
Journal of Information Assurance and Security.
ISSN 1554-1010 Volume 17 (2022) pp. 113-121
© MIR Labs, www.mirlabs.net/jias/index.html

Verilog HDL Implementation for an RSA
Cryptography using Shift-Sub Modular

Multiplication Algorithm
Yamin Li1 and Wanming Chu2

1Department of Computer Science, Hosei University,
Tokyo 184-8584 Japan

yamin@hosei.ac.jp

2Division of Information Systems, University of Aizu,
Aizu-Wakamatsu 965-8580 Japan

w-chu@u-aizu.ac.jp

Abstract: RSA public-key cryptography requires modular
exponentiation and modular multiplication on large numbers.
Montgomery Modular Multiplication is a fast method for per-
forming modular multiplication. The modular exponentiation
can be calculated by repeatedly calling Montgomery Modular
Multiplication. Transformations to the Montgomery Domain
are required before the calculations, and a transformation back
to the normal domain is also required to get the final result.
The domain transformations require a value that is calculated
by costly modular arithmetic. Many hardware RSA implemen-
tations use precomputed values for such domain transforma-
tions. As a result, the flexibility to use different public keys
is lost. This paper introduces a Shift-Sub Modular Multipli-
cation (SSMM) algorithm for calculating such values in fields.
The algorithm does not require modular arithmetic and pre-
computed values. Instead, it uses shift and addition/subtraction
calculations. The SSMM algorithm can also be used directly
for RSA public-key cryptography. We give the source codes of
the hardware implementation of RSA public-key cryptography
using SSMM in Verilog HDL and compare the cost and perfor-
mance to that of RSA public-key cryptography implementation
using Montgomery Modular Multiplication. The results show
that the performance of the two implementations is about the
same, but the implementation using SSMM uses less hardware
resource (55% to 59% adaptive logic modules and 69% to 85%
flip-flops) because it does not require modular arithmetic or do-
main transformations.

Keywords: RSA public-key cryptography, Montgomery modu-
lar multiplication, hardware security circuit, clock frequency, hard-
ware resource.

I. Introduction

RSA public-key cryptography was published by Rivest,
Shamir, and Adleman [11] in 1978 and is widely used for
secure data transmission. It is based on the use of the prod-
uct of two very large prime numbers (greater than 10100),
relying on the fact that the determination of the prime factors

of such large numbers is so computationally difficult as to be
effectively impossible to compute [3].

RSA public-key cryptography works as follows. To find
an encryption key e and a decryption key d, choose two large
prime numbers p and q, and form m = pq and z = (p −
1)(q − 1). Choose an encryption key e such that e and z
are relatively prime. To find a decryption key d, solve the
equation de = 1 mod z. That is, de is the smallest element
in the series kz + 1 divisible by e for k ∈ N. The function
for encrypting a single block of plaintext b with b < m is

r = be mod m

where the result r is the ciphertext. The function for decrypt-
ing r is

s = rd mod m

where the result s will be equal to b, the original plaintext.
The encryption function, encryption key e, and m are pub-
licly opened but the decryption key d is kept privately.

The correctness of the RSA algorithm is shown below. rd

mod m = bed mod m = bk(p−1)(q−1)+1 mod (pq) = b ×
bk(p−1)(q−1) mod (pq) = b × 1k by applying the Fermat’s
Little Theorem and Chinese Remainder Theorem. That is,

(be mod m)d mod m = b

We give an example as below where p and q have 64 bits
(m has 128 bits).

p = 16856020000513437973;
q = 17274135032339836727;
m = 291173165596690131543379395216261834371;
z = 291173165596690131509249240183408559672;
e = 78624383815806095082831236375207684303;
d = 232543530691965449749356023879307323711;
b = 179441695220040973036856247560209845703;
r = 212957456342734650649396939600336433714;
s = 179441695220040973036856247560209845703 = b.

Verilog HDL Implementation for an RSA Cryptography using Shift-Sub Modular Multiplication Algorithm 114

The numbers of e, d, m, b, and r in this example will be
used in the testbench for the simulations of the proposed al-
gorithms and their Verilog HDL implementation codes which
will be given later in this paper.

RSA encryption r = be mod m and decryption s =
rd mod m can be performed with left-to-right binary expo-
nentiation or right-to-left binary exponentiation which re-
quires repeated modular multiplications.

Montgomery Modular Multiplication [9] is a fast method
for performing modular multiplication. The algorithm does
not require the trial division during the calculation but it
requires transforming the original variables to Montgomery
Domain like x̃ = xR mod m, where x is the original vari-
able, R = 2n, m is odd and has n bits, and x̃ is a new repre-
sentation in Montgomery Domain. We can use Montgomery
Modular Reduction MMRed(z) = zR−1 mod m to perform
such transformations to Montgomery Domain if we have a
q = R2 mod m: x̃ = MMRed(xq) = xR2R−1 mod m =
xR mod m. That is, if we had the q, the domain transforma-
tions will not require the modular calculations.

