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Abstract:  The need for computer security in today’s open
computer networks is now undisputed. More and more effort
is being spent on security-enhancing methods and techniques.
Despite this, there is still a lack of good methods for quanti-
tatively assessing security. New metrics that provide a more
exact description of security are therefore desirable. To address
this we present an in-depth investigation of the probabilistic
measure guesswork, which gives the average number of
guesses in an optimal brute force attack. The paper extends
the definition of guesswork by defining joint and conditional
guesswork. It is proved that joining increases guesswork, while
conditioning reduces it. This implies that the joint guesswork is
always at least equal to the marginal guesswork and that the
conditional guesswork is always at most equal to the marginal
guesswork. The paper also provides a description of relations
and similarities between guesswork and entropy.
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1. Introduction

Computer security is traditionally defined as an umbrella
concept that consists of three attributes: confidentiality (or
secrecy), integrity and availability. These are often collec-
tively referred to as the "CIA* [3]. Confidentiality implies
prevention of unauthorized disclosure of information, while
integrity means preventing unauthorized modification of in-
formation. Availability is the prevention of unauthorized
withholding of information or resources.

Today, neither security nor its attributes, with the possible ex-
ception of availability [2], are easily measurable [10, 11, 25].
The security attributes on which to make measurements are
in many cases even not defined or agreed on [13]. Further-
more, when security attributes have actually been defined and
agreed on, as in the common criteria [3], the measures are of-
ten qualitative [5], i.e., based on experience, and do not carry
sufficient information about its values to allow formal anal-
ysis. Hence, new ways of measuring security are therefore
needed.

Two proposed quantitative confidentiality measures are en-
tropy [23] and guesswork [20,21]. When trying to break an

encrypted message, entropy measures the average number of
guesses in an optimal binary search attack, while guesswork
measures the average number of guesses in an optimal lin-
ear search attack. An in-depth investigation of guesswork
based on the findings in [15, 16] Is presented in this paper.
The paper extends the definition of guesswork by defining
joint and conditional guesswork. It is proved that joining in-
creases guesswork, which implies that the joint guesswork
is always at least equal to the marginal guesswork, and that
conditioning reduces guesswork, which implies that the con-
ditional guesswork is always at most equal to the marginal
guesswork. The relationship and similarity between the ex-
tended definitions of guesswork and entropy, using the ex-
tended definitions of joint and conditional entropy [4], are
briefly described. Unlike in the case of entropy, it is shown
that guesswork does not possess the chain rule property.
Beyond entropy and guesswork, other means of measuring
security have been proposed. An attempt to quantify security
using game theory is described in [22]. A game theoretical
method is also used in [17]. Quantifying operational security
using state transition diagrams to model attacks and system
restoration have been proposed in [12, 18,24]. In [7], work
on developing quantitative metrics for network security mon-
itoring and evaluation is presented.

The remainder of the paper is organized as follows. Section
II briefly treats measure theory, and Section III presents the
measure entropy. Guesswork and its extending definitions,
joint and conditional guesswork, are defined in Section IV.
The section also introduces the concept of permutations that
are necessary for extending the definition of guesswork. Us-
ing the concept of majorization,Section V proves that join-
ing increases guesswork and that conditioning reduces guess-
work. This section also shows that guesswork does not pos-
sess the chain rule property as does entropy. Finally, Sec-
tion VI ends the paper with concluding remarks and future
work.

II. A Note on Measure Theory
In measure theory [8], also called measurement theory, a

measure is defined as a method or process for producing a
value of an attribute or a characteristic of an entity that is
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then put on a scale. The values might be divided into qual-
itative or quantitative values. Qualitative values have a di-
rect realization by means of a natural language description
such as small, medium, and large, while quantitative values
have an indirect realization by means of numbers, such as 5
or 42. Hence, for quantitative values to be understandable,
more information is needed, which is added through units,
for example, 5 meters or 42 degrees Celsius.

