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Abstract: Time series analysis is becoming essential in differ-
ent areas for the observation and monitoring of time-sequential
data sets to extract relevant statistics and predict the series’ be-
haviour. Current approaches effectively detect changes in the
data streams. Still, most of these techniques are limited to noise
interference and the inability to identify the most significant pa-
rameter values for productive abnormality detection in time se-
ries. In this paper, we improve on the previous moving median
of the martingale sequence and the Gaussian moving average of
the martingale sequence approaches by implementing various
optimisation algorithms such as G-mean enumeration, genetic
algorithms and particle swarm optimisation. The use of these
methods allows us to find the optimal parameter set for each
algorithm. The proposed system can reduce noise in the data
and estimate the change degree in time series scenarios. Re-
sults show that the proposed approaches perform better than
the previous martingale approaches.
Keywords: Anomaly detection, time series, martingales, optimisa-
tion, electromagnetic, human activity recognition.

I. Introduction

A time series is a sequence of observations that takes place
at consistent intervals. Data acquired from observing and
monitoring time series are ubiquitous nowadays. For exam-
ple, in the trading sector, we could observe and record the
annual sales amount, gross domestic product, and gross do-
mestic product yearly sales figures for budgeting purposes.
Time series [5] can be categorised into two types: univariate
(one variable) and multivariate (multiple variables). The uni-
variate time series can be temperature measurement obtained
using thermometer while the multivariate could be a tri-axial
accelerometer data with x, y and z-axis.

Time series [36][56][55][47][11] characteristics can be clas-
sified into auto-correlation, seasonality and stationarity.
Auto-correlation is the extent of closeness between a given
time sequence and a diminishing rendition of the series over
previous periods. It is also a measure of the relationship be-
tween present and past values. For example, when the tem-
peratures measured within five years are of similar magni-
tude and variance. Seasonality represents the alteration that
takes place in a time series. This periodic alteration can result
from certain conditions, such as climate conditions, vacation
and festive season, that occur weekly or monthly within a
year. Stationarity refers to the statistical properties of time
series that do not alter over time. Analytic tools and statis-
tical tests often rely on stationarity for effective analysis of
time series.
In time series, an anomaly or outlier is a data point that does
not follow expected trends and is noticeably dissimilar from
the rest of the data. Mathematically, an anomaly is the data
point that diverges by a specific deviation from the mean.
Therefore, anomaly detection in time series can also refer
to locating outlier points concerning the rest of the data set.
There are three types of anomalies in time series: point, con-
textual and collective anomalies [23][64]. P A point anomaly
happens when a point in the time series is far off compared
to the rest of the data set. An example of a point anomaly is
the process of discovering credit card fraud based on spend-
ing activities or history. This anomaly happens when there
are unusual spending and withdrawals. A contextual or con-
ditional anomaly occurs when the abnormality is context-
specific. For example, a high temperature in winter would
be an anomaly, while a high summer temperature is not. A
collective anomaly happens when a collection of data points
within a data set is considered abnormal and deviate signifi-
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cantly from the entire data set. Still, the differing data points
are not necessarily anomalous. A typical example of a col-
lective anomaly is breaking the rhythm in electrocardiogram
readings. The rare happenings in an electromagnetic data set
due to seismic activity can be seen as a collective anomaly.
Anomaly detection can discover unusual patterns in time se-
ries that do not conform to expected behaviour. There are
many applications of anomaly detection [41]. For instance,
intrusion detection systems [51] find abnormal behaviour in
network traffic resulting from a hack. Health monitoring sys-
tems [21] identify a malignant tumour in the body with an
MRI scan. Also, fraud detection applications [37] can dis-
cover an unfamiliar surge in spending in a controlled environ-
ment. Anomaly detection can be achieved using the follow-
ing approaches: the simple statistical approach and the ma-
chine learning-based approach. A simple statistical method
[8] can discover irregularities in the data set by picking out
the points which deviate from the data statistics. This method
is usually quite robust as it relies on data distribution. Ma-
chine learning-based approaches can be used to build a statis-
tical model to make predictions [43]. There are three types of
machine learning-based [3][52] approaches known as super-
vised, unsupervised and semi-supervised machine learning.
The supervised machine learning-based requires a labelled
training data set that contains both standard and abnormal
samples for developing the predictive model [11]. The semi-
supervised anomaly detection approach assumes that every
training instance is acquired from the standard class. The aim
is to differentiate the subsequent instances that transpire from
a distinct distribution [45]. The unsupervised anomaly detec-
tion consists of one sample with both standard and abnormal
instances, and the primary aim is to distinguish them [45].
In time series, anomaly detection techniques still face some
challenges such as noise interference, inability to differenti-
ate between normal and abnormal boundaries, handling the
imbalance of normal and anomalous data, and addressing
the variation of peculiar characteristics [7]. In the following
paragraphs, we shall discuss both the univariate and multi-
variate time series.
An example of the univariate data set is the
electromagnetic(EM)[66][35] data set contains information
that will enable experts to study and predict anomalies
such as earthquakes. The electromagnetic field can be
influenced by electromagnetic interference, which comes
from different sources and can be natural or human-made.
The existence of an EM field makes possible the presence
of noise [31]. Noise, in this case, refers to the intercession
of the communication procedure between satellite and the
Earth’s surface; however, it can also occur through human
or equipment errors. Being able to isolate anomalies in
an EM data set has had a big effect on new algorithms’
development. This paper will look at anomaly detection in
electromagnetic time series.
Human activity recognition (HAR) is an example of a time
series gaining popularity in machine learning and artificial
intelligence. HAR is the process of predicting the motion of
a person based on sensor data obtained from wireless sen-
sors devices or other sources [16][12]. HAR data collec-
tion using sensors is sensitive to noise that interferes with
the output rendering. Consequently, this interference might