Many RSA hardware implementations use precomputed
value q = R2 mod m for fixed R and m [4, 6, 12]. A
lookup table can be used to store multiple precomputed val-
ues [8, 2]. Using precomputations can speed up the calcu-
lations but reduces the flexibility of using different moduli
m. The main contributions of this paper are 1) to intro-
duce a Shift-Sub Modular Multiplication (SSMM) algorithm
to calculate R2 mod m in fields without using divisions; 2)
to show how to use the SSMM algorithm directly for RSA
public-key cryptography; 3) to implement the SSMM algo-
rithm and RSA cryptography using SSMM in Verilog HDL;
and 4) to compare the hardware cost and performance of
RSA cryptography using SSMM to that of RSA cryptogra-
phy using Montgomery Modular Multiplication. We expect
that RSA cryptography using SSMM can be implemented
with less hardware resource and can be performed as well
as RSA cryptography using Montgomery Modular Multipli-
cation/Reduction.

This paper is an extension of the paper published at
IAS2021 [7]. We added the hardware implementation details
for the proposed algorithms. The rest of the paper is orga-
nized as follows. Section II reviews Montgomery Modular
Multiplication/Reduction algorithms. Section III introduces
the SSMM algorithm and RSA cryptography using SSMM
and shows the hardware implementation details. Section IV
gives hardware cost/performance comparisons for RSA cryp-
tography implementations. And Section V concludes the pa-
per.

II. Montgomery Modular Algorithms

This section reviews Montgomery Modular Reduction and
Montgomery Modular Multiplication algorithms.

A. Montgomery Modular Reduction Algorithm

Montgomery modular algorithms [9, 10] use a special repre-
sentation for variables:

x̃ = xR mod m

where x is the original variable, R is an auxiliary value, m
is odd and coprime to R, and x̃ is a new representation in
Montgomery Domain.

For a single multiplication, w = xy mod m, we want to
have a new representation for w in Montgomery Domain:

w̃ = xyR mod m

If we perform a normal multiplication on x̃ and ỹ, we get

z = x̃ỹ = xyR2 mod m2

which is not a representation in Montgomery Domain. Mont-
gomery Modular Reduction MMRed(z) translates z to a rep-
resentation in Montgomery Domain:

MMRed(z) = zR−1 mod m

such that MMRed(z) = xyR2R−1 mod m = xyR mod m,
which is a representation in Montgomery Domain.

By selecting a suitable R, we can perform Montgomery
Modular Reduction without using divisions. If m is an n-bit
number (then z has 2n bits), we can use R = 2n, such that
the division can be done with shift. Montgomery Reduction
with precomputed m′ = −m−1 mod R is formally given in
Algo 0.

Algo 0. MMRedP(z, m) Montgomery Reduction with
precomputed m′

inputs: z =
∑2n−1

i=0 zi2
i, R = 2n, m < R with m odd,

0 ≤ z < mR, and precomputed m′ such that
m′ = −m−1 mod R

output: zR−1 mod m
begin
1 U ← zm′ mod R
2 t← (z + Um)/R
3 if t ≥ m
4 t← t−m
5 return t
end

Algo 0 MMRedP(z, m) generates zR−1 mod m. The
reason is as follows. U = zm′ mod R is an integer and
U < R. Thus (z + Um) mod m = z mod m. Then
(z + Um)/R mod m = zR−1 mod m if z + Um is divis-
ible by R. Because m′ = −m−1 mod R, m′m = −1 + jR
for some integers j. U = zm′ + kR for some integers k.
z+Um = z+ zm′m+kmR = z+ z(−1+ jR)+kmR =
zjR + kmR = (zj + km)R. Because z, j, k, and m are
integers, z +Um = (zj + km)R is divisible by R. Because
z < mR and U < R, t = (z+Um)/R < (mR+Rm)/R =
2m, the lines 3 and 4 in Algo 0 are needed.

The parameter m′ needs to be precomputed once for fixed
R and m [5]. The calculation can be performed using the ex-
tended Euclidean algorithm. For example, for n = 128, m =
291173165596690131543379395216261834371, we have
m′ = −133419654858893623771608150101834274859.
Because U = zm′ mod R = zm′ & ((1 ≪ n) − 1), for
z = 14579150005006265062948136954012885300,

t = (z + Um)≫ n

115 Li et al.

we get t = 179441695220040973036856247560209845703
which is zR−1 mod m. If we select a special m such that
m2 = 1 mod R, then m = m−1 mod R. Thus m′ =
−m−1 mod R = −m mod R. That is, for such special mod-
uli m, the requirement of the precomputation can be elimi-
nated [1].

Note that in RSA encryption and decryption, a huge
amount of modular multiplications can be performed in
Montgomery Domain. After getting xyR mod m, we can
transform it from Montgomery Domain back to the normal
domain by applying Montgomery Modular Reduction once
again:

MMRed(xyR mod m) = xyRR−1 mod m = xy mod m

We can use Montgomery Modular Reduction also for trans-
forming the original variables from the normal domain to
Montgomery Domain:

q = R2 mod m

x̃ = MMRed(xq) = xR2R−1 mod m = xR mod m

ỹ = MMRed(yq) = yR2R−1 mod m = yR mod m

Algo 0 is not an efficient way to realize Montgomery arith-
metic [10]. In practice, a bit-oriented version is often used.
Now, consider how to implement Montgomery Modular Re-
duction MMRed(z) = zR−1 mod m in bit level. Because
we can add km to z for k ∈ Z and

R−1 =
1

R
=

1

2n
=

n−1∏
i=0

1

2

a bit-level Montgomery Modular Reduction can be imple-
mented with an iteration loop for n and dividing z by 2 in
each iteration. In order to make z divisible by 2, we can
add an m to z if z is odd (m is odd, then the sum will be
even, divisible by 2). The Montgomery Modular Reduction
algorithm in bit level is formally given in Algo 1 where z0
is the least significant bit of z. We can see that the compu-
tational complexity of the algorithm is O(n), where n is the
bit length of m. Note that Algo 1 itself does not require any
precomputation.