A. Scales

A scale is a set of values that corresponds to the range of the
measure. Essentially, five major types of scales exist [8]:

o Nominal
¢ Ordinal
o Interval
« Ratio

o Absolute

The first two scales, nominal and ordinal, use qualitative val-
ues and the last three, interval, ratio and absolute, use quan-
titative values. The difference between the different scales
lies in how much information they carry about the values.
For nominal scales, entities can only be characterized into
groups, while ordinal scales also include an order of the
groups. For example, the color scale is nominal, while a scale
consisting of the elements small, medium, and large is ordi-
nal. In addition to the properties of ordinal scales, interval
scales preserve differences between entities. In addition to
the properties of interval scales, ratio scales also preserve ra-
tios between entities. Thus, for interval scales, we can use
addition and subtraction and for ratio scales we can also use
multiplication and division. For example, the Celsius scale
is an interval scale, since the difference between an arbitrary
interval of one degree on the scale is preserved. However,
the Celsius scale is not a ratio scale since it makes no sense
to say that 20 degrees of Celsius is twice as hot as 10 degrees
of Celsius. An example of a ratio scale is the Kelvin scale,
since the measurement now starts at zero. Finally, absolute
scales are unique, meaning that there is only one scale that
can be used when measuring. Absolute scales allow all sorts
of arithmetic analysis; an example is the counting scale.

B. Set Theory

In mathematics, measure theory [9] is defined from set theory
or more exactly from the concept of o-algebras. A o-algebra
Y (X) over a set X is a collection or family of subsets of X
that is closed under complements and countable unions. That
is, X(X) is a subset of the power set P(X) with the following
two properties:

1. IfA € 2(X) = A € B(X)

2. If Ay, As, ... € D(X) = U2, A; € B(X)

The sets in X(X') can be seen as the possible states of an
attribute. For example, if X = {1,2,3} then X(X) =
{0,{1},{2,3}{1,2,3}} is a o-algebra, and the correspond-
ing attribute then has four states. The value of the states will
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depend on the measure, and from a o-algebra a measure y is
defined as a mapping

w:X(X) — [0, 00] (1)
with the following two properties:

1. The empty set has a value of zero
n(®) =0 2)

2. Countable additivity, if {4;}3° is a sequence of disjoint
sets then

e ( filAi) = U?;N(Ai) 3)

For example, if X = R is the real line, then the set of all
open intervals (a,b) is a o-algebra and u((a,b)) = b —a
is a measure, i.e. the ordinary distance measure, which is
referred to as the Borel measure.

III. Entropy

This section gives the formal definition of entropy and its
generalizations in terms of joint and conditional entropy. The
section also discusses some properties of entropy and states
the chain rule of entropy.

A. Marginal Entropy

Entropy is usually, and somewhat carelessly, called a mea-
sure of uncertainty. However, when entropy was first de-
fined in 1944 by Shannon [23] it was defined as the aver-
age amount of information of a (discrete) random variable
X. Another interpretation of entropy is that it gives the aver-
age number of guesses of a discrete random variable X in an
optimal binary search attack [15]. Before stating the formal
definition of entropy, some fundamental probability termi-
nology is needed to mathematically express the concept of
discrete random variables. Let X = {1, ..., 2,} be a finite
sample space. The mapping

P:X >R )

is called a probability distribution if

Y Pla) =1 (5)
=1

A X-valued random variable X with probability distribution
‘P is a variable that attains values z; € X with probabil-
ity P(X = x;). For some contexts it is necessary to point
out that the random variable X is connected with probability
distribution P. This is written A’». Furthermore, to shorten
the notation, P(X = x;) = P;. Hence, the joint prob-
ability distribution of a pair of random variables (Xg, X1)
is written P;; = p(Xo = ;,X1 = z;), and the con-
ditional probability distribution of X; given X is written
Pj‘i = p(Xl = .%‘leo = l’l) Note that Pij = Pngh
Definition 1. The entropy H(X) of a random variable X
with probability distribution 'P; is defined as

H(X) ==Y Pilog,P; 6)
=1
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In both computer science and information theory the base of
the logarithm is taken to be two, measured in bits, and in
mathematics and physics the base of the logarithm is taken
to be e, measured in nats. The minimum value of entropy is
zero, obtained for the deterministic probability distribution,
and the maximum value of entropy is obtained for the uni-
form probability distribution U, with H(Xy,) = logy n [4].