produce misleading information that can affect the accuracy
and precision of data readings. The study of HAR can as-
sist in establishing a more complete and robust treatment for
physically disabled people [58][10]. HAR research enables
medical practitioners to manage physical disabilities, such as
multiple sclerosis or epilepsy [58][53]. This paper will also
analyse the HAR time series for anomaly detection.
In our previous work [18], we proposed two methods that can
identify anomalies in the data stream. In the current paper,
we intend to improve these approaches by using optimisa-
tion techniques. The optimisation techniques can discover
the optimal parameters of an algorithm [20][42]. Some ex-
amples of optimisation methods, that will be discussed in this
paper, are the G-mean enumeration method (GEM), genetic
algorithms (GA) and particle swarm optimisation (PSO) ap-
proach. GEM manually locates the best G-mean metric value
from a range of possible solutions. The G-mean metric will
be elaborated in Section IV.
GA [39][30] is a popular heuristic method motivated by nat-
ural selection procedures associated with an enhanced class
of evolutionary algorithms. PSO [61] [4] is a heuristic al-
gorithm based on the swarming behaviour of living entities.
Both GA and PSO are robust search methods that use prob-
abilistic and deterministic rules to improve iterations from a
set point to another [54][27]. For more complex problems,
GA and PSO are suitable algorithms; we shall explain these
optimisation methods further in Section II and IV.
The paper structure is as follows: In Section II, we review
the latest work done on identifying changes in different time
series; in Section III, we introduce our proposed approach; in
Section IV, we tested the proposed optimised algorithms on
electromagnetic and HAR time series and compare the result
with the previous version of the algorithms; we conclude the
paper in Section V discussing the results obtained and the
future work of the research.

II. Related work

Many anomaly detection approaches can discover abnormal-
ities in a data stream. This section briefly discusses these
methods.
In our previous work [18], we proposed two methods,
namely the moving median of the martingale sequence
(MMMS) and Gaussian moving average of the martingale
sequence (GMAS). These methods use the martingale frame-
work to detect anomalies in time series. The techniques
also minimise the noise interference in a data stream. The
approaches work using a given window size and computed
threshold to enhance the accuracy rate of discovering abnor-
malities in time series. The parameter set used in these two
methods is large and optimisation results based on this pa-
rameter space have not been obtained yet.
Time series deals with big and non-stationarity data which
lead to uncertainty in obtaining satisfactory results when dis-
covering anomalies using a single-model-based method. To
handle this challenge, Zhou et al. [67] proposed a method
that combines model-based and similarity measurement ap-
proaches for anomaly detection. Firstly, processing of the
data is performed to reduce the dimensionality obtaining a
new sequence. The original data set and the new sequence
are then compared to capture the structure and morpholog-
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ical features. Finally, this comparison leads to a method to
identify abnormalities. Experimental results show that the
proposed technique can enhance the performance of anomaly
detection.
Detecting abnormalities in multivariate time series can be
challenging. Li et al. [33] proposed a clustering-based
method to find anomalies related to the magnitude and the
structure of multivariate sequences. Firstly, they use a slid-
ing window to obtain a set of multivariate sub-sequences and
then an extension of fuzzy clustering is applied to discover
if some underlying data structure exists in the newly gener-
ated dataset. Finally, a criterion is implemented to rebuild
the multivariate sub-sequences with an optimal cluster cen-
tre and partition matrix. This is preceded by the creation of
a confidence index and the optimisation of parameters us-
ing particle swarm optimisation. Experimentation conducted
on several real-world data set showed that the proposed ap-
proach can identify abnormalities and structure patterns in
multivariate time series.
Physical impairment can restrict the daily activities of the
elderly. Such activities can include walking, standing, sleep-
ing and taking meals. These challenges motivated Fahad et
al. [19] to suggest a method that recognises movement per-
formed in a smart home environment. The approach is also
able to identify and distinguish normal from abnormal ac-
tivities carried out daily. This involves the application of a
probabilistic neural network on pre-segmented action data
retrieved from smart home sensors. H20 autoencoder is used
to discover an anomalous sequence of every action. Conse-
quently, these abnormal points are grouped based on condi-
tions such as lost or aberrant activity duration. Analysis and
evaluation of public CASAS smart home data sets showed
that this method can correctly identify anomalies in activity
recognition. The following Section discusses our proposed
time series model.