Algo 1. MMRed(z, m) Montgomery Modular Reduction

inputs: z =
∑2n−1

i=0 zi2
i, R = 2n, m < R with m odd, and

0 ≤ z < mR
output: zR−1 mod m
begin
1 p← z /* product */
2 for i = 0 to n− 1
3 p← p+ p0m /* make p even */
4 p← p≫ 1 /* p/2: reduction */
5 if p ≥ m
6 p← p−m
7 return p
end

After finishing the “for” loop, we get z < 2m. The reason
is as follows. Consider the case of maximum z. That is, in

every iteration for n, we add m to z. Because z < mR =
m2n, z/2n < m, after finishing the “for” loop, we have

z

2n
+

m

2n
+

m

2n−1
+ · · ·+m

22
+

m

21
=

z

2n
+
(2n − 1)m

2n
< 2m

Therefore, the lines 4 and 5 in Algo 1 are needed. RSA en-
cryption calculates

r = be mod m

where b is a plaintext variable and encrypted with a public-
key {e,m} and r is the ciphertext result. Similarly, RSA
decryption calculates

s = rd mod m

where r is a ciphertext variable and decrypted with a private
key {d,m} and s = b is the plaintext result.

Consider the calculation of RSA encryption r =
be mod m. Suppose e has n bits, that is

e = en−1 . . . e1e0 =

n−1∑
i=0

ei2
i

The exponentiation calculation can be performed with an it-
eration loop for n, dividing e by 2 and multiplying b by b
(squaring) in each iteration. If e0 is a 1, r will be mul-
tiplied by b (multiply). Ignoring the modulation, the fol-
lowing example calculates 25. Here, we have b = 2 and
e = 5 = 1012 = e2e1e0 for n = 3. Let r = 1. For
i = 0, e0 = 1, then r ← rb = 1 × 2 = 2. After that,
e← e/2 = 102 = e1e0 and b← b2 = 4. For i = 1, e0 = 0,
e ← e/2 = 12 = e0 and b ← b2 = 16. For i = 2, e0 = 1,
then r ← rb = 2 × 16 = 32. After that, e ← e/2 = 0 and
b← b2 = 256. The final result is r = 32 and e becomes 0.

Both the squaring and multiply need modulation. We can
use Montgomery Modular Reduction for these calculations.
As mentioned before, the initial r = 1 and b must be trans-
formed to Montgomery Domain once. After doing a huge
number of multiplies and Montgomery Modular Reductions,
r must be transformed back to the normal domain. The al-
gorithm of the modular exponentiation using Montgomery
Modular Reduction is formally given in Algo 2. We used
right-to-left binary exponentiation algorithm here.

We have implemented Algo 1 and Algo 2 in Verilog HDL.
Figure 1 shows the simulation waveform for RSA encryp-
tion r = be mod m using Montgomery Modular Reduction,
where n = 128 and r is the ciphertext of the plaintext b:

b = 179441695220040973036856247560209845703;
e = 78624383815806095082831236375207684303;
m = 291173165596690131543379395216261834371;
r = 212957456342734650649396939600336433714.

Figure 2 shows the simulation waveform for RSA decryp-
tion r = be mod m using the Montgomery Modular Reduc-
tion, for n = 128. Note that b is the same as r of Figure 1
and a private decryption key d is used as e in the simulation:

b = 212957456342734650649396939600336433714;
e = 232543530691965449749356023879307323711;
m = 291173165596690131543379395216261834371;
r = 179441695220040973036856247560209845703.

Verilog HDL Implementation for an RSA Cryptography using Shift-Sub Modular Multiplication Algorithm 116

Algo 2. MExpRed(b, e, m) Modular Exponentiation using
MMRed()

inputs: b =
∑n−1

i=0 bi2
i, e =

∑n−1
i=0 ei2

i, R = 2n, m < R
with m odd

output: be mod m
begin
1 q ← R2 mod m
2 r ← MMRed(q,m) /* 1 to Montgomery Domain */
3 s← MMRed(bq,m) /* b to Montgomery Domain */
4 t← e
5 while t > 0
6 if t0 = 1
7 r ← MMRed(rs,m) /* multiply */
8 t← t≫ 1
9 s← MMRed(s2,m) /* squaring */
10 r ← MMRed(r,m) /* r to normal domain */
11 return r
end

Figure. 1: Montgomery Modular Reduction RSA encryption

Figure. 2: Montgomery Modular Reduction RSA decryption

We can see that r is the same as the original plaintext, the
input b in Figure 1.

