidbench
More than 120 android
applications with different
cases.

2. Google’s Play
Store

More than 1.6 million an-
droid applications.

of Droidbench is used for showing the results in figure
6.

.method protected onCreate(Landroid/os/Bundle;)V
 .locals 2
 .param p1, "savedInstanceState" # Landroid/os/Bundle;

 .prologue
 .line 17

 .line 18
 const/high16 v1, 0x7f030000

 invoke−super {p0, p1}, Landroid/app/Activity;−>onCreate(Landroid/os/Bundle;)V

 invoke−virtual {p0, v1}, Lorg/cert/echoer/MainActivity;−>setContentView(I)V

 .line 19
 const/high16 v1, 0x7f080000

 invoke−virtual {p0, v1}, Lorg/cert/echoer/MainActivity;−>findViewById(I)Landroid/view/View;

 move−result−object v0

 check−cast v0, Landroid/widget/Button;

 .line 20
 .local v0, "button1":Landroid/widget/Button;
 new−instance v1, Lorg/cert/echoer/Button1Listener;

 invoke−direct {v1, p0}, Lorg/cert/echoer/Button1Listener;−><init>(Lorg/cert/echoer/MainActivity;)V

 invoke−virtual {v0, v1}, Landroid/widget/Button;−>setOnClickListener(Landroid/view/View$OnClickListener;)V

 .line 21

 return−void
 .line 22

void protected onCreate(Bundle savedInstanceState){
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
Button button1= (Button)findViewById(R.id.button1)
Button1Listener v1 = new Button1Listener(this)
button1.setOnClickListener(v1)
getDataFromIntent()
}

 invoke−direct {p0}, Lorg/cert/echoer/MainActivity;−>getDataFromIntent()V

.end method

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 Button button1 = (Button) findViewById(R.id.button1);
 button1.setOnClickListener(new Button1Listener(this));
 getDataFromIntent();
}

Converted Code

Smali Code

Original Code

Figure. 6: Echoer.apk

In figure the original code, Smali code and converted
code is shown. The Smali code is the dex opcodes.
The first line of this code is the name of the method
onCreate having the Bundle as a parameter. The
name of the parameter is at line 3 showing .param
p1 “savedInstanceState”. All these parameters for
a method are identified by scaning the lines for .param.

1) Processing for invoke-virtual Methods

These types of methods are mostly called methods.
These methods depicts the normal method call through
object for another class method or directly calling meth-
ods within that class. The engine process these types of
methods as:

(i) Identify invoke-virtual: Identify the line having
invoke-virtual in the Smali code.

(ii) Parameters: Identify the parameters of the
method which are in . For example here in the
Fig. 7 the parameter is v1. Here p0 represents
the object on which method is called and v1 is the
actual parameter of the method findViewById.