III. Time series models

This Section discusses the proposed method for anomaly de-
tection in univariate and multivariate time series.

A. Univariate time series analysis

This Section explains the proposed approach for analysing
the HAR data set.
Let us consider a time series Z = z1, ..., zi−1. The arriving
point will be represented as zi. Let us suppose that the data
has been clustered into k disjoint sets Y1, ..., Yk, (k <= i −
1) [26].
Definition 1. The strangeness of zi is defined as

si = s(Z, zi) =‖ zi − Cr ‖ , (1)
where Cr is the centroid of the cluster Yr, for some r ∈{

1, ..., k
}

such that zi ∈ Yr . ‖ . ‖ denotes the chosen dis-
tance [24].
We use the strangeness of zi to compute the p̂i in equation
(2).
Definition 2. Let X1, X2, ..., Xs be a sequence of random
variables, the randomised power martingale (RPM) [24]
[60] is indexed by ε ∈ [0, 1] defined at each time-point as

M (ε)
n =

n∏
i=1

(εp̂i
ε−1), (2)

p̂i [24] is computed as follows:

p̂i(Z ∪ zi, θi) =
]
{
j : sj > si

}
+ θi]

{
j : sj = si

}
i

, (3)

where sj denotes the strangeness of zj (see [24]) and θi is
a fixed number in [0, 1] (see [24] and [60]) for every i =

1, 2, ..., n, being the initial Martingale value M (ε)
0 = 1.

The model (2) will detect a change when
M (ε)
n > t, (4)

where the threshold t is chosen in a probabilistic way based
on Dobb’s Inequality [24]. In a multidimensional data set,
Mn will be computed for each of the variables. In the fol-
lowing Section, we introduce a method that improves the ac-
curacy, recall and F1 of the previously described martingale
approach.

B. Moving median of a martingale sequence

A moving median approach is a robust and effective tech-
nique to detect anomalies in a data stream [28]. The moving
median method finds the median of a data stream using a
sliding window.
Once the martingale sequence for our time series has been
computed, we can implement moving medians on the se-
quence of martingale points [18]. The main reason why we
use the median rather than the mean is that it is not affected
by individual points, but only their order. This feature builds
on the idea that the median can smooth time series by iso-
lating the effect of noise and bringing out the patterns of the
data set. Therefore, this model will detect a change when

Wk ≥ t, (5)
where the Wk represents the MMMS points and t the thresh-
old. There are several ways of choosing a threshold t. Ho and
Weschler [24] proposed a probabilistic approach to compute
it, while Ley et al. [32] proposed a threshold based on outlier
detection: x̄ ± 3 ∗MAD, where x̄ denotes the mean of the
data points and the MAD the mean absolute deviation. In
this paper, we compute the threshold using x̄ ± σ, where σ
is the standard deviation of {Wk | k = 1, ..., s} points and µ
denotes the mean of {Wk | k = 1, ..., s}.
We use σ rather than the MAD because the absolute devia-
tion is less sensitive to significant outliers than the use of σ,
which is more susceptible to substantial outliers [25]. If Wk

exceeds the given threshold of t, then an anomaly has been
detected. When an abnormality is detected, the computation
of Wk terminates, and the algorithm is re-initiated.

C. Gaussian moving average of a martingale sequence

The Gaussian function [34][18] can be used as a smoothing
operator to compute a weighted average of the martingale
points. The nearest position to the average acquires a more
considerable weight while the ones apart from the standard
will gain a lesser weight. This weighting process can isolate
noise, making the pattern clearer.
We consider a martingale sequence M =

{
Mk : k =

1, ..., s − 1
}

. For every k ∈ {1, ..., s − 1} we can compute
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the Gaussian function of the martingale point Mi as

ei = e−(Mi−µ)2/(2σ2), (6)
where µ and σ are the mean and standard deviation of M
[34]. We can compute a new point Li using the equation:

Li =
ei∑k
i=0 ei

. (7)

Finally, we define a final sequence of values as (8):

Ak =

k∑
i=0

LiMi , (8)

for k = 1, ..., n. If the computed Ak value is greater than the
threshold t, it is feasible to presume that an abnormality or
anomaly occurs. As before, we will be using a threshold of
x̄±σ. where x̄ and σ are the mean and standard deviation of
Ak. Therefore, the model for identifying anomalies in time
series is given as:

Ak ≥ t. (9)

D. Multivariate time series model

In this Section, we explain the process of reducing the di-
mension of the multivariate sequencesWk andAk to a single
variable suitable to study.
Let us consider a data sequence {X1, ..., Xs}, where each
point Xi is a j vector (being j the number of variables in
the study). Mn, Wk and Ak are computed for each variable
at any time point. The next step will be to reduce this new
multidimensional sequence into a single metric.
Once Mn, Wk and Ak are computed for each variable at a
given time point the mean of all these values will be cal-
culated. For the multivariate randomised power martingale
(MRPM), the k-th mean element is computed using the fol-
lowing equation:

Vk =
Mn(r

(k)
1 ) +Mn(r

(k)
2 ) + ...+Mn(r

(k)
j )

j
, (10)

where r(k)i is the i-th variable of Xk.
For the multivariate moving median of the martingale se-
quence (MMMMS), the k-th mean element is computed us-
ing the equation:

Ck =
Wk(r

(k)
1 ) +Wk(r

(k)
2 ) + ...+Wk(r

(k)
j )

j
, (11)

where r(k)i is the i-th variable of Xk.
For the multivariate Gaussian moving average of the martin-
gale sequence (MGMAS), the k-th mean element is acquired
using the equation:

Ek =
Ak(r

(k)
1 ) +Ak(r

(k)
2 ) + ...+Ak(r

(k)
j )

j
, (12)

where r(k)i is the i-th variable of Xk.
The condition for change, for the different methods, is given
as:

Vk ≥ t (MRPM) , (13)

Ck ≥ t (MMMMS) , (14)

Ek ≥ t (MGMAS). (15)

Depending on the method, Vk, CK , and Ek will be our anal-
ysis point. If Vk exceeds the computed threshold t, then a
change has been detected. The same condition applies to

CK (14) and EK (15). In the next Section, we will discuss
some effective optimisation techniques used to optimise the
parameters of the algorithms. Figure 1 presents the details
of the MMMS/GMAS and MMMMS/MGMAS algorithms,
respectively. The proposed anomaly detection methodology
(Algorithms 1 and 2) is required as a consequence of thresh-
old violation for the martingale. One can observe that, for
both the univariate and multivariate data analysis, a change
happens when Wk, AK (8), Ck (14) and EK (12) exceeds
the threshold t. Hence, no re-computation is required when
computing Mi.

Figure. 1: Algorithm 1 and 2

Most applications make use of parameters, which can be op-
timised, to enhance performance [1]. The rationale of using
an optimisation approach is to identify the best solution to the
problem by minimising or maximising the objective function
of an algorithm. The following Section discusses the pro-
posed optimisation algorithms, results and evaluation.

IV. Experimental results

This Section gives a performance evaluation of the different
approaches adopted to discover anomalies in time series. The
Section also describes the pre-processing method and analy-
sis of some time series (electromagnetic, electrocardiogram
and human activity recognition data set) using the proposed
methods.
The evaluation performance for our methods is measured us-
ing evaluation metrics such as accuracy, precision, recall,
harmonic mean (F1) and G-mean [6][49]. The accuracy,
recall, precision, specificity, sensitivity and G-mean matric
can analyse the optimal selection for MMMS, GMAS, MM-
MMS, and MGMAS approaches. In this case, the confu-
sion matrix (CM) can evaluate the performance of these al-
gorithms [44].
Accuracy [17] is an intuitive performance metric defined as
the ratio of changes correctly detected in HAR to the total
observations. The following gives accuracy:

Accuracy =
TP + TN

TP + FP + FN + TN
.

We define true negatives (TN) as the false changes that are
correctly identified as false. True positives (TP) is the ac-
tual changes that are correctly detected, while false positives
(FP) are incorrect changes that are identified as true. False
negatives (FN) are the actual changes that are identified as
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incorrect. Therefore, precision, recall (also known as sensi-
tivity), F1 score and specificity are computed as follows:

Precision =
TP

TP + FP
.

Recall(sensitivity) =
TP

TP + FN
.

F1score =
2 ∗Recall ∗ Precision
Recall + Precision

.

Specificity =
TN

TN + FP
.

G-mean [2] [44] is the measure of the correlation and the
overall efficiency of the activities. G-mean combines the re-
call and the specificity. A low G-Mean indicates a poor per-
formance in categorising positive cases regardless of whether
the negative possibilities are precisely classified. The G-
mean metric is vital to prevent overfitting the false-negative
and underfitting the false-positive class.
G-mean is given as:

G−mean =
√
Recall ∗ Specificity.

The following Section discusses ways by which we can op-
timise the parameter of the proposed algorithm for enhanced
performance.

A. Time series pre-processing

We use a labelled EM data set to test the effectiveness of
our algorithm. The ESA Swarm satellite generates the EM
time series [13]. The EM is a univariate dataset that contains
3751 data points. The data set include anomalies that seismic
experts have labelled. In Figure 2, it is possible to see a plot
of the data set and its abnormal fluctuation.
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Figure. 2: EM data set

