
A Cooperative Model for Resource Sharing on Grid
Alessio Merlo

Dipartimento di Informatica, Sistemistica e Telecomunicazioni (DIST), University of Genova
Via all’Opera Pia 13, 16145, Genova (Italy)

alessio.merlo@dist.unige.it

Abstract: The access to Grid resources depends on policies de-
fined by the administrators of the physical organizations and of
the Grid middleware. This approach does not require support
for access control in the middleware, but since changes in the
access control policy of the Virtual Organization imply the in-
volvement of one or more administrators, it lacks the flexibility
needed in several application scenarios. In this paper we pro-
pose a group-based access control model for Grid environments
that increases the flexibility of the access control model offered
by state-of-the-art Grid platforms without requiring changes in
the middleware. The approach is based on collaboration among
Grid users and allows them to exchange access permissions to
Virtual Resources without the intervention of administrators.
We show that our solution can be defined on top of the ac-
cess control mechanisms offered by state-of-the-art Grid mid-
dleware and illustrate how the proposed model can be imple-
mented as a service in a service-oriented Grid environment.

Keywords: cooperative access control, service oriented grid,
globus toolkit

I. Introduction

The Grid Computing paradigm aims to realize a common dis-
tributed environment in which resources are shared and ac-
cessed by many users independently from the organizations
the users and the resources belong to. Grid Computing has
been motivated by the waste of resources that generally af-
fects the management of single administrative domains.
In fact, administrative domains (e.g. a company) usually
make partial use of the available computational, storage and
network resources and an effective usage of the available re-
sources is commonly perceived as a key challenge [1].
Grid Computing middleware (e.g. Globus Toolkit 4 [2] and
gLite [3]) tackles the problem by providing a virtualization
layer that allows for the creation and management of Vir-
tual Organizations (VOs) on top of Physical Organizations
(POs), i.e. the administrative domains. Physical Resources
(PRs) (e.g. CPU, RAM, disk storage) in different POs are
then mapped into VRs, thereby making them accessible out-
side the boundaries of the POs they belong to.
A user of a PO (e.g. a researcher in a University) needs a
Grid User (GU) identity in order to access VRs. (A GU is
uniquely identified by an identifier that constitutes an entry
point to the Grid.) VRs are more complex structures than
PRs and individual VRs usually comprise different PRs. For

PR 1 PR 2 PR 3 PR 4 PR 5

VR 1 VR 2

PU
1

PU
2

PU
3

PU
4

PU
5

PU
6

PU
7

PU
8

PU
9

PU
10

GU 1

GU 2

Figure. 1: Cross-layer Grid access control

instance, an execution service (e.g. the GRAM service of the
Globus Toolkit [2]) is made of different PRs like disk storage,
RAM and CPU. Similarly, a GU is associated with a set of
Physical Users (PUs - e.g. accounts on different machines
possibly belonging to different POs).
The mappings between GUs and PUs and between VRs and
PRs are kept in specific files and structures in current Grid
middleware (e.g. the grid-mapfile in the middleware
GT4) that can be manipulated only by the local Grid admin-
istrator (e.g. the globus user, a non-privileged account that
has access to configuration files and structures in GT4).
By means of virtualization Grid middleware extends the vis-
ibility and accessibility of PRs, but this unavoidably compli-
cates access control.
In a PO the access control policy is managed by an adminis-
trator who directly specifies the access privileges that regis-
tered users have on the available PRs.
In a VO access control is inherently distributed as there is no
single administrator of the Grid. Moreover the PRs associ-
ated with the VRs are subject to the security policies defined
by the administrator of the respective POs.
Thus, the access control policy at the Grid layer depends on
the access control policy at the Physical layer as well as on
the mappings that relate GUs and VRs with PUs and PRs
respectively, as exemplified in Fig. 1.
This approach does not require support for access control in
the middleware, but since changes in the access control pol-
icy of the VO imply the involvement of the administrators
of the POs participating in the VO and/or of the local Grid
administrator, it lacks the flexibility needed in several appli-
cation scenarios. For instance, in collaborative environments

Journal of Information Assurance and Security
ISSN 1554-1010 Volume 6 (2011) pp. 106-114
© MIR Labs, www.mirlabs.net/jias/index.html