31 Sharma et al.

.method private getDataFromIntent()V
 .locals 6

 .line 32
 :try_start_0
 invoke−virtual {p0}, Lorg/cert/echoer/MainActivity;−>getIntent()Landroid/content/Intent;
 move−result−object v4
 iput−object v4, p0, Lorg/cert/echoer/MainActivity;−>i:Landroid/content/Intent;
 .line 33
 iget−object v4, p0, Lorg/cert/echoer/MainActivity;−>i:Landroid/content/Intent;
 invoke−virtual {v4}, Landroid/content/Intent;−>getAction()Ljava/lang/String;
 move−result−object v0
 .line 34
 .local v0, "action":Ljava/lang/String;
 const−string v4, "android.intent.action.SEND"
 invoke−virtual {v0, v4}, Ljava/lang/String;−>equals(Ljava/lang/Object;)Z
 move−result v4
 if−eqz v4, :cond_1
 .line 35
 iget−object v4, p0, Lorg/cert/echoer/MainActivity;−>i:Landroid/content/Intent;
 invoke−virtual {v4}, Landroid/content/Intent;−>getExtras()Landroid/os/Bundle;
 move−result−object v2
 .line 36
 .local v2, "extras":Landroid/os/Bundle;
 const−string v4, "Data recieved in Echoer: "
 const−string v5, "secret"
 invoke−virtual {v2, v5}, Landroid/os/Bundle;−>getString(Ljava/lang/String;)Ljava/lang/String;
 move−result−object v5
 invoke−static {v4, v5}, Landroid/util/Log;−>i(Ljava/lang/String;Ljava/lang/String;)I
 .line 46
 .end local v0 # "action":Ljava/lang/String;
 .end local v2 # "extras":Landroid/os/Bundle;
 :cond_0
 :goto_0
 return−void
 .line 38
 .restart local v0 # "action":Ljava/lang/String;
 :cond_1
 const−string v4, "android.intent.action.VIEW"
 invoke−virtual {v0, v4}, Ljava/lang/String;−>equals(Ljava/lang/Object;)Z
 move−result v4
 if−eqz v4, :cond_0
 .line 39
 iget−object v4, p0, Lorg/cert/echoer/MainActivity;−>i:Landroid/content/Intent;
 invoke−virtual {v4}, Landroid/content/Intent;−>getData()Landroid/net/Uri;
 move−result−object v3
 .line 40
 .local v3, "uri":Landroid/net/Uri;
 const−string v4, "URI recieved in Echoer: "
 invoke−virtual {v3}, Landroid/net/Uri;−>toString()Ljava/lang/String;
 move−result−object v5
 invoke−static {v4, v5}, Landroid/util/Log;−>i(Ljava/lang/String;Ljava/lang/String;)I
 :try_end_0
 .catch Ljava/lang/Exception; {:try_start_0 .. :try_end_0} :catch_0
 goto :goto_0
 .line 42
 .end local v0 # "action":Ljava/lang/String;
 .end local v3 # "uri":Landroid/net/Uri;
 :catch_0
 move−exception v1
 .line 43
 .local v1, "e":Ljava/lang/Exception;
 invoke−virtual {v1}, Ljava/lang/Exception;−>printStackTrace()V
 goto :goto_0
.end method

private void getDataFromIntent(){
try {
i = getIntent();
String action = i.getAction();
if (action.equals(Intent.ACTION_SEND)) {
Bundle extras = i.getExtras();
Log.i("Data recieved in Echoer: ", extras.getString("secret"));
}
else if (action.equals(Intent.ACTION_VIEW)){
 Uri uri = i.getData();
 Log.i("URI recieved in Echoer: ", uri.toString());
}
} catch (Exception e) {
e.printStackTrace();
}

}

void private getDataFromIntent(){
try{
i=getIntent()
String action=i.getAction()
if(action.equals("android.intent.action.SEND")){
Bundle extras=i.getExtras()
v5=extras.getString("secret")
Log.i("Data recieved in Echoer: ",v5)
}
else if(action.equals("android.intent.action.SEND")){
Uri uri=i.getData()
v5=uri.toString()
Log.i("Data recieved in Echoer: ",v5)
}
}
catch(Exception e){
e.printStackTrace()
}
}

Smali Code
Original Code

Generated Code

Figure. 7: Echoer.apk

(iii) Object: Object on which method is called is iden-
tified by reading the code in reverse. Here p0 repre-
sents the keyword p0. The parameter is also iden-
tified by reading the code in reverse. Note that all
the paramters and object are identified by reading
the code in reverse.

(iv) move-result-object: If the line following the
invoke-virtual is move-result-object means method
returns that type of object and stored in the object
when returns. Here the result is moved to object
v0 which is the object of Button class.

(v) Casting: It may also be possible that the result is
casted in other type of object. If the move-result-
object is followed by check-cast than the result is
casted into that type of object. Here it is casted in
Button object.

C. Some Results of Droidbench Applications

The Fig. 8 shows the result the Droidbench’s appli-
cation StringToCharArray.apk. The result is for the
method onCreate(). The generated code almost resem-
bles the original code. This code contains the for loop.

D. public.xml

Android dex contains a folder named with res. When
an apk is reverse engineered using the Apktool. The
dex also contains this res folder. This folder contains
the layout, string values, and many other objects related
to the application. An important file is the public.xml
which is useful for converting the Smali code into the
Java code.
This file consists of various string values in hexadecimal
form which can be used for mapping when that particu-
lar value comes in the smali code in hexadecimal form.
This particular scenario is depicted in Figure 5.

