
Modeling Alerts for IDS Correlation
Sebastian Roschke, Feng Cheng, and Christoph Meinel

Hasso-Plattner-Institute (HPI), University of Potsdam
P.O.Box 900460, 14440, Potsdam, Germany

{sebastian.roschke, feng.cheng, meinel}@hpi.uni-potsdam.de

Abstract: Intrusion Detection Systems (IDS) have been used
widely to detect malicious behavior in network communication
and hosts. IDS management is an important capability for dis-
tributed IDS solutions, which makes it possible to integrate and
handle different types of sensors or collect and synthesize alerts
generated from multiple hosts located in the distributed envi-
ronment. Sophisticated attacks are difficult to detect and it is
necessary to integrate multiple data sources for detection and
correlation. Attack graph (AG) is used as an effective method to
model, analyze, and evaluate the security of complicated com-
puter systems or networks. The attack graph workflow consists
of three parts: information gathering, attack graph construc-
tion, and visualization. This paper proposes the integration of
the AG workflow with an IDS management system to improve
the quality of alert correlation. The vulnerability and system in-
formation is used to remodel the incoming IDS alerts. The AG
is used during the correlation process to filter and optimize cor-
relation results. A prototype is implemented using automatic
vulnerability extraction and AG construction based on unified
data models.

I. Introduction

Intrusion Detection Systems (IDS) have been proposed for
years as an efficient security measure and are nowadays
widely deployed for securing critical IT infrastructures.
Based on the protected objective, IDS can be classified into
host-based intrusion detection systems (HIDS), network-
based intrusion detection systems (NIDS), or distributed in-
trusion detection systems (DIDS), which contain both types
of sensors [5]. Due to different deployment mechanisms,
IDS can be categorized as software-based IDS, hardware-
based IDS, and Virtual Machine (VM) based IDS [1]. Nowa-
days, lots of commercial and open source IDS implementa-
tions have emerged and been used in practice for identify-
ing malicious behaviors against protected hosts or network
environments. Some known examples of existing IDS so-
lutions are F-Secure Linux Security [2], Samhain [3], and
Snort [4]. The Intrusion Detection Message Exchange For-
mat (IDMEF) [6] has been proposed as a standard to enable
interoperability among different IDS approaches to simulta-
neously provide multiple benefits from various IDS sensors.
Correlation of IDS alerts has been proposed for addressing
the problem of false-positive alerts. However, detection of
sophisticated attacks remains to be difficult and challenging.
In this paper, the utilization of context data sources for IDS
correlation is proposed. We focused on the integration of the

Attack Graph (AG) workflow with an IDS management sys-
tem.
Attack Graphs have been proposed for years as a formal
way to simplify the modeling of complex attacking scenar-
ios. Based on the interconnection of single attack steps, they
describe multi-step attacks [25]. Attack Graphs not only de-
scribe one possible attack, but many potential ways for an
attacker to reach a goal. In an attack graph, each node rep-
resents a single attack step in a sequence of steps. Each step
may require a number of previous attack steps before it can
be executed, denoted by incoming edges, and on the other
hand may lead to several possible next steps, denoted by out-
going edges. With the help of attack graphs, most of possible
ways for an attacker to reach a goal can be computed. This
takes the burden from security experts to evaluate hundreds
and thousands of possible options. At the same time, rep-
resenting attack graphs visually allows security personal a
faster understanding of the problematic pieces of a network
[26, 27].
To perform high quality correlation, the original alerts need
to be preprocessed. The information of the target system
as well as possible relevant vulnerabilities are usually use-
ful for later correlation. Therefore, we propose a new model
of alert, which integrates the system information and vulner-
ability information which is related to the original alert. The
AG workflow is integrated into the correlation process, by
which we can easily get: vulnerability information, system
information, and the calculated graph. The vulnerability and
system information is used to prioritize and tag the incoming
IDS alerts. The graph is used during the correlation process
to filter incorrect correlation results. The implemented proto-
type integrates the AG workflow and environment informa-
tion. An alert modeling for correlation is used, to provide
access to environment information and the attack graph in
the correlation process.
This paper is organized as follows. Section II describes alert
correlation approaches and the attack graph workflow. In
Section III, the proposed architecture of the IDS manage-
ment system is described. Section IV presents the data mod-
els for the existing data sources of the attack graph work-
flow. The way and design to extract information from vul-
nerability databases is described in Section V. The correla-
tion approaches of the management system using the AG data
sources are described in Section VI. Finally, we conclude the
paper in Section VIII.