Transforming variables to Montgomery Domain requires
to calculate q = R2 mod m which has a modular calcula-
tion. Note that it just is a one-time calculation for a mod-
ular exponentiation. In software implementations, there is
no any problem for the calculation. But in hardware im-
plementations, we have to design a circuit to perform such
a calculation, or use a precomputed q for the fixed R and
m [10]. In this paper, we use a Shift-Sub Modular Multipli-
cation (SSMM) algorithm to calculate q = R2 mod m which
we will describe later.

B. Montgomery Modular Multiplication Algorithm

The Montgomery Modular Reduction algorithm does a re-
duction on a product of multiplicand and multiplier. The cost
of using it is high because we have to use big multipliers to
calculate rb (multiply) and b2 (squaring). The Montgomery
Modular Multiplication algorithm calculates the partial prod-
uct by shift and addition during the reductions. Algo 3 for-
mally gives a bit-level Montgomery Modular Multiplication
algorithm. Note that there is no shifting the multiplicand to
the left by one bit, because we shift the partial product to the

right by one bit at each iteration. We can see that the com-
putational complexity of the algorithm is O(n), the same as
that of Algo 1, where n is the bit length of m.

Algo 3. MMMul(a, b, m) Montgomery Modular
Multiplication

inputs: a =
∑n−1

i=0 ai2
i, b =

∑n−1
i=0 bi2

i, R = 2n,
a, b < m < R, m: odd

output: abR−1 mod m
begin
1 p← 0 /* product */
2 for i = 0 to n− 1
3 p← p+ bia /* add multiplicand a to p if bi = 1 */
4 p← p+ p0m /* make p even */
5 p← p≫ 1 /* p/2: reduction */
6 if p ≥ m
7 p← p−m
8 return p
end

The algorithm of the modular exponentiation using bit-
level Montgomery Modular Multiplication is formally given
in Algo 4. We also used right-to-left binary exponentiation
algorithm. Instead of passing the product to MMRed() in
Algo 2, the multiplicand and multiplier are passed to MM-
Mul() here.

Algo 4. MExpMul(b, e, m) Modular Exponentiation using
MMMul()

inputs: b =
∑n−1

i=0 bi2
i, e =

∑n−1
i=0 ei2

i, R = 2n, m < R
with m odd

output: be mod m
begin
1 q ← R2 mod m
2 r ← MMMul(1, q,m) /* 1 to Montgomery Domain */
3 s← MMMul(b, q,m) /* b to Montgomery Domain */
4 t← e
5 while t > 0
6 if t0 = 1
7 r ← MMMul(r, s,m) /* multiply */
8 t← t≫ 1
9 s← MMMul(s, s,m) /* squaring */
10 r ← MMMul(1, r,m) /* r to normal domain */
11 return r
end

We have also implemented Algo 3 and Algo 4 in Verilog
HDL. The simulation waveforms of the Montgomery Mod-
ular Multiplication RSA encryption and decryption are the
same as that of the Montgomery Modular Reduction RSA
encryption and decryption, shown as in Figure 1 and Fig-
ure 2, respectively.

Montgomery Modular Multiplication can be implemented
using the carry-save adder (CSA) [13, 14, 15]. At each it-
eration, the carry and sum are stored in separate registers,
eliminating carry propagation. However, extra clock cycles
are required to convert the final carry-save modular product
into binary form for the modular exponentiation.

117 Li et al.

III. Shift-Sub Modular Multiplication Algo-
rithm

The Montgomery Modular Reduction MMRed() and Mul-
tiplication MMMul() perform calculations in Montgomery
Domain. As mentioned before, we must get the value of
q = R2 mod m for the domain transformations. Some hard-
ware implementations use a precomputed q for fixed R and
m. Such implementations reduce flexibility for changing R
and m. This section introduces a Shift-Sub Modular Mul-
tiplication (SSMM) algorithm SSMMul(a, b,m) to calculate
z = ab mod m that uses only addition, subtraction, and shift
calculations for a, b < m.

For i, j ∈ Z and x, y,m ∈ N, because (x + im)(y +
jm) mod m = (xy + xjm + imy + imjm) mod m =
xy mod m, we have

q = R2 mod m = (R−m)(R−m) mod m

= SSMMul(R−m,R−m,m)

where m is an n-bit odd number and R = 2n.
It is not difficult to prove that R−m < m: n-bit m means

m = mn−1×2n−1+. . .+m1×21+m0×20 and mn−1 = 1
(n bits). Because m is an odd number, we have m0 = 1
(odd). Then 2m > 2n = R, 2m−m > R−m, m > R−m,
that is R−m < m, satisfying a, b < m for SSMMul(a, b,m).

The SSMM algorithm SSMMul(a, b,m) calculates z =
ab mod m, where a, b < m < R with R = 2n and m is an
n-bit odd number. At the beginning, let product z = 0. We
check the least significant bit of multiplier b. If it is a 1, we
add multiplicand a to product z. And then we shift a to the
left and b to the right by one bit, respectively.

Because a < m, a ← 2a < 2m. Similarly, z = 0 at the
beginning or z = a after the first adding a to z, then we have
z ← z + a ≤ 2a < 2m. After the addition and shift, we
perform the following operations: If z > m, z ← z − m;
if a > m, a ← a −m. Such operations ensure z < m and
a < m.