VII. Conclusions and Future Work

This work coverts the smali classes into Java form. For
each identified method the system converts it into Java
form.

1. all the methods like invoke-super, invoke-static,
invoke-virtual are converted into Java form.

Reverse Engineering for potential Malware detection: Android APK Smali to Java 32

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 String imei = mgr.getDeviceId();
 TelephonyManager mgr = (TelephonyManager) this.getSystemService(TELEPHONY_SERVICE);

 char[] chars = new char[imei.length()];
 imei.getChars(0, imei.length(), chars, 0);
 String builtImei = "";
 for (int i = 0; i < chars.length; i++)
 builtImei += chars[i];
 Log.i("DroidBench", builtImei);
 }
}

.method protected onCreate(Landroid/os/Bundle;)V
 .locals 7
 .param p1, "savedInstanceState" # Landroid/os/Bundle;
 .prologue
 const/4 v6, 0x0
 .line 23
 invoke−super {p0, p1}, Landroid/app/Activity;−>onCreate(Landroid/os/Bundle;)V
 .line 24
 const/high16 v5, 0x7f030000
 invoke−virtual {p0, v5}, Ledu/mit/string_to_char/MainActivity;−>setContentView(I)V
 .line 26
 const−string v5, "phone"

 move−result−object v4
 check−cast v4, Landroid/telephony/TelephonyManager;
 .line 27
 .local v4, "mgr":Landroid/telephony/TelephonyManager;
 invoke−virtual {v4}, Landroid/telephony/TelephonyManager;−>getDeviceId()Ljava/lang/String;
 move−result−object v3
 .line 28
 .local v3, "imei":Ljava/lang/String;
 invoke−virtual {v3}, Ljava/lang/String;−>length()I
 move−result v5
 new−array v1, v5, [C
 .line 30

 invoke−virtual {p0, v5}, Ledu/mit/string_to_char/MainActivity;−>getSystemService(Ljava/lang/String;)Ljava/lang/Object;

 .local v1, "chars":[C
 move−result v5
 invoke−virtual {v3, v6, v5, v1, v6}, Ljava/lang/String;−>getChars(II[CI)V
 .line 32
 const−string v0, ""
 .line 33
 .local v0, "builtImei":Ljava/lang/String;
 const/4 v2, 0x0
 .local v2, "i":I
 :goto_0
 array−length v5, v1
 if−lt v2, v5, :cond_0
 .line 36
 const−string v5, "DroidBench"
 invoke−static {v5, v0}, Landroid/util/Log;−>i(Ljava/lang/String;Ljava/lang/String;)I
 .line 37
 return−void
 .line 34
 :cond_0
 new−instance v5, Ljava/lang/StringBuilder;
 invoke−static {v0}, Ljava/lang/String;−>valueOf(Ljava/lang/Object;)Ljava/lang/String;
 move−result−object v6
 invoke−direct {v5, v6}, Ljava/lang/StringBuilder;−><init>(Ljava/lang/String;)V
 aget−char v6, v1, v2
 invoke−virtual {v5, v6}, Ljava/lang/StringBuilder;−>append(C)Ljava/lang/StringBuilder;
 move−result−object v5
 invoke−virtual {v5}, Ljava/lang/StringBuilder;−>toString()Ljava/lang/String;
 move−result−object v0
 .line 33
 add−int/lit8 v2, v2, 0x1
 goto :goto_0
.end method

Original Code

Smali Code

void protected onCreate(Bundle savedInstanceState){
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
TelephonyManager mgr= (TelephonyManager)getSystemService("phone")
String imei=mgr.getDeviceId()
v5=imei.length()
char[] chars = new char[imei.length()]
imei.getChars(0x0,imei.length(),chars,0x0)
for(int i=0x0;i<chars.length;i++){
v5.append(v6)
v5.toString()
}
Log.i("DroidBench",builtImei)
}

Generated Code

Figure. 8: StringToCharArray1.apk onCreate() Method

2. all the statements like if, for etc. are converted into
their respective Java form

3. all the try-catch blocks are identified and converted
into their respective Java form.