The HAR data set was acquired using the accelerometry data
points from the shimmer wireless sensor platform (SWSP)
[9] attached to healthy participants. The SWSP have 3-axis
MEMs, which are integrated into the device used to capture
the acceleration of the individual. The Shimmer devices were
attached to the participant right arm, left arm and right leg to
enable lateral and anterior-posterior movement of the volun-
teer to be captured efficiently [65]. The participant performs
different scenarios within a home environment [65]. The first
set of scenarios (scenario 1) involves the participant follow-
ing activities which include ascending stairs, walk and sit
down, respectively. For the multivariate accelerometer data,
a finite impulse response (FIR) filter, is used as a low-pass

filter to introduce a set of acceleration values for every spe-
cific activity and also to reduce the noise accumulated from
such activities [48] [65]. The labelled multivariate HAR data
(marked by experts in the field) for the stand to sit scenario
are illustrated in Fig 3 to Fig 5. The anomalies are identified
in red dotted lines, and it occurs within the region of 3185 to
3342 data points.
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Figure. 3: Accelerometer- X data set
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Figure. 4: Accelerometer- Y data set
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Figure. 5: Accelerometer- Z data set

B. G-mean enumeration method (GEM)

The GEM is the process of locating the maximal G-mean
value for different parameter ranges [62]. Note that the fam-
ily of martingale we are working with depends on ε ∈ [0, 1],
window size (WS) [18]. We will use GEM to look at each
tuple of parameters (ε,WS) for any epsilon value in the
set {0, 0.1, 0.2, ..., 1} and any window size value in the set
{1.0, 2.0, 3.0, ..., 20} for both the MMMS and GMAS algo-
rithms using univariate EM series. We first find the optimal
parameters; secondly, we use these parameters to check an-
other data set. The implementation of the GEM using the
MMMS method is represented as MMMS(GEM). Also, the
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performance of the GEM using the GMAS method is de-
scribed as GMAS(GEM); this process is further discussed
in the following paragraphs. We apply the GEM approach
using MMMS methods on an EM data set of 3750 data
points to identify the optimal parameters. We obtain a max-
imum G-mean value of 0.9182 and the optimal parameters
are ε = 0.52 and window size = 19 using the GEM tech-
nique. These results are illustrated in Figure 6, which shows
the optimal G-mean point. The implementation of the GEM
using the MMMS method is represented as MMMS(GEM).
Later, we applied these parameter values on another EM data
set consisting of 3751 points and obtained a G-mean value of
0.7482. The confusion matrix of results is shown in Table 1.
The Table shows that the MMMS(GEM) method can acquire
a TP of 33.4% and TN of 97.8% independently.
An analogous procedure is used with GMAS; we identify
the optimal parameters using the GEM for EM data set con-
sisting of 3750 data points. The maximum G-mean value
of 0.8896 is reached when the parameters are ε = 0.72
and window size = 19. The implementation of GEM
using the MMMS method is called MMMS(GEM). Also,
when we apply GEM using GMAS approach, we represent
it as GMAS(GEM). These results are illustrated in Figure 7,
which shows the optimal G-mean point. In a later stage, we
apply these optimal parameters using a similar EM data set
of 3751 data points and obtain a G-mean value of 0.7682.
The CM metrics of the GMAS(GEM) method using differ-
ent EM data are described in Table 1. The Table shows that
the GMAS(GEM) method can acquire a TP of 33.4% and TN
of 97.8% independently.

Figure. 6: GEM using MMMS

Figure. 7: GEM using GMAS

We use the same technique applying the GEM on both MM-
MMS and MGMAS using the multivariate HAR data set.
The results are illustrated in Figure 8 and 9, showing the op-
timal G-mean point, respectively. The process is referred to
as MMMMS(GEM) and MGMAS(GEM), respectively. In

Figure. 8: GEM using MMMMS

Figure. 9: GEM using MGMAS

Table 2, we observe that the TN identified is 100.0%, and TP
discovered is 97.8% using the MMMMS(GEM) approach.
While for the MGMAS(GEM) method, the TN detected is
100%, and TP discovered is 91.0%.

Table 1: Confusion metrics of the EM time series

Approach TN TP FN FP

MMMS(GEM) 3460(97.9%) 110(53.4%) 81(2.3%) 100(47.5%)
GMAS(GEM) 3322(98.0%) 123(34.1%) 68(2.0%) 238(65.9%)

Table 2: Confusion matrix of the HAR time series

Approach TN TP FN FP

MMMMS(GEM) 2923(100.0%) 91(97.8%) 0(0.0%) 2(2.2%)
MGMAS(GEM) 2916(100.0%) 91(91.0%) 0(0.0%) 9(9.0%)

The GEM optimisation technique has limitations as it can-
not optimise complex problems [50][59]. A more efficient
way of optimising complex algorithm parameters is the use
of the genetic algorithm (GA) or particle swarm optimisation
method [40] [14].

C. Genetic algorithm (GA)

GA can discover the optimal parameter of an algorithm
[30][22]. GA can be used to examine the fittest value over
the sequential generation of output. GA is achieved by in-
corporating results (genetic crossover) using neighbouring
search (mutations) and replaces the population with fitter re-
sults [57].
GAs use the fitness function to obtain the optimal parameter
values of an algorithm [15]. In this case, the fitness function
measures the closeness of a given result to the leading solu-
tion of a chosen problem. Our proposed method makes use
of the following parameters (ε, WS) as discussed in Section
III. Therefore, we initialise the population of the vectors con-
taining the mentioned input parameters to give the G-mean
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values [29][63]. In this case, the fitness function is expressed
as the maximum G-mean value with a specified range of pa-
rameters. The G-mean is the estimate, that locates the ratio
and the overall performance of the physical activity by com-
bining specificity and sensitivity [2][29]. The fitness function
is represented as follows:

G−Meanmax = max(ε,β)(G−Mean(Q)), (16)
where ε and β ranges from 0 to 1 for each activity. Q rep-
resents the method to be implemented [29]. Our proposed
approaches use equation (16) by initialising the upper and
lower bounds of the two parameters to identify the maximum
G-mean value. The various GA parameters implemented to
maximise the fitness function are shown in Table 3. The GA
flowchart is illustrated in Figure 14.