B. Joint Entropy

Definition 1 can be extended to joint entropy [4]. The joint
entropy H(Xo, X1) gives the entropy of a pair of random
variables (X, X1) with a joint probability distribution Pij.
Definition 2. The joint entropy H(Xo, X1) of a pair of ran-
dom variables (Xo, X1) with joint probability distribution
Pi; is defined as

H(Xo,X1) =— Z Z Pijlogy Pij 7

i=1 j=1

C. Conditional Entropy

Definition 1 can also be extended to conditional entropy.
The conditional entropy H(X1|Xy), or equivocation, gives
the remaining entropy of a random variable X; given an-
other random variable X, with conditional probability distri-
butions P;|;. Conditional entropy is defined as the average
value of the entropies of the conditional distributions, aver-
aged over the conditioning random variable.

Definition 3. The conditional entropy H(X1|Xo) of a ran-
dom variable X, given another random variable X, with
conditional probability distributions Pj; is defined as

H(X1|Xo) =Y PiH(X1|Xo = ;)

i=1

=33 Pijlogs Py (8)

i=1j=1

D. Properties of Entropy

In [4], it is shown that entropy has two important properties
expressed through the following inequality

H(Xo|X1) < H(Xo) < H(Xo, X1) )

ditioning reduces entropy. Hence, by gaining information,
the average number of guesses needed to find the value of a
random variable decreases. The second property, H(Xy) <
H (X, X;), states that joining increases entropy. Hence, by
adding information, the average number of guesses needed
to find the value will increase. Furthermore, the marginal,
joint and conditional entropies are related by the chain rule

The first property, H(Xo|X1) < H(Xy), states that con-

H(Xo,X1) = H(Xy) + H(X1|Xo) (10)
This rule states that the joint entropy is equal to the marginal
entropy plus the corresponding conditional entropy. Hence,
by using a binary search attack, the average number of
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guesses needed to find the value of a pair of random vari-
ables is equal to the average number of guesses needed to
find the value of a marginal random variable plus the aver-
age number of guesses needed to find the value of the other
marginal random variable, conditioned with the first chosen
marginal random variable. By generalizing Definition 2 and
3 to n random variables [4] the chain rule generalizes to

n—1

H(XO, B anl) = H(XO) + Z H(X’L|X0a BERR) Xifl)
=1

(1)

IV. Guesswork

The formal definition of guesswork and its generalizations in
terms of joint and conditional guesswork is defined in this
section. The section also introduces the concept of permuta-
tions that are necessary for extending the definition of guess-
work.

A. Marginal Guesswork

Guesswork is a measure that gives the average number of
guesses of a random variable X in an optimal linear search
attack [15], which is also referred to as an optimal brute force
attack. In such an attack, the attacker is assumed to have
complete knowledge of the probability distribution P; of X.
Thus, before starting the guessing process, the attacker can
arrange all values of X" in a non-increasing probability order

Pr>2Pr>...2 P, (12)
From (12), the measure guesswork is defined as follows.
Definition 4. The guesswork W (X)) of a random variable
X with probability distribution P; that is ordered according
to (12) is defined as

W(X) =Y iP; (13)
=1

Similar to entropy, the minimum value of guesswork is one,
obtained for the deterministic probability distribution, and
the maximum value of guesswork is obtained for the uniform
probability distribution U/, with W (Xy,) = "T'H [21].
The last term in the sum of guesswork, see Definition 4,
is weighted with n. This is not completely correct, how-
ever,since the last guess in the guessing process decides for
the last two values of the random variable [15]. That is, if the
answer to the last question is “yes” then the correct value is
X = x,_1, and the search terminates. If on the other hand,
the answer is “no” the correct value is X = =z, and the
search terminates. Thus, the last term in the sum of guess-
work should be weighted with n— 1, and the redefined guess-
work becomes

W'(X) = W(X) = pn (14)
Since all properties of the original guesswork shown W (X)
also hold for the redefined guesswork W'(X), as will be
proved in Proposition 2, W (X) will for simplicity be used
in this paper instead of W' (X).
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B. Permutations