The system the does the things at its best level but a
best system can have some flows and these flows can be
used in future by analyst to make the system more re-
liable. Some of the interesting research directions gen-
erated by this work can be explained in the following
points.

1. The system generated can be used for control and
data flow analysis of the applications easily. Since
the Java code can be easily read and it can pro-
vide better results than the previous static analysis
technique using the intermediate code.

2. The analysis of the applications works very fine for
multiple apps. For example the testing for multiple
applications of test suite like Droidbench was ac-
complished and it worked well. But when the num-
ber of applications are very high or if they are very
big applications like Facebook. The system might
not work which is due to memory overrun not due

to logic. In essence the system can be further opti-
mized so that it should not fail for any number of
applications an for any size applications.

3. Further investigations can be applied to the system,
by using the different data mining algorithms like
decision tree, k-means, apriori etc. to classify the
application as a benign or suspicious by statically
analysing them.

References

[1] Brian Chess and Jacob West. Secure programming
with static analysis. Pearson Education, 2007.

[2] Mooly Sagiv, Thomas Reps, and Susan Horwitz.
Precise interprocedural dataflow analysis with ap-
plications to constant propagation. Theoretical
Computer Science, 167(1):131–170, 1996.

[3] Fengguo Wei, Sankardas Roy, Xinming Ou, et al.
Amandroid: A precise and general inter-component
data flow analysis framework for security vetting
of android apps. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communi-
cations Security, pages 1329–1341. ACM, 2014.

33 Sharma et al.

[4] Alexandre Bartel, John Klein, Martin Monper-
rus, and Yves Le Traon. Static analysis for ex-
tracting permission checks of a large scale frame-
work: The challenges and solutions for analyzing
android. Software Engineering, IEEE Transactions
on, 40(6):617–632, 2014.

[5] Steven Arzt, Siegfried Rasthofer, Christian Fritz,
Eric Bodden, Alexandre Bartel, Jacques Klein,
Yves Le Traon, Damien Octeau, and Patrick Mc-
Daniel. Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis
for android apps. In ACM SIGPLAN Notices, vol-
ume 49, pages 259–269. ACM, 2014.

[6] Arni Einarsson and Janus Dam Nielsen. A sur-
vivor’s guide to java program analysis with soot.
BRICS, Department of Computer Science, Univer-
sity of Aarhus, Denmark, 2008.

[7] Zhemin Yang and Min Yang. Leakminer: Detect
information leakage on android with static taint
analysis. In Software Engineering (WCSE), 2012
Third World Congress on, pages 101–104. IEEE,
2012.

[8] Clint Gibler, Jonathan Crussell, Jeremy Erickson,
and Hao Chen. AndroidLeaks: automatically de-
tecting potential privacy leaks in android applica-
tions on a large scale. Springer, 2012.

[9] Chunfu Jia, Zhi Wang, Kai Lu, Xinhai Liu,
and Xin Liu. Directed hidden-code extractor for
environment-sensitive malwares. Physics Procedia,
24:1621–1627, 2012.

[10] Parvez Faruki, Ammar Bharmal, Vijay Laxmi,
Manoj Singh Gaur, Marco Conti, and Muttukr-
ishnan Rajarajan. Evaluation of android anti-
malware techniques against dalvik bytecode obfus-
cation. In Trust, Security and Privacy in Comput-
ing and Communications (TrustCom), 2014 IEEE
13th International Conference on, pages 414–421.
IEEE, 2014.

[11] Qi Xi, Tianyang Zhou, Qingxian Wang, and
Yongjun Zeng. An api deobfuscation method com-
bining dynamic and static techniques. In Mecha-
tronic Sciences, Electric Engineering and Com-
puter (MEC), Proceedings 2013 International Con-
ference on, pages 2133–2138. IEEE, 2013.

[12] Atefeh Nirumand, Bahman Zamani, and Behrouz
Tork Ladani. Vandroid: A framework for vul-
nerability analysis of android applications using a
model-driven reverse engineering technique. Soft-
ware: Practice and Experience, 49(1):70–99, 2019.