Table 3: GA Parameter values

Parameters value
Population Size 200

Selection stochastic uniform
Crossover rate 0.8000

Mutation Gaussian
Crossover Heuristic

MaxGenerations: 100*numberOfVariables

We implement GAs using our algorithm on both the EM
and the HAR data set. GA inspects each tuple of param-
eters for any epsilon value in the range {0, 0.1, 0.2, ..., 1}
and any window size value in the range {1, 2, 3, ..., 20} for
both the MMMS and GMAS algorithms using univariate EM
series and for MMMMS, MGMAS algorithms using a mul-
tivariate HAR data set. We apply the GA approach using
MMMS methods on an EM data set of 3750 data points
to find the optimal parameter values. We obtain a maxi-
mal G-mean value of 0.9117, and the optimal parameters are
ε = 0.5469 and window size = 19.2754 using the GA.
Figure 10 shows the best G-mean value identified. In a later
stage, the optimised parameter values are applied on another
EM data set consisting of 3751 points and obtained a G-mean
value of 0.9999. This procedure is repeated using the GMAS
method. We discover the maximum G-mean value of 0.8909,
and the parameters that produce this result are ε = 0.7831
and window size = 19.7267. Figure 11 show the best G-
mean value discovered. We then apply these optimal pa-
rameters using a similar EM data set of 3751 data points
and obtain a G-mean value of 0.7673. GA using MMMS
and GMAS methods can be expressed as MMMS(GA) and
GMAS(GA), respectively. Table 4 shows that the TN iden-
tified for MMMS(GA) method is 97.7% and TP is 48.5%.
Also, for GMAS(GA) method, TN and TP discovered are
98.0% and 26.3% independently.
The MMMMS(GA) and MGMAS(GA) are used to discover
the optimal parameter (ε, WS) on a HAR data set consist-
ing of 6441 data point. The optimal parameter is used on a
new data set consisting of 3017 data point. The best G-mean
values obtained using the algorithms are illustrated in Figure
12 and 13, respectively. Table 5 shows that TN identified is
100%, and TP is 100% using MMMMS(GA) method. Also,
for MGMAS(GA) method, the TN and TP discovered are
100% and 92.9% independently.
GA usage expands to many fields such as computing and en-
gineering. The limitation of the GA is that it is computa-
tionally costly [54][27]. The following Section discusses the
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Figure. 10: MMMS(GA) iteration
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Figure. 11: GMAS(GA) iteration
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Figure. 12: MMMMS(GA) iteration
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Figure. 13: MGMAS(GA) iteration

Table 4: Confusion metrics of the EM time series

Approach TN TP FN FP

MMMS(GA) 3442(97.7%) 111(48.5%) 80(2.3%) 118(51.5%)
GMAS(GA) 3263(98.0%) 123(29.3%) 68(2.0%) 297(70.7%)

PSO approach, which is not computationally expensive and
takes less iterations.
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Table 5: Confusion matrix of the HAR time series

Approach TN TP FN FP

MMMMS(GA) 2923(100.0%) 91(100.0%) 0(0.0%) 0(0.0%)
MGMAS(GA) 2918(100.0%) 91(92.9%) 0(0.0%) 7(7.1%)

D. Particle swarm optimisation (PSO)

PSO [38] [46] is motivated by social characteristics and be-
haviour, such as a swarm of insects, schools of fish and flocks
of birds. In these circumstances, an individual such as a
fish or insect is known as a particle. Each individual in the
swarm depicts their reasoning and the collective reasoning of
the population. In PSO, a particle of the swarm constitutes
a prospective solution. Therefore, PSO is a computational
technique that optimises a problem by iteratively enhancing
the candidate solution (particles) concerning a given estimate
of quality [27]
PSO involves the following:

• Several particles placed in the search order of the prob-
lem with each particle estimating the problem at its
present position

• Each particle then determines its motion through the
search order by integrating some features of the past and
present positions using one or more constituents of the
swarm with some arbitrary changes

• The next iteration occurs when the movement of all the
particles is completed

• Consecutively, the swarms are likely to move near the
maximal of the fitness function

The main difference between GA and PS0 is that the GA
evolves the candidate solution. Like the GA, PSO exam-
ines the common values over a problem’s possible region.
Each individual in the particle swarm consists of 3D dimen-
sional vectors. D represents the search region’s dimension,
which is the present location si, the past best location ni,
and the velocity is represented by vi [46]. The MMMS and
GMAS approaches [18] makes use of the following parame-
ters (ε, window size) as discussed in Section III. Therefore,
PSO optimises our fitness function in equation (16) to pro-
duce the optimal parameters that maximise G-mean [29][63].
The various PSO parameters implemented to maximise the
fitness function are shown in Table 6. The PSO method
flowchart is illustrated in Figure 15.