Journal of Information Assurance and Security
ISSN 1554-1010 Volume 6 (2011) pp. 098-105
© MIR Labs, www.mirlabs.net/jias/index.html

Dynamic Publishers, Inc., USA

II. Related Work

A. Alert Correlation

The alert correlation framework usually consists of several
components [9]: Normalization, Aggregation (Clustering),
Correlation, False Alert Reduction, Attack Strategy Analysis,
and Prioritization. IDMEF [6] and CVE [10] are important
efforts in the field of Normalization. Approaches of aggre-
gation are mostly based on similarity of alerts [12, 13] or
generalization hierarchies [11]. The correlation [9] can be
classified as: Scenario-based correlation [14], Rule-based
correlation [15], Statistical correlation [16], and Temporal
correlation [17]. False alert reduction can be done by using
such techniques as data mining [18] or fuzzy techniques [19].
Attack strategy analysis often depends on reasoning and pre-
diction of attacks missed by the IDS [20]. In terms of Pri-
oritization, the alerts are categorized based on their severity,
e.g., using attack ranks [21]. Over the last years, many new
techniques and methods are applied to improve the quality
and performance of alert correlation, e.g., machine learning,
data mining [18], or fuzzy techniques [19]. The work de-
scribed in [22] considers the performance of alert correlation
by using memory-based table indexes for hyper alerts. A hy-
per alert is a cluster of alerts with the same properties, e.g.,
the same source address and target address. The approach
using index tables to enable fast correlation is introduced in
[23].

B. The Attack Graph Workflow

The attack graph workflow consists of three independent
phases: Information Gathering, Attack Graph Construction,
Visualization, and Analysis. In the information gathering
phase, all necessary information to construct attack graphs is
collected and unified, such as information on network struc-
ture, connected hosts, and running services. In the attack
graph construction phase, a graph is computed based on the
gathered system information and existing vulnerability de-
scriptions. Finally, the attack graph is created in the visu-
alization and analysis phase. Attack graphs always require
a certain set of input information. For one, a database of
existing vulnerabilities has to be available, as without it, it
would not be possible to identify or evaluate the effects of
host-specific weaknesses. Also, the network structure must
be known beforehand. It is necessary to identify which hosts
can be reached by the attacker. Often, an host-based vulner-
ability analysis is performed before the attack graph is con-
structed.
Vulnerability information is stored in so called vulnerabil-
ity databases (VDB), which collect known software vulner-
abilities. Such databases comprehend large compilations
of software weaknesses in a non-uniform manner. Well
known databases are the VDB from SecurityFocus [32], ad-
visories from Secunia [31], and the Open Source Vulnera-
bility Database (OSVDB) [29], operated by the Open Secu-
rity Foundation. Besides these known VDB from different
providers, there is another important effort called the Com-
mon Vulnerabilities and Exposures (CVE) [10], which is a
meta vulnerability database. Its goal is to provide a common
identifier for known weaknesses which can be used across
various VDBs. Before 1999, each vulnerability database has

its own name and it was difficult to detect when entries re-
ferred to the same weakness. With the help of CVE entries,
vulnerabilities at least have a unique identifier. For attack
graph construction, up-to-date vulnerability information is
crucial to provide high quality results. As vulnerability de-
scriptions are stored in semi-structured textual descriptions,
automatic extraction is possible with 70-90 percent of cor-
rectness from textual descriptions stored in various VDBs
[7].
[28] presents the Multihost, Multistage Vulnerability AnaL-
ysis (MulVAL), a “logic-programming approach to network
security analysis”. In his words, an attack graph is a di-
rect acyclic graph which represents the dependency of ac-
tions that lead to the violation of the security property of a
network. Attack graphs can be described either based on
the network state or on exploit dependencies, whereas the
latter is a much more efficient representation. MulVAL is
based on exploit dependency graphs and uses Datalog to de-
scribe system properties. Datalog is a subset of the Pro-
log programming language. All relevant input data such as
software vulnerability advisories, configuration and network
topology information, and security policies are described in
the same language, i.e., Datalog. This input is then evalu-
ated with the help of XSB1 as the logic engine to evaluate
predicates. Based on the predicates, XSB will compute all
possible paths to complete a defined goal, for example exe-
cution rights for an attacker on a specific host. [28] presents
about 20 rules which specify exploits such as code execution,
file access, and privilege escalation, all of them hand-crafted.
Each rule include an exploit range, that is whether an exploit
can be used only locally from a remote host. Also, exploit
consequences are described, e.g., a denial of service. The
rules are specific to the Unix operating system. [28] argues
that a ”model as needed” approach should be followed which
means that aspects of system should only be modeled if they
are relevant to determine pre- and postconditions of an at-
tack. To extract the semantics of an attack (e.g., pre- and
postconditions and the exploit range), the National Vulner-
ability Database (NVD)[33] is used, existing vulnerabilities
are identified with the help of OVAL[30]. In this paper, the
data model described in [7] is used to store vulnerability and
system information for IDS correlation. The third party tool
MulVAL [28] is integrated and the created AG is used during
the correlation process.