The correctness of the SSMM algorithm is based on the
following facts: Because we are calculating z = ab mod m,
we can add/subtract multiples of m to/from z. And because
(a + im)b mod m = (ab + imb) mod m = ab mod m for
i ∈ Z, we can also add/subtract multiples of m to/from a.

The SSMM algorithm is given formally in Algo 5. We
can see that the computational complexity of the algorithm is
O(n), the same as that of Algo 1 and Algo 3, where n is the
bit length of m.

Below shows the 128-bit Verilog HDL code
“modu mult 128.v” that implements the Shift-Sub Modular
Multiplication algorithm (Algo 5).

module modu_mult_128(x,y,m,p,clk,strobe,rst_n,
ready,busy);

parameter NLEN = 128;
input clk, strobe, rst_n;
input [NLEN-1:0] x;
input [NLEN-1:0] y;
input [NLEN-1:0] m;
output reg ready, busy;
output [NLEN-1:0] p; // p = (x * y) % m
reg [NLEN+1:0] x_reg;
reg [NLEN-1:0] y_reg;
reg [NLEN+1:0] m_reg;
reg [NLEN+1:0] p_reg;

Algo 5. SSMMul(a, b, m) Shift-Sub Modular
Multiplication

inputs: a =
∑n−1

i=0 ai2
i, b =

∑n−1
i=0 bi2

i, R = 2n,
a, b < m < R, m: odd

output: ab mod m
begin
1 p← 0 /* product */
2 c← a /* multiplicand */
3 for i = 0 to n− 1
4 p← p+ bic /* add multiplicand c to p if bi = 1 */
5 if p ≥ m
6 p← p−m /* subtract m from p */
7 c← c≪ 1
8 if c ≥ m
9 c← c−m /* subtract m from c */
10 return p
end

wire [NLEN+1:0] x1, x2;
wire [NLEN+1:0] p1, p2, p3;
assign p = p3[NLEN-1:0];
assign p1 = y_reg[0] ? (p_reg + x_reg) : p_reg;
assign p2 = p1 - m_reg;
assign p3 = p2[NLEN+1] ? p1 : p2;
assign x1 = {x_reg[NLEN:0],1’b0} - m_reg;
assign x2 = x1[NLEN+1] ? {x_reg[NLEN:0],1’b0} : x1;
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
x_reg <= 0;
y_reg <= 0;
m_reg <= 0;
p_reg <= 0;
busy <= 0;
ready <= 0;

end else begin
ready <= 0;
if (strobe) begin
x_reg <= {2’b00,x};
y_reg <= y;
m_reg <= {2’b00,m};
p_reg <= 0;
busy <= 1;

end else begin
if (busy) begin

if (y_reg == 0) begin
ready <= 1;
busy <= 0;

end else begin
x_reg <= x2;
y_reg <= {1’b0,y_reg[NLEN-1:1]};
p_reg <= p3;

end
end

end
end

end
endmodule

We developed the SSMM algorithm SSMMul() to calcu-
late q = R2 mod m for Montgomery Modular Reduction and
Multiplication domain transformations. After that, we found
that it can be used directly in the exponentiation modulation
calculation for RSA cryptography.

The exponentiation modulation using SSMMul() for RSA
cryptography is illustrated in Figure 3(b). We use SSMMul()
to perform multiply and squaring inside the “while” loop.

Verilog HDL Implementation for an RSA Cryptography using Shift-Sub Modular Multiplication Algorithm 118

q ← R2 mod m

While loop on e

r ←MMMul()

r ← MMMul(1, r,m)

While loop on e

r ← SSMMul()

r ← 1

(a) Exponentiation using MMMul() (b) Exponentiation using SSMMul()

Return r Return r

s←MMMul() s← SSMMul()

if () if ()
// multiply // multiply
// squaring // squaring

s← b

r ← MMMul(1, q,m)

s← MMMul(b, q,m)

Figure. 3: Algorithm comparison

Note that there is no any domain transformations. Figure 3(a)
shows RSA cryptography using MMMul() (Algo 4) for com-
parison.

Algo 6 formally gives the modular exponentiation using
SSMMul(). As discussed before, the computational com-
plexity of the SSMMul() is the same as that of MMMul().
We expect that RSA cryptography using SSMMul() can be
performed as well as RSA cryptography using MMMul().
However, RSA cryptography using SSMMul() does not re-
quire domain transformations and hence there is no need to
calculate q = R2 mod m, so we expect that it saves hardware
resource.

Algo 6. SSExpMul(b, e, m) Modular Exponentiation using
SSMMul()

inputs: b =
∑n−1

i=0 bi2
i, e =

∑n−1
i=0 ei2

i, R = 2n, m < R
with m odd

output: be mod m
begin
1 r ← 1
2 s← b
3 t← e
4 while t > 0
5 if t0 = 1
6 r ← SSMMul(r, s,m) /* multiply */
7 t← t≫ 1
8 s← SSMMul(s, s,m) /* squaring */
9 return r
end

In Algo 2, Algo 4, and Algo 6, the complexity of the
“while” loop itself is O(n), and inside the loop, it calls a
reduction or multiplication whose complexity is also O(n).
Therefore, the complexity of Algo 2, Algo 4, and Algo 6 is
O(n2) where n is the number of bits of m.