To describe the ordering of the probability distribution ac-
cording to (12) in a more formal way, the concept of permu-
tation [6] is used. A permutation o is a mapping

c:5—~ S (15)

of a non-empty set S that is bijective. Hence, permutations of
a set are all invertible mappings from the set onto itself. The
set of all permutations on S together with composition as the
operation forms the symmetric group Og. If S = {1,...,n},
which is denoted ©,,. An arbitrary element o € ©,4, which is
a permutation on the numbers {1, 2, 3,4}, can be written as

1 2 3 4

(oty ot oty oin) 09
The mapping o (4) gives how all values of the set {1,2, 3,4}
are permuted. Note that (i) must be one-to-one and onto to
be invertible and, hence, a permutation.
An unordered probability distribution P; can be ordered in a
non-increasing probability order, as in (12), by using a per-
mutation o () that maps the index of the largest value to one,
the index of the second largest value to two, and so on until
the index of the smallest value is mapped to n. Thus,

0P; = (Po1(1)s Po1@)s- 2 Pociqm)  (17)
where
Po-11) 2 Po-1(2) = -+ = Po-1(n) (13)
Note that if o(¢) = k, then
kPo-1(ky = o(i)P; (19)

Thus, instead of using the terms in (18) to calculate the sum
in Definition 4, the same result is achieved if the probability
distribution P; is left unordered and the ¢ values are instead
changed to o(i). Hence, Definition 4 can be redefined as
follows.

Definition 5. The guesswork W (X) of a random variable
X with probability distribution P; that is ordered in a non-
increasing probability order by the permutation o (i) is de-
fined as

n

> iPer)
=1
= ia(z)?

=1

W(X) =

(20)

C. Joint Guesswork

Definition 5 can be extended to joint guesswork. The joint
guesswork W (X, X7) gives the guesswork of a pair of ran-
dom variables (X, X1) with a joint probability distribution
Pij-

Definition 6. The joint guesswork W(Xo, X1) of a pair of
random variables (Xo, X1) with joint probability distribu-
tion P;; that is ordered in a non-increasing probability order
by the permutation (i, j) is defined as

XO;Xl ZZ”TZJ ij

i=1 j=1

2y
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By using the inverse permutation 7~ (k) = (i, ), the or-
dered joint probability distribution of P;; becomes

71'7)2']' = (,Pw_l(l)apw_l(Q)a"'77)77_1(112)) (22)
and the joint guesswork can hence be rewritten as
W (Xo, X1) Z (23)

For example, using the joint probability distribution given in
Table 1, the marginal guesswork of X, becomes

W(Xo) = o(1)P1 +0(2)P2

=2%x04+1x%0.6
=14 24)
and the joint guesswork
W(X(), Xl) == 71'(].7 1)P11 + ’/T(2, 1)P21
—+ 7T(]., 2)P12 —+ 7T(2, 2)7)22
=2%03+3%x02+4%x0.1+1%x04
=20 25)

Table 1: The joint probability distribution used to calculate
the marginal guesswork, W (X)), the conditional guesswork,
W(X1|Xo), and the joint guesswork, W (X, X71).

Pij ‘ X1 =m X1 =z
Xo=x1 0.3 0.1
Xo =2 0.2 0.4

D. Conditional Guesswork

Definition 5 can also be extended to conditional guesswork.
The conditional guesswork W (X1|X,) gives the remaining
guesswork of the random variable X; given the random vari-
able X with a conditional probability distribution P;|;. Con-
ditional guesswork is defined as the average value of the
guessworks of the conditional distributions, averaged over
the conditioning random variable.

Definition 7. The conditional guesswork W (X1, Xo) of a
random variable X, given another random variable X with
conditional probability distributions Pj|; that are ordered in
a non-increasing probability order by the permutations p;(j)
is defined as

=) PiW(X1|Xo = x;)

i=1

—ZP sz Piji
= Zzpi(j)PJ

i=1j=1

W (X1]Xo)

(26)
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Note that the permutations p;(j), in addition to ordering the
conditional probability distributions P;;, also order the joint
probability distribution P;; with respect to j. Hence, by us-
ing the inverse permutation p; ! (k) = (i, j), the ordered joint
probability distribution of P;; with respect to j becomes

piPij = (Pp;1(1)>7)p;1(2)’ i ’prl(n)) 27)
From this, the joint guesswork can be rewritten as
n n
W(X1lXo) = 33 Py 28)
i=1 j=1

For example, using the joint probability distribution given in
Table 1, the conditional guesswork becomes

W(X1]Xo) = p1(1)P11 + p1(2)Pr2
+ p2(1)Pa1 + p2(2) P22
=1%x034+2%x0.1+2%x02+1%x04
=1.3

In this example, W (Xy|X1) = W(X1|Xp). In most cases,
however, W(X1|Xo) # W(Xo|X1).