III. IDS Management Architecture Integrating
AG Workflow

The proposed architecture of the IDS management system is
shown in Figure 1. It includes several IDS VMs and a IDS VM
Management Unit. The IDS VM Management Unit consists
of the following active components: the Event Gatherer, the
Event Database, the Analysis Component, and the IDS Re-
mote Controller, the Attack Graph Construction, the System
Information, and the Vulnerability Information. The Event
Database is a passive storage that holds information on all re-
ceived events. It can be accessed through the Analysis Com-
ponent. User controls the IDS management through direct
interaction and configuration of the core components. The

1http://xsb.sourceforge.net/

Roschke, Cheng and Meinel099

Figure. 1: An IDS Management Architecture integrating AG workflow

IDS Sensors on the VMs are responsible for detecting and
reporting malicious behavior. Each sensor is connected to
the Event Gatherer component to transmit triggered events.
A sensor, which could be a running IDS sensor with all its
signatures and configurations, can be configured through the
IDS Remote Controller.
The IDS sensor identifies malicious behavior and generates
alerts through a reporting component, which will be pro-
cessed by the Event Gatherer. The sensor is an indepen-
dent process, which can be any NIDS or HIDS, e.g., Snort
or Samhain. The Event Gatherer is responsible for collect-
ing all events from IDS Sensors. As shown in Figure 1, the
Event Gatherer component is introduced on the IDS Sensor
side as well. This gatherer is used to standardize the outputs
from different sensors as well as realize the logical communi-
cation, such as file-based or network-based, between the sen-
sor and the management unit. The gatherer consists of sev-
eral Plugins: Senders, Receivers, and Handlers. Receivers
are used to read alerts and convert them to IDMEF. Senders
are used to write alerts to a destination, e.g., a network, a
database, or a folder. Handlers can be used to modify alerts
in processing, e.g., to log each alert from a specific sensor.
Each event is made persistent in the Event Database storage.
The gatherer can be configured by the user and is connected
to each sensor it receives events from. A gatherer can be
the running instance of an IDS management component that
accepts connections and writes events to the database.
The Attack Graph Construction module integrates the AG
workflow with the system. It provides an interface to the AG
construction engine for constructing and re-creating an at-
tack graph at runtime. Furthermore, it provides access to the
environment information, e.g., network structure, hosts and
it’s services, as well as existing vulnerabilities. The interface
to the correlation process is the Attack Graph Module, which
caches correlation results and triggers needed changes to the
attack graph. The Analysis Component consists of the Cor-
relation Module and the Alert Modeling Module. The Corre-
lation Module is responsible for running different correlation
algorithms on the Event Database using the available data
sources: the Vulnerability Information and the System Infor-
mation. The Attack Graph Module is responsible for con-
necting the attack graph workflow to the Correlation Mod-

ule. It handles the integration of the two main data sources
and the Attack Graph Construction component. In this way,
it is possible to integrate the data sources as well as the cre-
ated attack graph itself by triggering the component.

IV. System Information and Vulnerability In-
formation

A. A Data Model for System Descriptions

Figure 2 shows the so-called System properties used to de-
scribe systems and networks.
System properties are characteristics and resources of a com-
puter system. Each system property describes one specific
attribute of such a system, whereas properties are related
to one another as depict in Figure 2. For example, the in-
stalled version of an application can be a system property.
An application’s version is meaningless if it cannot be linked
to a certain application. Properties and their relations may
change over time due to modifications, such that an appli-
cation may be upgraded to a newer version. System prop-
erties can be found in two layers, the network layer and the
software layer. The network layer describes properties of in-
terconnected computers, such as network addresses and port
numbers. The software layer describes properties of software
systems, such as programs, data, and account information.
A network is a group of directly connected network ad-
dresses. A network address is an identifier of a host in a
network. Directly connected means it is possible to reach
from one host of network another host of the same network.
Network addresses may have a number of open ports per ad-
dress which are used by programs to communicate with other
programs.
Also covered are host as well as port connectivity, both
are essential to capture which hosts and programs can be
reached. Host connectivity is a boolean value to describe
whether one host can be reached from another host. This
may be influenced by the network the corresponding hosts
are in or by firewall rules, preventing certain hosts to con-
nect to others.Port connectivity is a boolean value to describe
whether one port of a network address can be accessed from
another port of a network address. Similar to host connec-
tivity, this can be influenced by firewall rules or comparable

 100

Modeling Alerts for IDS Correlation

Figure. 2: System Properties

system configuration tools.