Dynamic Publishers, Inc., USA

(e.g. research institutions) it is desirable to give GUs the free-
dom to share their access to VRs with other trusted GUs at
their discretion. Also, in mission-critical applications (e.g.
[4] and [5]) unexpected events may require a GU to access to
VRs that the security policy as defined by the POs layer and
at the Middleware layer would prevent.
In this paper we propose a group-based access control model
for Grid environments that increases the flexibility of the ac-
cess control model offered by state-of-the-art Grid platforms
without requiring changes in the middleware. Our approach
is based on collaboration among Grid users and allows users
to share access permissions to VRs without the intervention
of administrators.
We show that our solution can be defined on top of the access
control mechanisms offered by state-of-the-art Grid middle-
ware. This makes our approach non invasive and adaptable
to different middlewares. In fact, non invasiveness frees the
middleware from the burden of implementing proper con-
nectors or extensions to support dynamic groups (that are
implemented as common grid resources); as a consequence,
the dynamic group model can be adapted to different general
purpose middlewares.
Structure of the paper. In Sect. II we introduce the access
control model in Grid environments and discuss its limita-
tions. In Sect. III we present our extension to access con-
trol based on dynamic groups, while in Sect. IV we analyze
how our model of dynamic groups can be effectively imple-
mented on top of an existing Grid middleware in a non in-
vasive way. Finally, in Sect. V we discuss the related works
and in Sect. VI we draw some conclusions.

II. A model for Grid Access Control

Three layers are involved in the authorization decisions in
Grid environments: the physical layer, the middleware layer
and the Grid layer.

• Physical layer. The single administrative domains
level. At this level, PUs are granted access to PRs
according to the access control policy of the POs and
enforcement of the access control policies is thus left
to POs. For instance, a cluser of computers running
the UNIX operating system will rely on the UNIX ac-
cess control mechanisms to implement and enforce the
access control policy of the PO they belong to. Let
PO1, . . . , POn be POs that participate in the VO. We
model the access control policy of POi as the triple
PACi = 〈PRi, PUi, PAi〉, where PRi is the set of
PRs, PUi is the set of PUs, and PAi ⊆ (PRi ×
PUi) is the permission assignment relation of POi, for
i = 1, . . . , n. We assume that the sets of PUs and
PRs in different domains are mutually disjoint, i.e. that
PRi∩PRj = ∅ e PUi∩PUj = ∅ for all i, j = 1, . . . n
with i 6= j. We define PAC = 〈PR,PU, PA〉,
where PR =

⋃n
i=1 PRi, PU =

⋃n
i=1 PUi and PA =⋃n

i=1 PAi.

• Middleware layer. The Middleware layer is respon-
sible for virtualizing the PRs of the single administra-
tive domains into VRs of the VO. The middleware layer
keeps track of the user correspondence between GUs

and PUs as well as the resource correspondence be-
tween VRs and PRs:

– User Mapping: UR = 〈GU,PU,UM〉, where
GU is the set of GUs in the VO, PU =

⋃n
i=1 PUi

is the set of PUs in the different POs and UM ⊆
(GU ×PU) is the user mapping relation. In GT4
this mapping is stored in the grid-mapfile
and is only modifiable by the globus user.

– Resource Mapping: RR = 〈V R,PR,RM〉, V R
is the set of VRs in the VO, PR =

⋃n
i=1 PRi

is the set of PRs and RM ⊆ (V R × PR) is the
resource mapping relation. In GT4 this mapping
is defined in internal structures of the middleware
and in the Monitoring and Discovering Service
(MDS). The MDS is a basic service of GT4 that
acts as an index of the services publicly available
in the Grid.

• Grid layer. The Grid layer consists of the GUs and the
VRs of the VO. At this layer, access control amounts to
deciding whether any given GU gu is entitled to access
a given VR vr. This depends on whether the PUs as-
sociated with gu have enough permissions to get access
to the PRs associated with vr according to the access
control policies of the respective POs. We model the
access control policy at this layer by the triple GAC =
〈GU, V R,GA〉, where GU and V R are the sets of GUs
and VRs of the VO respectively and GA ⊆ (GU×V R)
is the permission assignment relation at the Grid level
and is such that (gu, vr) ∈ GA if and only if for all
pr such that (vr, pr) ∈ RM there exists pu such that
(gu, pu) ∈ UM and (pu, pr) ∈ PA. If (gu, vr) ∈ GA,
then we say that gu is granted access to vr according to
GAC. The access control policy at the Grid layer there-
fore entirely depends on the access control policy and
mappings defined at the lower layers.