V. Properties of Guesswork

The relationship between the marginal, joint and conditional
guesswork is Investigated in this section by using the concept
of majorizations [21]. In [1, 19], the logarithmic guesswork
rate

» Xn)

W(X) = lim logsW (X1, ...

n—00 n

(29)

was investigated for the independent case and for Markov
chains, respectively. The behavior in the finite case is still an
open research issue.

A. Majorization

Ordered vectors are used in the theory of majorization. Fur-
thermore, since discrete probability distributions can be rep-
resented as a vector, the probability distributions will be used
instead.

Definition 8. Let P; and Q; be two probability distributions
ordered in a non-increasing probability order. Then P; is
majorized by Q; ifVk: 1 <k <n

k k
P> o (30)
i=1 i=1
and
(31)

Zpi = Z 9,
i=1 i=1

Following the notation of Pliam [21], P; < Q; is used when
P; is majorized by Q,. Further, Pliam used the concept of
majorization to prove the following proposition.
Proposition 1. If P; < Q; then

W(Xp) =2 W(Xo) (32)
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This proposition can be extended to also hold for W’ (X).
Proposition 2. If P; < Q; then

W'(Xp) > W'(Xg) (33)
Proof. Let
/ Pz 1<i<n-2
Pi{mlwn i=n-1 39
and
P e 1<i<n-—2

For the two probability distributions P, and Q7, (30) holds
Vk:1<k<n-—2,and (31) holds for Kk = n — 1. Hence,
P! < Q}, and by using Proposition 1

W(Xp) > W(Xor) (36)

However, since W(Xp/) = W/(Xp) and W(Xg/) =
W'(Xg), the proposition holds. O

Hence, using majorizations, all properties of W (X) shown
will therefore also hold for W’ (X).

B. Guesswork and Joint Guesswork

A theorem stating that the joint guesswork is always at least

equal to the marginal guesswork will now be proved. This

then proves that joining increases guesswork.

Theorem 1. Let Xy and X be two random variables. Then,
W (Xo) < W(Xo, X1) (37

Proof. From Definition 5, W (X) has the ordered probabil-

ity distribution

O'Pi = (7)0'*1(1)’ P071(2)7 s 7Po'*1(n))

and from Definition 6, W (X, X1) has the ordered probabil-
ity distribution

(3%)

7T7Dij = (7)71-—1(1),7)71-—1(2),...,'Pﬂ-fl(nZ)) (39)
For the two probability distributions to be of the same length,
oP; is extended with n2 — n zeros at the end. Furthermore,
since P; = 37, Pij, each of the non-zero components in
o'P; is the sum of n components in 7P;;.

The largest component of 7P;; can either be contained in or
not contained in the largest component of ¢/P;. In the first
case, obviously, Pr-1(1) < P,-1(1). In the second case, the
same must hold in order not to contradict that P,-1(y) is the
largest component of oP;.

Using the same reasoning as above, if the k first components
of 7P;; are contained in the £ first components of o'P;, the
sum of the k first components of 7P;; is smaller than the
sum of the k first components of o’P;. If a set of the k first
components of 7P;; is not contained in the k first compo-
nents of o’P;, however, then each of the components in the
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set must be at least as small as P, -1y, in order not to contra-
dict that P,-1(y,) is the kth largest component in o'P;. Thus,
VEk,1 <k <n?

k k
Z 7)7r*1('£) < Z 7)(7*1(1') (40)
i=1 i=1
and
7L2 7L2
D Priiy =D Porti 41)
i=1 i=1

Hence, 7P;; < oP;, and by Proposition 1 W (X,) <
W(Xo, X1). O

As an illustration, the joint guesswork for the joint proba-
bility distribution provided in Table 2 is plotted in Figure 1.