Below shows the 128-bit Verilog HDL code
“modu expo 128.v” that implements the modular expo-
nentiation algorithm (Algo 6). This module invokes two
“modu mult 128” modules for parallel computations of
multiply and squaring.

module modu_expo_128(b,e,m,r,clk,strobe,rst_n,
ready,busy);

parameter NLEN = 128;
input clk, strobe, rst_n;
input [NLEN-1:0] b;
input [NLEN-1:0] e;

input [NLEN-1:0] m;
output reg ready, busy;
output [NLEN-1:0] r; // r = bˆe % m
wire ready_r;
wire ready_b;
wire busy_r;
wire busy_b;
wire [NLEN-1:0] p_r;
wire [NLEN-1:0] p_b;
reg strobe_r;
reg strobe_b;
reg state;
reg [NLEN-1:0] b_reg;
reg [NLEN-1:0] e_reg;
reg [NLEN-1:0] m_reg;
reg [NLEN-1:0] r_reg;
assign r = r_reg;
modu_mult_128 res (r_reg,b_reg,m_reg,p_r,clk,strobe_r,

rst_n,ready_r,busy_r); // multiply
modu_mult_128 bas (b_reg,b_reg,m_reg,p_b,clk,strobe_b,

rst_n,ready_b,busy_b); // squaring
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
b_reg <= 0;
e_reg <= 0;
m_reg <= 0;
r_reg <= 0;
busy <= 0;
ready <= 0;
state <= 0;

end else begin
ready <= 0;
strobe_r <= 0;
strobe_b <= 0;
if (strobe) begin
b_reg <= b;
e_reg <= e;
m_reg <= m;
r_reg <= 1;
busy <= 1;
ready <= 0;
state <= 0;

end else begin
if (busy) begin
if ((e_reg == 1) && ready_r) begin
ready <= 1;
busy <= 0;
r_reg <= p_r;

end else begin
case (state)
0: // multiply
begin

if ((˜busy_r) && (˜ready_r)) begin
if (e_reg[0]) begin
if (˜strobe_r)

strobe_r <= 1;
else strobe_r <= 0;

end
end
state <= 1;

end
1: // squaring
begin

if ((˜busy_b) && (˜ready_b)) begin
if (˜strobe_b)

strobe_b <= 1;
else strobe_b <= 0;

end
if (ready_b) begin
b_reg <= p_b;
e_reg <={1’b0,e_reg[NLEN-1:1]};
state <= 0;

end

119 Li et al.

if (ready_r) begin
r_reg <= p_r;

end
end
endcase

end
end

end
end

end
endmodule

For verifying the correctness of the proposed algorithms
and their Verilog HDL codes, we prepared the testbench code
“modu expo 128 tb.v” as below.

‘timescale 1ns/1ns
module modu_expo_128_tb;
parameter NLEN = 128;
reg clk, strobe, rst_n;
reg [NLEN-1:0] b;
reg [NLEN-1:0] e;
reg [NLEN-1:0] m;
wire ready,busy;
wire [NLEN-1:0] r;
modu_expo_128 inst (b,e,m,r,clk,strobe,rst_n,

ready,busy);
initial begin
#0 rst_n = 0; clk = 1;
#0 strobe = 0;
#1 rst_n = 1; // encryption
b = 128’d179441695220040973036856247560209845703;
e = 128’d78624383815806095082831236375207684303;
m = 128’d291173165596690131543379395216261834371;
#2 strobe = 1;
#2 strobe = 0;
wait(ready);
#353 // decryption
b = 128’d212957456342734650649396939600336433714;
e = 128’d232543530691965449749356023879307323711;
#2 strobe = 1;
#2 strobe = 0;
wait(ready);
#800 $stop;

end
always #1 clk = !clk;
endmodule

Figure. 4: Shift-Sub Modular Multiplication RSA encryp-
tion

Figure. 5: Shift-Sub Modular Multiplication RSA decryp-
tion

Figure 4 and Figure 5 show the simulation waveforms of
Algo 6, generated with ModelSim, for SSMM RSA encryp-

tion and decryption, respectively. We can see that the in-
put b of the decryption is the output r of the encryption,
and the output r of the decryption is exactly the same as
the input b of the encryption (b = (be mod m)d mod m =
179441695220040973036856247560209845703):

b = 179441695220040973036856247560209845703;
e = 78624383815806095082831236375207684303;
d = 232543530691965449749356023879307323711;
m = 291173165596690131543379395216261834371.

Note that the decryption key d is shown as e in the decryp-
tion waveform Figure 5. From the four waveform figures, we
found that RSA cryptography using SSMMul() uses fewer
clock cycles than that using MMMul().

IV. Cost/Performance Comparisons

We have developed the Verilog HDL codes for Algo 1 to
Algo 6 in 64, 128, 256, 512, 1024, and 2048-bit and tried to
implement them on an Intel/Altera Cyclone V FPGA (Field-
programmable gate array) chip. Algo 6 SSExpMul() which
calls Algo 5 SSMMul() is the simplest because it does not
require domain transformations. In Algo 6 SSExpMul(), the
two calculations, multiply and squaring, can be performed in
parallel. Therefore, we arrange two SSMMul() modules.