B. Using available Vulnerability Databases

In [7], existing vulnerability databases are analyzed concern-
ing their usability in attack graph construction. The 10 most
popular VDB providers were selected as the base for this
evaluation. Most valuable attributes of vulnerability entries
in this process include CVE identifiers, the impact of a vul-
nerability, the range from which an attack can be conducted,
and the required or affected programs. The Open Vulner-
ability and Assessment Language (OVAL) [30] provides a
framework to describe exploitable software configurations
affected by a vulnerability. Similar to the Common Vulner-
ability Scoring System (CVSS) [34], OVAL is standardized
and used by several organizations. In [7], only vulnerabil-
ity definitions are considered. Based on XML, such defi-
nitions consist of meta-data and criteria elements, whereas
criteria elements are recursive and therefore allow configura-
tion specifications at an arbitrary level of detail. Because
important attributes, such as the attack range and the im-
pact, are often described with a selection of English words,
the interpretation of textual descriptions cannot be neglected.
Not all information is available in CVSS format and OVAL
definitions also rely on the use of English phrases. Never-
theless, it has been demonstrated that verbalization is often
semi-formal and therefore easy to parse. The approach is
analyzed in term of correctness using the attributes of range
from which an attack can take place as well as which of the
three security goals confidentiality, integrity, and availability
can be violated by exploiting a vulnerability. The range in-
formation can be identified correctly in more than 90 percent
of the cases, confidentiality violations in almost 82 percent
of the cases, integrity violations in more than 85 percent, and
availability violations in almost 75 percent of the analyzed
descriptions.

C. A Data Model for Vulnerability Descriptions

To use vulnerability descriptions from different databases
in attack graph construction, these descriptions need to be
unified. We used a flexible and extensible data model
to unify vulnerability descriptions of multiple vulnerability
databases. As described in [8], the data model is capable to
express vulnerability descriptions provided by vulnerability
databases. The logical data model describes system, influ-
ence, and range properties. System properties describe states
a system can be in, e.g., running programs, existing accounts,
and existing databases. Influence properties describe the in-
fluence an attacker has on system properties by successful
exploitation. Range properties describe the location from
which an attacker can perform successful exploitation, e.g.,
local or remote. A vulnerability requires a precondition and
a postcondition, which can be represented by system prop-
erties. Two basic types are used for descriptions: properties
and sets. Properties represent predicates and sets allow a
grouping of properties based on boolean logic. Both types
facilitate a simple evaluation based on matching of True or
False values. Finally, descriptions link different system states
together, one as the requirement and the other as the result of
an attack. Based on this properties and sets, we can flexibly
describe many different system states.
System properties are characteristics and resources of a com-
puter system which are considered relevant vulnerability in-
formation. Each system property describes one specific at-
tribute of such a system, whereas properties are related to
one another. For example, the installed version of an appli-
cation can be a system property. An application’s version is
meaningless if it cannot be linked to a certain application.
Properties and their relations may change over time due to
modifications, such that an application may be upgraded to
a newer version. System properties can be found in two lay-
ers, the network layer and the software layer. The network
layer describes properties of interconnected computers, such
as network addresses and port numbers. The software layer
describes properties of software systems, such as programs,

Roschke, Cheng and Meinel101

data, and account information. We defined several different
system properties which are useful to create attack graphs,
such as network properties, host connectivity, programs, pro-
tocols, data, accounts, and others. To describe actions per-
formed on systems, influence properties will be used. Influ-
ence properties describe the relationship between a potential
attacker and system properties which represent computer re-
sources.