Table 2: The joint probability for Figure 1.

Pij ‘ X1 =21 X1 =2
X()Z(El a 0.6 —a
Xo = x2 b 04—0b

For this distribution W (Xy, X1) > W(Xy) and W(X,) =
1.4 are independent of the values of a and b. Further-
more, there are four points that set one of the elements in
each row to zero in the joint distribution, (a,b) = (0,0),
(a,b) = (0.6,0), (a,b) = (0,0.4), and (a,b) = (0.6,0.4).
Hence, for these points, W (X, X;) = W(Xy). The lo-
cal maximums that occur on the surface correspond to when
elements of the columns have ¢ = b or when elements of
the rows have ¢ = 0.3 or b = 0.2. Thus, a uniform condi-
tional probability distribution then exists for the row or col-
umn. The global maximum, W (X, X1) = 2.3, is achieved
at point (a, b) = (0.3, 0.2), which is when the two rows have
a uniform probability distribution. This is as close to the real
uniform probability distribution as this probability distribu-
tion gets.

5
QR
LABIK
QRLRRY
QLR
Xy

0.3 0.7

0.1 0.2 03

Figure. 1: Joint guesswork W (X, X1), for the joint distri-
bution provided in Table 2. For this distribution, W (X,) =
14.
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Figure 2 plots the range of the joint guesswork W (X, X71)
versus the marginal guesswork W (X)) using the joint prob-
ability distribution given in Table 3. That is, the range of
W (Xo, X;) is plotted for different values of P; and Py giv-
ing W(Xy). By assumption, P; > P,, hence, the possi-
ble values of the probabilities, are bounded by the inequality
0 <Py £0.5 <P; < 1. The change in values of the prob-
abilities were chosen in steps of 0.01. Note that, by setting
P; = 0.6, and Py = 0.4, Table 3 is transformed to Table 2,
giving W(Xo) = 1.4,and 1.4 < W(Xp, X;) < 2.3.

25

W(Xo,%1)

1.

o

*

1 1 1 1 1 1 1
1 1.0 11 115 12 1.25 13 1.35 1.4 1.45 15
W(Xo)

Figure. 2: The range of the joint guesswork W (X, X1 ) ver-
sus the marginal guesswork W (X) for the joint distribution
provided in Table 3.

Table 3: The joint probability distribution for Figure 2.

Pij ‘ X1 =21 X1 =z
Xo =11 a p(z1) —a
Xo =x2 b p(x2) —b

In Figure 2, the maximum value, W (X, X1) = 2.5, is
achieved when both the random variables have a uniform
probability distribution. The minimum value, W (X, X1) =
1, is achieved when both random variables are known. Fur-
thermore, W (X, X1) has four bounds.

o The lower bound, X1, is known. Hence, W (Xy, X;) =
W(Xo).

o The upper bound, X, has a uniform probability distri-
bution.

o The left bound, Xy, is known. Hence, W (X, X;) =
W(Xy).

o The right bound, X, has a uniform probability distri-
bution.
C. Guesswork and Conditional Guesswork

A theorem stating that the conditional guesswork is always
at most equal to the marginal guesswork will next be proved.
Hence, this proves that conditioning reduces guesswork.
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Theorem 2. Let X and X, be two random variables. Then,
W(Xo[X1) < W(Xo) (42)

Proof. From Definition 5, W (Xj) has the ordered probabil-
ity distribution
Upi = (P0*1(1)7 P0*1(2)7 DR P{T*I(n))

And, from Definition 26, W (X|X;) has for each j the or-
dered probability distribution

(43)

ijij = (ij—l(l), ij—1(2) cee ,ij—l(n)) 44)
Now, by summing over j, an ordered probability distribution
is created.