To illustrate, consider the scenario in Fig. 1, where VRs V R1

and V R2 correspond to the POs PO1 and PO2 respectively.
V R1 is mapped to PR1 and PR2, and V R2 to PR3, PR4,
PR5). Each of these PRs is then accessible by two PUs
(i.e. PRk accessible by PU2k−1and PU2k). We then sup-
pose that GU1 is associated to PU2i−1, i ∈ 1, 2, and GU2 to
PU2i−1, i ∈ 3, 4, 5. We obtain that each V Ri is accessible
by the GUi belonging to users of POi.
Let PR = {PR1, . . . , PR5}, PU = {PU1, . . . , PU10}
and GU = {GU1, GU2}. According to the model
in Sect. II, the access control relations are PAC =
〈PR,PU, {(PU1, PR1), (PU2, PR1), . . . , (PU10, PR5)}〉,
UR = 〈GU,PU, {(GU1, PU1), (GU1, PU3), . . . ,
(GU2, PU5), (GU2, PU7), (GU2, PU9)}〉, RR =
〈{V R1, V R2}, PR, {(V R1, PR1), (V R1, PR2), (V R2, PR3),
(V R2, PR4), (V R2, PR5)}〉 and therefore GAC =
〈GU, {V R1, V R2}, {(GU1, V R1), (GU2, V R2)}〉.
In this configuration, each GU can access a single VR only
and, for instance, GU2 is not allowed to access V R1.
The main limitation of the approach manifests itself in the
previous scenario when a new permission assignment is re-
quired at the Grid layer, e.g. the need for GU2 to access V R1.
Since such a permission relies on low level mappings and
assignment relations, it requires the extension of the sets UM

Merlo107

and PA. In detail, the addition of the pair (V R1, GU2) to
GA can be achieved by

1. adding two users, say PU11 and PU12, for accessing
PR1 and PR2 respectively at the Physical layer; this
also means that PAC must be also extended so that both
(PU11, PR1) ∈ PAC and (PU12, PR2) ∈ PAC;

2. adding the correspondence between GU2 and the new
PUs PU11 and PU12 to UM by the Middleware admin,
i.e. UM must be extended so that both (GU2, PU11) ∈
UM and (GU2, PU12) ∈ UM .

The previous operations are carried out by different admin-
istrators. The addition of PU11 and PU12 in the set of PU
is made by the PO administrator (i.e. the root user) while the
new permission assignments can be made by the adminis-
trator and the unprivileged user that possesses the resources
(e.g. PU1 for PR1). At the middleware layer, the resources
and the user mappings (2) are defined and changed by the
Grid administrator, e.g. the globus user in GT4.
With reference to our model, the root user defines the rules
in PAC, by adding and removing accounts on the machine
(PUs) while the globus user defines the mappings in UM
(e.g. by editing the grid-mapfile) and in RM (e.g. by
properly configuring the MDS and the middleware).

III. Group-Based Access Control

Informally a group is a set of users sharing the same set of
permissions on a set of resources. In Unix-like operating
systems, each user can be member of one or more groups.
Each resource (i.e. a file) has a single owner and is associated
with a single group. Moreover each resource is associated
with an access control list (ACL) stating which permissions
are granted to (i) the owner, (ii) the members of the group and
(iii) all other users. Only the owner of a resource (besides the
system administrator) can modify the ACLs of the resources
she owns.
The idea of dynamic groups we propose for the Grid layer
has some similarity to that of groups used in UNIX-like op-
erating systems but differs also in some important aspects.
Dynamic Groups are managed at the Grid layer and built on
the top of the Grid model we have previously defined.
As illustrated before, each GU is allowed to access a set of
virtual resources. Our extended models allows GUs to create
and delete groups as well as join and leave groups.
The addition of dynamic groups to the Grid layer can be
modelled as follows.
Let GAC = 〈GU, V R,GA〉 be the access control pol-
icy at the Grid layer as defined in Sect. II. The group-
based access control policy at the Grid layer is a tuple
GAC+ = 〈GAC,Grp,GrpU,GrpAC〉, where Grp is the
set of groups, GrpU ⊆ (Grp × GU) is the group mem-
bership relation and GrpAC ⊆ (Grp × V R) is the group
permission assignment relation. We say that grid user gu is
granted access to virtual resource vr according to GAC+ if
and only if (i) gu is granted access to vr according to GAC,
i.e. (gu, vr) ∈ GA, or (ii) there exists grp ∈ Grp such that
(grp, vr) ∈ GrAC and (grp, gu) ∈ GrpU .
The policy GAC+ is defined on top of the policy GAC and
can be modified by changing GAC or by means of a set of