V. Extraction of Vulnerability Information

A prototype for automatic extraction of vulnerability descrip-
tions from vulnerability databases is used as described in [7].
The prototype will use a designed data structure as an ex-
change format between components which extract informa-
tion from various VDBs as well as components which out-
put information for attack graph tools and related applica-
tions. The prototype is based on plugins: so called readers
and writers. In the following, the extracting components will
be referred to as readers, because they read information from
a vulnerability database or some other source. Every reader
is able to extract information from a specific data source. For
example, an NVD reader is able to filter relevant attack in-
formation from the National Vulnerability Database (NVD)
[33]. The counterpart of readers are writers, which output
vulnerability information in different formats. Gathered data
can be read by various source, e.g., attack graph tools or vul-
nerability analysis programs. Thus, it is reasonable to pro-
vide a writer for each target application.
Readers such as the NVD Reader or the OVAL Reader trans-
form information from one XML representation into another
XML representation, but the transformed information re-
mains the same. The major benefit of this type of readers
is the increased amount of available vulnerability informa-
tion provided by a common vulnerability database which is
based on the data structure used in the implementation. The
CVE Reader on the other hand extracts information from tex-
tual descriptions of vulnerabilities. To be able to evaluate
how much of the encoded information can be retrieved, it is
useful to have a closer look at the extracted information. For
this, the retrieved data will be compared to the data which
is available in the form of CVSS entries. Those CVSS en-
tries provide range and impact information of vulnerabilities
in a standardized format. The NVD contains both, textual
descriptions as well as CVSS values for all entries. Both in-
formation sets should contain the same data, therefore the
comparison is based on these two sets. Note that this evalu-
ation aims not at the evaluation of vulnerabilities itself, but
rather at an analysis of how much of the information encoded
in textual descriptions can be extracted correctly.

VI. Remodeling IDS Alerts

The AG workflow involves three data sources that can be uti-
lized for IDS correlation: the system information, the vul-
nerability information, and the generated attack graph. There
are several useful parts of the system information that can be
used in the correlation process. First, we are using host con-
nectivity information to find attacks that are based on spoofed
packets. If an alert shows a SrcIP-DstIP pair and the hosts
have no connectivity, the alert is caused by a spoofed packet.

That prevents the suspicion of the wrong person or host. In-
formation on running OS and programs of a target host are
used to filter out alerts for less dangerous attacks and to set
high priority for very dangerous attacks. This can be useful
in case of many alerts for an attack to a Linux OS based host
when we know that a Windows OS is running on that host,
i.e., the attack is less dangerous as it is unlikely that it leads
to critical damage. Contrary, an alert for an attack on a Win-
dows host that runs Windows OS is critical. Account data is
used to identify accounts and persons for target and source
hosts of an attack. The target account is identified to inform
the responsible persons that their system is under attack. The
source account is identified to either track the attacker or in-
form the responsible persons of the attacking host that their
system is used to attack hosts in the network and might have
been compromised in the past.
We are using vulnerability information for remodeling the
alerts by enriching each alert with tagging information and
priorities. CVSS information is used to define the priority of
an IDS alert which is created for an attack exploiting the spe-
cific vulnerability. We are using the Base Score of CVSS and
tag each alert that can be assigned to a CVE with the specific
value. During the correlation, the system can be configured
to ignore scores below 5.0. On the frontend the system can
do ranking and filtering according to CVSS scores to help the
user with manual analysis. Additionally, the system shows
possible vulnerability information for generic alerts. If an
alert announces shellcode detection in a communication be-
tween host A and host B on port 445 or 139, the system lists
vulnerabilities for all SMB vulnerabilities (matching the host
OS and running programs if required). The system can also
order alerts due to the publication date of the related vulnera-
bility, e.g., showing alerts for more recent vulnerabilities first
before others.
The utilization of attack graph involves another type of graph
related to IDS: the Scenario Graph ([15], [36]). A scenario
graph represents a way of a recognized attack path through
the network. The system uses the attack graph to match the
scenario graph and identify subpathes in the attack graph. By
specifying important hosts, the system can generate new cor-
relation alerts if the attacker covered 70 − 80% of a known
attack path. It is also possible that the scenario graph re-
veals a new way an attacker walked through the network. In
this case the AG is updated. If a host is part of the scenario
graph, an actual attack is going on. IDS alerts that have such
a host as source IP are ranked with highest priority. In this
way, the network administrator can observe ongoing attacks
and take precautions using the attack graph showing possible
next steps of the attacker.
Apart from the introduced interactions between the AG
workflow and the IDS correlation and management, there
might be lots of other possibilities for interaction. The intro-
duced methods are implemented in our Advanced IDS Man-
agement Architecture [24]. The system uses a plugin concept
for many parts and is implemented in Java. It provides con-
nectors for popular IDS sensors (e.g., Snort [4], Samhain [3])
and for other IDS management systems (e.g., Prelude [5]).
The system uses multiple alert storages (In-Memory DBS,
column-based and row-based DBS) and has a plugin engine
for correlation modules. The frontend is implemented using

 102Modeling Alerts for IDS Correlation

Figure. 3: IDS AG Platform Screenshot

Java servlets.