[13] Marwa Ziadia, Jaouhar Fattahi, Mohamed Mejri,
and Emil Pricop. Smali: an operational semantics
for low-level code generated from reverse engineer-
ing android applications+. Information, 11(3):130,
2020.

[14] Eman K Elsayed, Kamal A ElDahshan, Enas E El-
Sharawy, and Naglaa E Ghannam. Reverse engi-
neering approach for improving the quality of mo-
bile applications. PeerJ Computer Science, 5:e212,
2019.

[15] Roni Mateless, Daniel Rejabek, Oded Margalit, and
Robert Moskovitch. Decompiled apk based mali-
cious code classification. Future Generation Com-
puter Systems, 2020.

[16] Amr Amin, Amgad Eldessouki, Menna Tullah
Magdy, Nouran Abdeen, Hanan Hindy, and Is-
lam Hegazy. Androshield: Automated android ap-
plications vulnerability detection, a hybrid static
and dynamic analysis approach. Information,
10(10):326, 2019.

[17] DONG Zhenjiang, WANG Wei, LI Hui, ZHANG
Yateng, ZHANG Hongrui, and ZHAO Hanyu.
Sesoa: Security enhancement system with online
authentication for android apk. ZTE Communica-
tions, 14(S0):44–50, 2019.

[18] Yauhen Arnatovich, Hee Beng Kuan Tan, Sun
Ding, Kaiping Liu, and Lwin Khin Shar. Empirical
comparison of intermediate representations for an-
droid applications. In SEKE, pages 205–210, 2014.

[19] Nguyen Tan Cam, Pham Van Hau, and Tuan
Nguyen. Android security analysis based on inter-
application relationships. In Information Science
and Applications (ICISA) 2016, pages 689–700.
Springer, 2016.

[20] Xingmin Cui, Da Yu, Patrick Chan, Lucas CK Hui,
Siu-Ming Yiu, and Sihan Qing. Cochecker: Detect-
ing capability and sensitive data leaks from com-
ponent chains in android. In Information Security
and Privacy, pages 446–453. Springer, 2014.

Reverse Engineering for potential Malware detection: Android APK Smali to Java 34

Table 3 : Dalvik opcodes used in the system

S. No. Opcode Description
1. move vi, vj Places contents of register vj into register vi (range256).
2. move/from16 vi, vj Places contents of register vj into register vi.(vj range64 K, vi 256).
3. move-object vi,vj Places object reference vj into vi.
4. move-object/from16 vi,vj Places object reference vj into vi.(vj range 64 k, vi256)
5. const/16 vi,#ConstValue Puts the literal value (16 bits) into the specified register vi(16 bits).
6. const-class vi, ID Puts the object of the class specified by the ID intothe register(8 bit).
7. const-class vi, StringID Puts the String reference specified by the StringIDinto the register(8 bit).
8. iput-object vi,vj,ID Puts the object referenced by vj specified by ID intothe vi.
9. move-result-object vi Result of the invoke-... to be put into the specifiedregister vi.
10. const/4 vi,#ConstValue Puts the literal value (4 bits) into the specified registervi(4 bits).
11. const/high16 vi,#ConstValue Puts the literal value (signed int 16 bits) into thespecified register vi(8 bits).
12. new-instance vi, ID Puts the object created specified by ID into the register vi(8 bits).
13. iget-object vi, vj, ID Gets the object referenced by vj at the offset specified by ID into the vi.
14. invoke-direct{arguments/parameters},methodID Used to call direct methods which cannot be overridden.For example: constructor.
15. invoke-virtual{arguments/parameters},methodID Used to call normal method. For example non-staticmethods, non-final methods.
16. invoke-super{arguments/parameters},methodID Used to call normal method (virtual) of closest superclass.
17. invoke-static{arguments/parameters},methodID Used to call static methods.
18. invoke-interface{arguments/parameters},methodID Used to call interface method.
19 invoke-virtual/range {vi..vj},methodID Used to call virtual method (virtual table). The parameters shows the range of register passed as anargument.

A. Smali Instructions

The table3 contains smali instructions which were used
to generate the system and the analysis of the code. Dif-
ferent Dalvik opcodes with descriptions which are used
by apktool (Baksmali) for generating the intermediate
code are aforementioned.