Table 6: PSO Parameter values

Parameters value
InertiaRange [0.10000, 1.1000]

InitialSwarmSpan 200
MaxIterations 200 * NumberOfVariables

MaxStallIterations 20
MinNeighboursFraction 0.250

SwarmSize: 100
SelfAdjustmentWeight 1.4900

SocialAdjustmentWeights 1.4900

We perform the PSO approach using MMMS on EM data
set to obtain the maximal G-mean output of 0.9188 and op-
timised parameters are ε = 0.5138 and window size = 20.
Figure 16 show the best G-mean outcome identified by the

Figure. 14: GA flowchart

Figure. 15: PSO flowchart

algorithm. Subsequently, we use the optimal parameters on
an EM data set of 3750 data points to obtain a G-mean value
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of 0.9188. After that, the optimised parameters are applied
on another EM data set consisting of 3751 data points, and
we acquire a G-mean value of 0.7548. Table 5 shows that the
TN identified for the MMMS(PSO) method is 97.8%, and
TP is 47.4%. We repeat the procedure using GMAS method.
We discover the maximum G-mean value as 0.8909, and the
parameters are ε = 0.7826 and window size = 19.7738.
Figure 17 shows the maximal G-mean value obtained by
the algorithm. We apply these optimal parameters using a
similar EM data set of 3751 data points and get a G-mean
value of 0.7684. Table 4 shows that TN identified for the
GMAS(PSO) method is 97.8% and TP is 47.4%. Also, for
GMAS(PSO) method, TN and TP discovered are 98.0% and
29.4% independently.
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Figure. 16: MMMS(PSO) iterations
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Figure. 17: GMAS(PSO) iterations
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Figure. 18: MMMMS(PSO) iterations

PSO is also used to optimise the parameters of MMMMS
and MGMAS using multivariate HAR data set, and the re-
sults are shown in Figure 18 and 19. These figures show
the best G-mean generated for both techniques. The applica-
tion of the PSO method using MMMMS and MGMAS will
be named as MMMMS(PSO) and MGMAS(GMAS) inde-
pendently. MMMMS(PSO) and MGMAS(PSO) are used to
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Figure. 19: MGMAS(PSO) iteration

locate the optimal parameter (ε, WS) on a HAR data set con-
sisting of 6441 data point. The optimal parameter is used on
a new data set consisting of 3017 data point. Table8 shows
that MMMMS(PSO) can identify 100% of TN and 100% of
TP while MGMAS(PSO) detected 100% of TN and 94.8%
of TP.

Table 7: Confusion metrics of the EM time series

Approach TN TP FN FP

MMMS(PSO) 3459(97.8%) 112(47.4%) 79(2.2%) 101(47.4%)
GMAS(PSO) 3264(98.0%) 123(29.4%) 68(2.0%) 296(70.6%)

Table 8: Confusion matrix of the HAR time series

Approach TN TP FN FP

MMMMS(PSO) 2925(100.0%) 91(100.0%) 0(0.0%) 0(0.0%)
MGMAS(PSO) 2920(100.0%) 91(94.8%) 0(0.0%) 5(5.2%)

We also follow the procedure to optimise the previous
MRPM for the HAR data set using GEM, GA and PSO tech-
niques. MRPM(GEM), MRPM(GA) and MRPM(PSO) are
used to locate the optimal parameter (ε, WS) on a HAR data
set consisting of 6441 data point. The optimal parameter is
used on a new data set consisting of 3017 data point. These
processes are illustrated in Figure 20 to 22. For HAR data
analysis, the confusion matrix of the optimal MRPM param-
eter is shown in Table 9. In the next Section, we will sum-
marise the experimental results using the various optimisa-
tion techniques.
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Figure. 20: MRPM(GEM) iteration

Table 9: Confusion matrix of the HAR time series

Approach TN TP FN FP

MRPM(GEM) 2918(99.0%) 63(90.0%) 28(1.0%) 7(10.0%)
MRPM(GA) 2875(99.9%) 88(63.8%) 03(0.1%) 50(36.2%)
MRPM(PSO) 2875(99.9%) 88(63.8%) 03(0.0%) 50(36.2%)
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Figure. 21: MRPM(GA) iteration
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Figure. 22: MRPM(PSO) iteration

E. Summary of results

In this Section, we shall analyse the performance evaluation
metrics presented in Table 10 and 11 based on the experi-
mentation carried out.