VII. Integrating MulVAL with the Platform

The Multi-host, Multi-stage Vulnerability Analysis Lan-
guage Tool (MulVAL) is a research tool developed in [28]. In
contrast to other tools, the MulVAL application is based on
a logical programming approach. The required input data in-
cludes security advisories, the network configuration, as well
as the machine configuration of participating hosts. MulVAL
has been tested with a network of up to 1,000 machines with
up to 100 vulnerabilities.
To integrate the MulVAL tool, the operating data has to be
imported into the platform. MulVAL is using multiple data
inputs and one basic data output. The data inputs are de-
scribing the network information as well as the integrated
vulnerability information. The data inputs are formated in
predicates. There are different predicates for different kinds
of information. Vulnerability information is presented by
the predicate vulProperty(val1, val2, val3). The predicate
takes three values: val1 provides the CVE identifier, val2
provides the range of the vulnerability, e.g., local or remote,
and val3 provides the type, e.g., Denial-of-Service, privi-
lege escalation, etc. Network information is stored with
the predicates hacl(val1,val2, ,), NetworkServiceInfo(val1,
val2, val3, val4, val5), and vulExists(val1, val2, val3). The
predicate hacl() defines connectivity between hosts and net-
works. It can also be used to connect subnetworks and to
define hosts. The predicate NetworkServiceInfo() is used to
describe services running on hosts. It uses val1 to specify the
host, val2 to specify the software, val3 to define the trans-
port protocol (either tcp or udp), val4 to specify the port, and
val5 to define the user executing the software. The predicate
vulExists() defines if there are vulnerabilities present on the
different hosts. It uses val1 to define the host, val2 to provide

the CVE identifier, and val3 to specify the software.
Apart from the visual graph, the MulVAL reasoning engine
provides a temporary file with graph data which is used
abreast for graph visualization. The Attack Graph Construc-
tion component uses this file to visualize and represent the
created attack graph. For correct representation of the graph,
the platform needs to read the MulVAL input files as the
graph file does not provide enough information for IDS cor-
relation. The graph file provides information on all exist-
ing hosts that can be used to compromise a network, but
not on the specific vulnerabilities used to compromise one
host. This information is of special interest for IDS correla-
tion. The prototype of the platform and its AG visualization
is shown in Figure 3.

VIII. Conclusion

A promising future task is to find and connect more applica-
ble data sources to the system, e.g., historic user and system
data can be used for forensics and correlation of IDS alerts
over a long period of time. The system needs extensive per-
formance tests and scalability tests, as the current testing is
using a dataset of 1.3 million alerts generated from one Snort
sensor. The attack graph is created on a relatively small net-
work of 10 hosts. The system shows sufficient performance
with this network configuration, but it needs to be evaluated
based on large networks. Usability tests of the network ad-
ministrators using this platform need to be conducted in the
future to prove that the system and its algorithms improve
their workflow. The extraction of information from exploit
databases is also considered as interesting research topic and
valuable source of information for the IDS and correlation
process.
In this paper, we propose a new model of IDS Alert by inte-
grating the AG workflow with an IDS management system to

Roschke, Cheng and Meinel103

improve correlation quality. The approach uses the informa-
tion sources of the AG workflow: vulnerability information,
system information, and the calculated graph. The vulnera-
bility and system information is used to prioritize and tag the
incoming IDS alerts. The AG is used during the correlation
process to filter incorrect correlation results. An architecture
is described consisting of an Event Gatherer, a Correlation,
an Attack Graph Construction module, and a Frontend for
the user. The Correlation Engine works based on pluggable
Correlation Modules and uses the Alert Storage, the Vulner-
ability Information and System Information as input. The
Frontend works on alert information which is already tagged
and filtered based on the Vulnerability Information and Sys-
tem Information. A prototype is implemented using unified
data models for system information and vulnerability infor-
mation.

References

[1] Laureano, M., Maziero, C., Jamhour, E.: Protect-
ing host-based intrusion detectors through virtual ma-
chines. Computer Networks, Vol. 51, Issue 5, pp. 1275-
1283 (2007).

[2] F-Secure Linux Security: http://www.f-
secure.com/linux-weblog/ (accessed Dec 2010).

[3] Samhain IDS: WEBSITE: http://www.la-
samhna.de/samhain/ (accessed Dec 2010).

[4] Snort IDS: WEBSITE: http://www.snort.org/ (accessed
Dec 2010).

[5] Prelude IDS: WEBSITE: http://www.prelude-ids.com/
(accessed Dec 2010).

[6] Debar, H., Curry, D., Feinstein, B.: The Intrusion
Detection Message Exchange Format, Internet Draft,
Technical Report, IETF Intrusion Detection Exchange
Format Working Group (July 2004).