actions that support the creation or deletion of groups, the ad-
dition or removal of user from groups as well as the addition
or removal of elements from the pool of shared resources.
The creation and destruction of dynamic groups, the admis-
sion and removal of users from groups, and the management
of shared resources are regulated by security policies that de-
fine under which conditions these activities can be carried
out. For instance, a GU belonging to a group can leave or be
removed from the group.
In the first case, a group can be left voluntarily, for instance,
when the GU has no more interest in accessing the shared
resources; in the second case, the removal can be decided as
a response to an abuse.
In both cases, the action is possible only if they comply with
the security policies associated with the groups. We distin-
guish between meta policies and group policies.
A meta policy governs the creation and destruction of groups.
Meta policies are valid for a set of groups (e.g. all groups in
a VO) and define conditions that must be met to modify the
GAC+. For instance, examples of rules in a meta policy
are: limiting the number of active groups in a VO (i.e. the
maximal cardinality of Grp), allowing the destruction of a
group only if there are no active members or stating that a
user can delete only groups she created. Meta policies are
defined once by the administrator of the VOs.
A group policy governs the group membership and regards
users and resource shared within a group. A group policy
defines conditions for entering and leaving the group as well
as the conditions under which a VR can be shared within the
group. The group policy of a group is independend from the
groups policies of other groups. A group policy is defined by
the some user (e.g. the user that created the group) but it does
not override the meta policy. For instance, a group policy can
require a GU to share access to resources in order to join the
group or can eliminate a GU from the group as soon as she
stops sharing permissions.
The definition of meta-policies, group policies, and the type
of requests for admission, removal and leaving a group are
out of the scope of this paper. Here we focus on opera-
tions that modify the GAC+ and assume that both MPol
and GrPol are are the meta policy and the group policy re-
spectively.
We now present the primitive operations that allows
for changes in the group-based access control policy at
the Grid layer, distinguishing between group manage-
ment operations (subject to MPol) and group member-
ship operations (subject to GrPol). Let GAC+ =
〈GAC,GrpId,GrpU,GrpAC〉 be a group-based access
control policy. Let gu ∈ GU , then the group management
operations are defined as follows:

• Group creation. The execution of the com-
mand CreateGroup(grp) by gu on GAC+

yields a new group-based access con-
trol policy GAC+

1 = 〈GAC,GrpId ∪
{grp}, GrpU [{gu}/grpid], GrpAC〉,1 if MPol
is satisfied, otherwise GAC+

1 = GAC+.

• Group deletion. The execution of the command

1If f : X → Y , then f [y0/x0] denotes the function f ′ : X → Y such
that f ′(x0) = y0 and f ′(x) = f(x) for all x ∈ X \ {x0}.

 108

A Cooperative Model for Resource Sharing on Grid

DeleteGroup(grp) by gu against GAC+ yields a
new group-based access control policy GAC+

1 =
〈GAC,Grp \ {grp}, GrpU,GrpAC〉, if all conditions
in MPol are satisfied, otherwise GAC+

1 = GAC+.

Group membership operations on users and resources are de-
fined in the following way:

• User addition to group. Let grp ∈ Grp and
{gu, gu′} ⊆ GU . The execution of the command
AddUserToGroup(grp, gu) by gu′ against GAC+

yields a new group-based access control policy
GAC+

1 = 〈GAC,Grp,GrpU [GUs/grpid], GrpAC〉
where GUs = GrpU(grp) ∪ {gu}, if the adding of gu
satisfies the conditions in the GrPol of grp, otherwise
GAC+

1 = GAC+.