Table 10: Evaluation metrics using the EM time series

Approach ε Window size Accuracy Recall Precision F1 G-mean

MMMS(GEM) 0.52 19 0.9517 0.5759 0.5238 0.5486 0.7482 (14.19%)
GMAS(GEM) 0.72 19 0.9183 0.6335 0.3315 0.4353 0.7682 (14.56%)
MMMS(GA) 0.5469 19.2754 0.9472 0.5812 0.4847 0.5286 0.7496 (14.22%)
GMAS(GA) 0.7831 19.7267 0.9027 0.6440 0.2929 0.4026 0.7683 (14.57%)

MMMS(PSO) 0.5138 20 0.9520 0.5864 0.5258 0.5545 0.7548 (14.31%)
GMAS(PSO) 0.7826 19.7738 0.9030 0.6440 0.2936 0.4033 0.7684 (14.57%)

RPM 0.66 - 0.9200 0.5445 0.3281 0.4090 0.7156 (13.57%)

Table 11: Evaluation metrics using HAR time series

Approach ε Window size Accuracy Recall Precision F1 G-mean

MMMMS(GEM) 0.52 19.0 0.9993 0.9999 0.9785 0.9891 0.9997(11.39%)
MGMAS(GEM) 0.59 19.0 0.9970 0.9999 0.9100 0.9529 0.9985(11.37%)
MMMMS(GA) 0.5469 11.1072 0.9999 0.9999 0.9999 0.9999 0.9999(11.39%)
MGMAS(GA) 0.5777 18.2672 0.9977 0.9999 0.9286 0.9630 0.9988(11.38%)

MMMMS(PSO) 0.5073 20 0.9999 0.9999 0.9999 0.9999 0.9999(11.39%)
MGMAS(PSO) 0.5708 19.9492 0.9894 0.9999 0.9479 0.9733 0.9991(11.38%)
MRPM(GEM) 0.99 - 0.9884 0.6923 0.900 0.7826 0.8311(09.47%)
MRPM(GA) 0.6748 - 0.9824 0.9670 0.6377 0.7686 0.9749(11.10%)
MRPM(PSO) 0.6737 - 0.9824 0.9670 0.6377 0.7686 0.9749(11.10%)

Experimentation analysis shows that GMAS(PSO) slightly
outperforms GMAS(GA) and GMAS(GEM) approaches in
terms of G-mean output when analysing the EM data set.
However, the GMAS(PSO) produces a low precision. This
situation arises as we aim to capture anomalies in EM data
set, leading to a high FP rate. We intend to address this issue
in future work. MMMS(PSO) also gives a better G-mean
result compared to the MMMS(GA) and MMMS(GEM).
These results are illustrated in Table 10. We can assert that
the PSO technique is efficient for optimising the abnormality
detection algorithm in the analysis of EM data set. We also
compare these results with the previous RPM method for EM
analysis, which was indicated in our earlier paper [18]. The
comparison shows that our proposed optimised methods out-
perform the RPM approach.

Experimentation results show that MMMMS(PSO) and MM-
MMS(GA) gives a slightly better performance in terms of
G-mean output than the MMMMS(GEM) methods. Also,
MGMAS(PSO) produces a marginally better G-mean value
compared to MGMAS(GA) and MGMAS(GEM). Further-
more, MRPM(PSO) approach can yield a G-mean output
that is insignificantly better than that of the MRPM(GA) and
MRPM(GEM) techniques, respectively. These results are
shown in Table 11. We can affirm that PSO can effectively
study HAR time series.
We can further measure the performance of the optimised
algorithms by analysing the evaluation metrics in Table 10
and 11 using histogram charts. It is then possible to deter-
mine which optimisation technique is more effective when
analysing EM data set. The histogram plots for the algo-
rithms are illustrated in Figure 23 to 24.
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Figure. 24: Algorithms output
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Figure. 25: Optimisation output

Looking at Figure 23 to 24, we can notice that PSO is an
effective optimisation algorithm compared to GEM and GA;
however, the difference is modest. GA can be effective for
handling complex problems but it is limited as the number
of elements encountering mutation becomes large, and thus
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Figure. 26: Algorithm output

cause an increase in the search space [54][27]. This situa-
tion makes it longer for GA to identify the optimal param-
eter value. PSO becomes the better alternative as it needs
minimum parameters and a lower iteration process. The vari-
ables in PSO can obtain any values depending on the loca-
tion of the value in the particle space and their reciprocal
velocity vector. While the GA merge towards a confine op-
timum rather than the global one for the problem, the PSO
intuitively locate the global optima [54][27].

V. Conclusion and future work

This paper briefly discussed the previous RPM, MMMS and
GMAS method. These approaches can identify an anomaly
in the data stream. The methods use the martingale frame-
work to achieve change detection. We propose a system that
can improve the performance of these methods by optimising
their parameters. The approaches are used to analyse the EM
and HAR data sets. The output shows that the proposed tech-
niques using the optimisation methods give a higher G-mean
value of over (0.20%) than the previous RPM and MRPM
methods. We also observe that the PSO optimisation tech-
nique performs better than other optimisation methods with
a slight difference of over 0.001%.
Future work is needed to validate the approach using a wide
range of time series that extend to different areas.
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