7)1/ = Z ijij (45)
j=1

The distribution is ordered since the first component is the
sum of the n largest probabilities, having p; (i) = 1, the sec-
ond component is the sum of the n second largest probabili-
ties, having p; (i) = 2, and so on. Thus, Vk,1 < k <n

k k
> Pory <Y P (46)
=1 i=1
and
> Py =Y P (47)
=1 i=1

Hence, oP; < P/, and by Proposition 1, W(X,) >
W(Xo|X1). O

If the random variables are independent, then p; (%) are equal
for each j in permuting the random variable X,. Further-
more, p;(i) = o(i), hence

Pl = Z P Pij (48)
=1

= i O'Pij
j=1
=oP;

Thus, W(Xy|X1) = W(Xy) if the random variables are in-
dependent.

The conditional guesswork using the probability distribu-
tion provided in Table 2 is plotted in Figure 3. In the fig-
ure, W (Xy|X1) < W(Xp), since W(Xp) is a plane with
height 1.4. The plateau of the surface of W (X|X7) is due to
the fact that no reordering is made in the distribution before
calculating the conditional guesswork. Hence, under those
conditions, the sum of each column is unchanged giving no
change in the value of the conditional guesswork. Further-
more, the two points (a,b) = (0.6,0) and (a,b) = (0,0.4)
set the elements to zero on the diagonals, which means that
there is only one value to guess on for each row. Hence, for
these two points, W (Xo|X1) = 1.
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Figure. 3: Conditional guesswork, W (X|X1), for the joint
distribution is provided in Table 2. For this distribution,
W(Xo) =14.

D. The Chain Rule

For entropy, the chain rule (10) relates the marginal, joint
and conditional entropies. However, as will now be shown by
a counterexample using the uniform probability distribution,
guesswork does not possess the chain rule.

The marginal guesswork for the uniform probability distri-
bution U; = L is

n—+1

W(Xo) = 5

(49)

In the same way, the joint guesswork for the uniform proba-
bility distribution ¢f;; = 5 is

n?+1
2

W(Xo, X1) = (50)

Note that this distribution has n? elements instead of n. Fi-
nally, the conditional guesswork for the uniform probability
distribution 4 is

1 1 1

n+1
= 1
9 (51)

Hence, W (X)) + W(X1]Xo) =n+ 1.

In Figure 4, the joint guesswork, the sum of the marginal
guesswork and the conditional guesswork for the uniform
probability distribution are plotted as a function of n. The
values of n should be integers. However, for the illustration,
the graphs are made continuous.

In the figure, W(Xo, X1) < W(Xo) + W(X1]|Xo) when
n < 14++v/2,and W (Xo, X1) > W (Xo)+W (X1|Xo) when
n > 1+ /2. Hence, while n < 1 + 1/2 it is easier to guess
at the two joint random variables, and while n > 1 + V2 it
is easier to split the guesses into two parts. For entropy, we
have for the uniform distribution, H(Xo, X1) = logs(n?),
and H(Xo) + H(X1|Xo) = loga(n) + logz(n) = loga(n?).
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Figure. 4: The joint guesswork, the sum of the marginal
guesswork and the conditional guesswork for the uniform
probability distribution are plotted as a function of n.

VI. Conclusions and Future Work

This paper has defined joint and conditional guesswork. We
have also shown that the following inequality holds
W(Xo|X1) < W(Xo) < W(Xo, X1) (52)
The first part of the inequality states that conditioning re-
duces guesswork. Hence, if information is gained, then the
average number of guesses needed to find the value of a ran-
dom variable decreases. The second part of the inequality
states that joining increases guesswork. Hence, the average
number of guesses needed to find the values of joint random
variables is always at least equal to the average number of
guesses needed to find the values of the marginal random
variables. Thus, guesswork possesses the same two proper-
ties as entropy, i.e. joint entropy is always at least equal to the
marginal entropy, and conditioning reduces entropy. In con-
trast to entropy, it has been shown that guesswork does not
possess the chain rule property by using the uniform proba-
bility distribution.
The goal of our future work is to further investigate W (Xj),
W(X1|Xo) and W(Xy, X;) with the aim of relating them
in an expression similar to the chain rule for entropy. Such
a finding will provide a better understanding of guesswork
and is thus the natural next step in building up a theory of
guesswork. The security implication of the generic selective
encryption scheme presented in [14] will also be investigated
using the results presented in this paper. In particular, lan-
guages of different orders as well as the size and distribution
of encryption units should be investigated in order to under-
stand the full impact of selective encryption.
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