• Resource addition to group. Let grp ∈ GrpId, gu ∈
GU and vr ∈ V R. The execution of the com-
mand AddResourceToGroup(grp, vr) by gu against
GAC+ yields a new group-based access control policy
GAC+

1 = 〈GAC,Grp,GrpU,GrpAC ∪{(grp, vr)}〉,
if gu is granted access to vr according to GAC and the
vr addition satisfies conditions in GrPol(grp), other-
wise GAC+

1 = GAC+.

• Resource removal from group Let grp ∈ GrpId, gu ∈
GU and vr ∈ V R. The execution of the command
RemoveResourceFromGroup(grp, vr) by gu against
GAC+ yields a new group-based access control policy
GAC+

1 = 〈GAC,Grp,GrpU,GrpAC \ {(grp, vr)}〉,
if gu is granted access to vr according to GAC,
(grp, vr) ∈ GrpAC) and the removal satisfies condi-
tions in the corresponding GrPol, otherwise GAC+

1 =
GAC+.

• User removal/leaving from group. Let grpid ∈
Grp and {gu, gu′} ⊆ GU . The execution of
the command RemoveUserFromGroup(grp, gu) by
gu′ against GAC+ yields a new group-based ac-
cess control policy GAC+

1 = 〈GAC,Grp,GrpU \
{(grp, gu)}, GrpAC \ {(grp, V)}〉 with ∀(grp, V) ∈
GrACs.t.(gu, V) ∈ GA if the removal of gu satisfies
the conditions in GrPol(grpid), otherwise GAC+

1 =
GAC+. If gu = gu′ then the operation corresponds to
a voluntary leaving of the user from the group.

In Sect. II we discussed the difficulties associated with
changing permissions so to allow GU2 to access V R1. With
the extension to dynamic groups, the access to the resource
can be obtained as follows:

1. GU1 invokes CreateGroup(GrpGU1
) to build a group.

GrpGU1
is a new group and the associated group policy

is defined.

2. GU1 invokes AddResourceToGroup(GrpGU1
, V R1)

to share access to V R1 in the group.

3. GU2 requests admission to the group and GU1 invokes
AddUserToGroup(GrpGU1

, GU2) to add GU2 to the
group.

4. Similarly, once GU2 asks to share the ac-
cess to V R2 within the group, GU1 invokes

PR 1 PR 2 PR 3 PR 4 PR 5

VR 1 VR 2

PU
1

PU
2

PU
3

PU
4

PU
5

PU
6

PU
7

PU
8

PU
9

PU
10

GU 1 GU 2

Dynamic Group

Figure. 2: A group-based access control policy

AddResourceToGroup(GrpGU1 , V R2) for adding
the V R2 to the pool of shared resources.

This leaves us with a group-based access control policy
GAC+ = 〈GAC, {GrpGU1}, GrpU,GrpR〉, where

• GrpU(X) = {GU1, GU2} if X = GrpGU1
, and

GrU(X) = ∅ elsewhere.

• GrpR(X) = {V R1, V R2} if X = GrpGU1
, and

GrR(X) = ∅ elsewhere.

which is depicted in Fig. 2.

IV. Implementing Group-based Access Control
in GT4

The group-based access control model can be implemented
as a service [6] in a Service Oriented Grid middleware as
Globus Toolkit 4 (GT4). We do not consider pre-WS mid-
dleware since the SOA paradigm is by now supported by all
state-of-the-art Grid platforms and it provides a higher level
of generality and compatibility.
We show how group-based access control can be imple-
mented as a Factory Grid Service using the standard technol-
ogy of Grid Services in GT4 and show how GUs can exploit
the functionalities of GT4 in order to join groups and sharing
accesses.

A. Introducing GT4 Technologies

We briefly introduce here the characteristics of GT4 which
are used in the proposed implementation.

1) Factory Grid Services and MDS

In GT4 a VR is defined as a Grid Service and it is uniquely
identified with a URL. A Grid Service is an improved Web
Service that is both stateful and transient. Statefulness means
that actions made by GUs to the VR affect the VR, whereas
transiency means that VRs can be created and destroyed on
demand. The set of operations that GUs can invoke on a VR
is the interface of the VR and is described in a Web Service
Definition Language (WSDL) document [7]. VRs are pub-
lished to the Monitoring and Discovery Service, which acts
as an index service.