[7] Roschke, S., Cheng, F., Schuppenies, R., and Meinel,
Ch.: “Towards Unifying Vulnerability Information
for Attack Graph Construction”, In: Proceedings of
the 12th Information Security Conference (ISC’09),
Springer LNCS, vol. 5735, pp. 218-233, Pisa, Italy (Sep
2009).

[8] Cheng, F., Roschke, S., Schuppenies, R., and Meinel,
Ch.: “Remodeling Vulnerability Information”, In: Pro-
ceedings of the 5th Inscrypt Conference (Inscrypt’09),
Springer LNCS 6151, Beijing, China, pp.324-336 (Dec
2009).

[9] Sadoddin, R., Ghorbani, A.: Alert Correlation Survey:
Framework and Techniques, In: Proceedings of the In-
ternational Conference on Privacy, Security and Trust
(PST’06), ACM Press, Markham, Ontario, Canada, pp.
1-10 (Oct 2006).

[10] Mitre Corporation: Common Vulnerabilities and Expo-
sures (CVE), Website: http://cve.mitre.org/ (accessed
Dec 2010).

[11] Julisch, K.: Clustering intrusion detection alarms to
support root cause analysis, In: ACM Transactions on
Information and System Security, vol. 6, Issue 4, pp.
443-471 (2003).

[12] Cuppens, F.: Managing alerts in a multi-intrusion de-
tection environment, In: Proceedings of the 17th An-
nual Computer Security Applications Conference (AC-
SAC’01), IEEE Press, New-Orleans, USA, pp. 0-22
(Dec 2001).

[13] Valdes, A., and Skinner, K.: Probabilistic alert cor-
relation, In: Proceedings of the 4th International
Symposium on Recent Advances in Intrusion Detection
(RAID’01), CA, USA, Springer LNCS 2212, pp.54-68
(Oct 2001).

[14] Debar,H., and Wespi, A.: Aggregation and correlation
of intrusion-detection alerts, In: Proceedings of the 4th
International Symposium on Recent Advances in Intru-
sion Detection (RAID’01), CA, USA, Springer LNCS
2212, pp. 85-103 (Oct 2001).

[15] Ning, P., Cui, Y., and Reeves, D.: Constructing attack
scenarios through correlation of intrusion alerts, In:
Proceedings of the 9th ACM Conference on Computer
and Communications Security (CCS’02), ACM Press,
Washington, DC, USA, pp. 245-254 (2002).

[16] Qin, X.: A Probabilistic-Based Framework for IN-
FOSEC Alert Correlation, PhD thesis, Georgia Insti-
tute of Technology (2005).

[17] Qin, X.: Statistical causality analysis of infosec alert
data, In: Proceedings of the 6th International Sym-
posium on Recent Advances in Intrusion Detection
(RAID’03), PA, USA, Springer LNCS 2820, pp. 73-93
(Sep 2003).

[18] Manganaris, S., Christensen, M., Zerkle, D., and Her-
miz, K.: A data mining analysis of rtid alarms, In:
Computer Networks, vol. 34, Issue 4, pp. 571-577
(2000).

[19] Siraj, A., and Vaughn, R. B.: A cognitive model
for alert correlation in a distributed environment, In:
Proceedings of the IEEE International Conference on
Intelligence and Security Informatics (ISI’05), IEEE
Press, Atlanta, GA, USA, pp. 218-230 (May 2005).

[20] Ning, P., Xu, D., Healey, C. G., and Amant, R. S.:
Building attack scenarios through integration of com-
plementary alert correlation method, In: Proceedings
of the Network and Distributed System Security Sym-
posium (NDSS’04), The Internet Society, San Diego,
California, USA (2004).

[21] Porras, P., Fong, M., and Valdes, A.: A mission-impact-
based approach to infosec alarm correlation, In: Pro-
ceedings of the 5th International Symposium on Recent
Advances in Intrusion Detection (RAID’02), Zurich,
Switzerland, Springer LNCS, pp. 95-114 (2002).

 104Modeling Alerts for IDS Correlation

[22] Tedesco, G. and Aickelin, U.: Real-Time Alert Cor-
relation with Type Graphs, In: Proceedings of the 4th
international Conference on Information Systems Secu-
rity (ISS’09), Springer LNCS 5352, Hyderabad, India,
pp. 173-187 (2008).

[23] Ning, P. and Xu, D.: Adapting Query Optimization
Techniques for Efficient Intrusion Alert Correlation,
Technical Report, North Carolina State University at
Raleigh (2002).