We also arrange two MMRed() modules for the simultane-
ous calculations of multiply and squaring for Algo 2 MEx-
pRed(). The algorithm requires domain transformations be-
fore and after doing the main iterations of the calculations.
Such transformations can be done with MMRed() modules.
If we arrange dedicated MMRed() modules for those domain
transformations, the hardware cost will be high. Because the
domain transformations are not performed in parallel with
main iterations, for saving hardware resource, we use only
two MMRed() modules for both domain transformations and
main iterations.

For the domain transformations, we need to calculate q =
R2 mod m. In order to increase flexibility for using different
R and m, in our implementations, we used SSMMul() mod-
ule to get q = R2 mod m = SSMMul(R −m,R −m,m).
Thus our Montgomery arithmetic implementations do not re-
quire any precomputed values.

Algo 2 MExpRed() requires multipliers to get the prod-
uct on which MMRed() performs the Montgomery Modular
Reduction. The cost of this algorithm is the highest among
all the algorithms due to using big multipliers. As the bit
width increases, it may not be possible to implement it on
the FPGA chip.

Algo 4 MExpMul() also needs the domain transformations
but does not require multipliers. It invokes MMMul() which
performs additions during the Montgomery Modular Reduc-
tion. We also use only two MMMul() modules for both the
domain transformations and main iterations. The calculation
of q = R2 mod m is performed also by SSMMul() module.

Table 1 lists the cost-performance of all the configurations.
Some configurations cannot be implemented due to the lack
of hardware resource, mainly the configurations that use big
multipliers. The column of Cycles shows the average num-
ber of clock cycles of RSA encryption and decryption. The
column of F (MHz) shows the frequency in MHz at which
the circuit can work. The column of T (ms) shows the time

Verilog HDL Implementation for an RSA Cryptography using Shift-Sub Modular Multiplication Algorithm 120

Table 1: Cost-performance comparison
Bits Impl. Cycles F (MHz) T (ms) ALMs Regs DSPs

Algo 2 4,413 42.32 0.104 1,391 1,043 27
64 Algo 4 4,413 103.52 0.043 1,018 1,112 0

Algo 6 4,076 103.98 0.039 564 874 0
Algo 2 17,286 27.66 0.625 4,982 1,354 75

128 Algo 4 17,286 81.31 0.213 1,952 1,646 0
Algo 6 16,752 81.82 0.205 1,084 1,334 0
Algo 2 67,334 N/A N/A 71,884 2,619 156

256 Algo 4 67,334 58.35 1.154 3,812 3,242 0
Algo 6 66,226 59.30 1.117 2,130 2,667 0
Algo 2 264,442 N/A N/A N/A N/A N/A

512 Algo 4 264,442 37.55 7.042 7,071 6,420 0
Algo 6 261,996 35.82 7.314 4,195 5,118 0
Algo 2 1,053,178 N/A N/A N/A N/A N/A

1,024 Algo 4 1,053,178 23.40 45.008 16,237 12,772 0
Algo 6 1,048,412 23.38 44.842 8,863 10,809 0
Algo 2 4,204,630 N/A N/A N/A N/A N/A

2,048 Algo 4 4,204,630 N/A N/A 27,312 24,630 0
Algo 6 4,206,448 N/A N/A 16,397 18,450 0

in millisecond ms. It is calculated by dividing the clock cy-
cles by the clock frequency. The column of ALMs shows the
required number of Adaptive Logic Modules. The column of
Regs shows the required number of flip-flops. The column
of DSPs shows the required number of DSP (Digital signal
processing) blocks (for implementing multipliers). The N/A
(not available) means that the configuration cannot be imple-
mented on FPGA chips due to the lack of hardware resource.

From the table, we can see that when the bit width n is
doubled, the number of clock cycles required is approxi-
mately quadrupled. This is because that the computational
complexity of Algo 2, Algo 4, and Algo 6 is O(n2), as dis-
cussed before. The execution times of Algo 4 and Algo 6
are almost the same. However, Algo 6 uses less hardware
resource (55%∼59% ALMs and 69%∼85% Regs).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Cycles Frequency Time ALMs Regs DSP Blocks

R
el

at
iv

e
va

lu
e

Cost and performance

Algo 2
Algo 4
Algo 6

Figure. 6: Cost and performance of exponentiation (128 bits)

Figure 6 and Figure 7 plot the cost and performance of
RSA cryptography implementations for n = 128 bits and
n = 1024 bits, respectively. From the figures and Table 1,
we conclude that the proposed Algo 6 is a better implemen-
tation by considering the cost/performance issue because it
achieves almost the same performance but requires less hard-

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Cycles Frequency Time ALMs Regs DSP Blocks

R
el

at
iv

e
va

lu
e

Cost and performance

Algo 4
Algo 6

Figure. 7: Cost and performance of exponentiation (1024
bits)

ware resource compared to Algo 4 which uses the Mont-
gomery Modular Multiplication algorithm. Also, Algo 2,
which uses the Montgomery Modular Reduction algorithm,
is not recommended as it requires big multipliers.