[24] Roschke, S., Cheng, F., and Meinel, Ch.: An Advanced
IDS Management Architecture, In: Journal of Informa-
tion Assurance and Security, Dynamic Publishers Inc.,
vol. 51, Atlanta, GA 30362, USA, ISSN 1554-1010, pp.
246-255 (Jan 2010).

[25] Schneier, B.: Attack Trees: Modeling Security Threats,
In: Journal Dr. Dobb’s Journal, online available from
http://www.ddj.com/architect/184411129 (Dec 1999)

[26] Sheyner, O., Haines, J., Jha, S., Lippmann, R., and
Wing, J. M.: Automated Generation and Analysis of At-
tack Graphs, In: Proceedings of the 2002 IEEE Sympo-
sium on Security and Privacy (S&P’2002), IEEE Press,
Washington DC, USA, pp. 273-284 (May 2002)

[27] Noel, S., and Jajodia, S.: Managing attack graph com-
plexity through visual hierarchical aggregation, In:
Proceedings of the Workshop on Visualization and Data
Mining for Computer Security (VizSEC/DMSEC 2004),
ACM, Washington DC, USA, pp. 109-118 (Oct 2004)

[28] Ou, X., Govindavajhala, S., and Appel, A.: Mul-
VAL: A Logic-based Network Security Analyzer, In:
Proceedings of the 14th USENIX Security Symposium,
USENIX Association, Baltimore, MD, pp. 8 (Aug
2005).

[29] OSV Database: Open source vulnerability database,
Website: http://osvdb.org/ (accessed Mar 2010).

[30] Mitre Corporation: Open Vulnerability and Assessment
Language (OVAL), Website: http://oval.mitre.org/ (ac-
cessed Mar 2010).

[31] Secunia: Secunia Advisories, Website:
http://secunia.com/advisories/ (accessed Mar 2010).

[32] SecurityFocus: Security Focus Bugtraq, Website:
http://www.securityfocus.com/ (accessed Mar 2010).

[33] NIST: National Vulnerability Database (NVD), NVD
Website: http://nvd.nist.gov/ (accessed Mar 2010).

[34] Mell, P., Scarfone, K., and Romanosky, S.: A complete
guide to the common vulnerability scoring system ver-
sion 2.0, Website: http://www.first.org/cvss/ (accessed
Mar 2010).

[35] Franqueira, V., and van Keulen, M.: Analysis of the
NIST database towards the composition of vulnerabil-
ities in attack scenarios, Technical Report, TR-CTIT-
08-08, University of Twente, Enschede, February 2008.

[36] Hughes, T., Sheyner, O.: Attack scenario graphs for
computer network threat analysis and prediction, In:
Journal of Complexity, Wiley Periodicals, Inc., Vol. 9,
Issue 2, pp. 15-18 (2004).

Author Biographies

Sebastian Roschke studied IT-System-Engineering from
2003 to 2009 at the Hasso-Plattner-Institute (HPI), Univer-
sity of Potsdam. He got his B.Sc. degree in 2007 and his
M.Sc. degree in 2009. He is now working as a PhD student
at the chair of Prof. Dr. Christoph Meinel. His research
interest focuses on Intrusion Detection, Attack Graph, Virtu-
alization, and practical attack techniques.

Feng Cheng is a research associate at Hasso-Plattner-
Institute (HPI) at University of Potsdam, Germany. In 1998,
he got B.Eng. degree from Beijing University of Aeronau-
tics and Astronautics, China. In 2002, he got M.Eng. degree
on Computer Science at Beijing University of Technology,
China. There he has done many research works on image
processing, JPEG2000 and digital watermarking. From Oc-
tober 2002 to April 2005, he worked as a research assistant
at University of Trier. Since April 2005, he started to work
at Hasso-Plattner-Institute in Potsdam, Germany. His current
research interests include network security, firewalls, secure
data transmission, and physical separation technology.

Christoph Meinel studied from 1974-79 Mathematics and
Computer Sciences at the Humboldt-University in Berlin.
He received his PhD degree in 1981. From 1981-1991
he worked at the Department of Mathematics at the Hum-
boldt University and at the Institute of Mathematics of the
Academy of Sciences in Berlin as a scientific co-worker.
1988 he received his habilitation degree with a thesis about
complexity theory that was published in the series of the
Springer Lecture Notes (Vol. 370). After a research stay
at the University of Saarbruecken and a visiting position at
the University of Paderborn from 1992 to 2004 he worked as
a full professor (C4) for computer science at the university of
Trier. He received various offers to become a full professor
at universities in Germany, Austria, and Norway. 2004 he ac-
cepted the offer to become the director of the Hasso-Plattner-
Institute (HPI) and professor at the University of Potsdam.

Roschke, Cheng and Meinel105