V. Concluding Remarks

RSA cryptography can be performed using the Montgomery
Modular Multiplication/Reduction algorithm, and transform-
ing to Montgomery Domain before the calculation and back
to the normal domain after the calculation is required. Do-
main transformations require hardware resources and a spe-
cial value of q = R2 mod m, where R = 2n and m is an
n-bit odd number. In many hardware implementations, q is
precomputed for fixed R and m, which reduces flexibility for
changing R and m.

The Shift-Sub Modular Multiplication (SSMM) algorithm
can be used to calculate q = R2 mod m in fields for RSA
cryptography using the Montgomery Modular Multiplica-
tion/Reduction algorithm. The SSMM algorithm does not
require modular arithmetic, eliminating the need for precom-
putation and hence increasing the flexibility of hardware im-
plementation.

Furthermore, the SSMM algorithm can be used directly
for RSA cryptography. RSA cryptography using the SSMM
algorithm can be performed as well as RSA cryptography us-
ing Montgomery Modular Multiplication/Reduction. How-
ever, RSA cryptography using SSMM does not require do-
main transformations and therefore reduces the hardware im-
plementation cost.

Our implementations also show that RSA cryptography
using Montgomery Modular Multiplication on a multipli-
cand and a multiplier uses less hardware resource than that
using Montgomery Modular Reduction on a product, be-
cause the latter requires big hardware multipliers.

References

[1] Tolga Acar and Dan Shumow. Modular reduction with-
out pre-computation for special moduli. Technical re-
port, Microsoft Research, January 2010.

121 Li et al.

[2] Zhengjun Cao, Ruizhong Wei, and Xiaodong Lin. A
fast modular reduction method. IACR Cryptology
ePrint Archive, 2014:1–12, 2014.

[3] George Coulouris, Jean Dollimore, Tim Kindberg, and
Gordon Blair. DISTRIBUTED SYSTEMS Concepts and
Design Fifth Edition. Addison-Wesley, 2012.

[4] Stephen E. Eldridge and Colin D. Walter. Hardware
implementation of montgomery’s modular multiplica-
tion algorithm. IEEE Transactions on Computers,
42(6):693–699, 1993.

[5] Serdar Süer Erdem, Tuğrul Yanık, and Anıl Celebi. A
general digit-serial architecture for montgomery modu-
lar multiplication. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 25(5):1658–1668,
May 2017.

[6] Miaoqing Huang, Kris Gaj, Soonhak Kwon, and Tarek
El-ghazawi. An optimized hardware architecture of
montgomery multiplication algorithm. IACR Cryptol-
ogy ePrint Archive, 2007:1–14, 01 2007.

[7] Yamin Li and Wanming Chu. Shift-sub modular mul-
tiplication algorithm and hardware implementation for
rsa cryptography. In 17th International Comference
on Information Assurance and Security, pages 1–12,
On the World Wide Web, December 2021. HIS 2021,
LNNS 420.

[8] Chae Hoon Lim, Hyo Sun Hwang, and Pil Joong Lee.
Fast modular reduction with precomputation. In Korea-
Japan Joint Workshop on Information Security and
Cryptology (JWISC97), pages 65–79, 1997.

[9] Peter L. Montgomery. Modular multiplication with-
out trial division. Mathematics of Computation,
44(170):519–521, April 1985.

[10] Christof Paar. Implementation of Cryptographic
Schemes 1. Ruhr University Bochum, 2015.

[11] Ronald Linn Rivest, Adi Shamir, and Leonard Max
Adleman. A method of obtaining digital signatures
and public key cryptosystems. Communications of the
ACM, 21(2):120–126, February 1978.

[12] Colin D. Walter and Royal Holloway. 3 - Hardware
Aspects of Montgomery Modular Multiplication. Cam-
bridge University Press, October 2017.

[13] Ciaran McIvor, Máire McLoone, and John V Mc-
Canny. Fast Montgomery modular multiplication and
RSA cryptographic processor architectures. In The
Thrity-Seventh Asilomar Conference on Signals, Sys-
tems & Computers, pages 379-384, 2003.

[14] Yuan-Yang Zhang, Zheng Li, Lei Yang, and Shao-
Wu Zhang. An efficient CSA architecture for mont-
gomery modular multiplication. Microprocessors and
Microsystems, 31(7):456–459, November 2007.

[15] Aashish Parihar and Sangeeta Nakhate. Low latency
high throughput Montgomery modular multiplier for
RSA cryptosystem. Engineering Science and Technol-
ogy, an International Journal, August 2021.

Author Biographies

Yamin Li received his Ph.D in computer science from
Tsinghua University in 1989. He currently is a professor
in the Department of Computer Science at Hosei Univer-
sity. His research interests include computer arithmetic al-
gorithms, computer architecture, CPU design, parallel and
distributed computing, interconnection networks, and fault
tolerant computing. Dr. Li is a senior member of the IEEE
and a member of the IEEE Computer Society.

Wanming Chu is a faculty member of the Division of In-
formation Systems at the University of Aizu. Her research in-
terests include computer arithmetic algorithm and hardware
implementation, multithreaded computer architecture, inter-
connection networks, fault tolerant computing, performance
evaluation, web query, web interface for GIS, and general
web-based database management.