Merlo109

In a Grid, an index service is a proper grid service devoted to
collect information on active Grid Service. In practice, each
new built Grid Service provides information (i.e. the WSDL
interface plus some additional information like the URL of
the VR, its internal state, . . .) to the index service. Thus,
GUs can get information on the available Grid Services by
querying an MDS Index service.
In GT4 there are no limitations on the way a Grid Ser-
vice (and hence VRs) can be implemented and published on
MDSs. Yet, it is often convenient to use some pre-defined
Grid Service patterns. The Factory Grid Service suits our
needs. A Factory Grid Service (FGS) is a meta-service that
builds on-demand a service whose interface is specified in a
WSDL document.
Interfaces of a FGS are very simple and support only opera-
tions for creating or deleting an instance of the given service.
Each sub-service is created or deleted in response to the invo-
cation of methods in the interface of the FGS. A pre-defined
service in a FGS has a proper WSDL interface that is cus-
tomized once the sub-service is built by the FGS. Thus, an
URL is associated with it and it can be automatically regis-
tered to the MDS. Destruction of sub-services can be auto-
matic (i.e. when the activity of the sub-service terminates)
or it can be terminated by the creating user by invoking the
method of the FGS.
The Globus Resource Allocation Manager service (GRAM)
is a built-in FGS of GT4. It is basically composed of a
FGS (ManagedJobFactoryService) that manages job ex-
ecutions on demand.
In order to execute a new job, the the use provides
the GRAM service with a description of the job. The
ManagedJobFactoryService identifies the user, builds a
proper instance (ManagedJobService) that corresponds to
an execution environment, returns the URL of the instance to
the user, and finally registers the new service to the MDS.
At this point, the any user can access the
ManageJobService instance autonomously through
its own interface, as any other Grid Service. The Factory
Service of the GT4 GRAM is depicted in Fig. 3.
Each FGS identifies any requesting GU and binds her iden-
tity to the instance created. The instance is initially accessi-
ble by the GU that has required the creation of the instance
to the FGS.

2) Permissions in GT4

In GT4 each GU is associated with a public key certificate
issued by a given Certificate Authority (CA). Without loss of
generality we assume that each GU has an unique identifier
included in her certificate.
The access of a GU to a VR is based on the use of temporary
public key certificates called proxies [9]. Proxies are gen-
erated by GUs by using their own main certificates and are
signed by the GUs themselves instead of the CA. For secu-
rity reasons the life-time of proxies is considerably shorter
than that of the main certificates. (The default life-time of
proxies is set to 5 days in GT4.) Proxies are mainly used for
delegation as any principal possessing a proxy is granted the
same permissions as the GU who issued it.
All accesses in GT4 are made through valid proxies. For
instance, in order to access a VR V Ry a GU GUx builds and

Figure. 3: The Factory Service of the GT4 GRAM

(self-)signs a new proxy, and uses it for accessing V Ry . In
the following, we write Px(GUx) to denote a valid proxy
generated by GUx.
From a general perspective, the use of proxies characterizes
GT4 as an identity-based authorization middleware, i.e. each
VR keeps the list of the GUs that are authorized to access
it. A proxy Px(GUx) identifies the user GUx that signed
it. Thus, any other user that possesses Px(GUx) is automat-
ically authorized to access the same resources that GUx is
permitted to access.

B. Group-based Access Control as a FGS with Proxies

The previously analyzed characteristics of GT4 allow us to
implement the group-based access control policy presented
in Sect. III as a VR through the definition of a FGS, say
GroupManagerService (GMS).
We assume that a GMS service is implemented in a VO sup-
porting our Group-based access control model. Proxies pro-
vide an efficient way to share accesses to resources among
group users.

1) Building GMS and Groups Services

At first, the GMS is built as a FGS in GT4 with an initial in-
ternal status containing the meta-policy, the WSDL interface
and information describing the state of the service. All these
data are considered public.
The meta policy is defined by the administrator of the
VO, namely the globus user. The WSDL interface con-
tains only two methods for creating and destroying groups
that directly implements the CreateGroup(info) and
DeleteGroup(grp) operations related to the GAC+. Other
information are related to the active groups.
The invocation of CreateGroup(info) by a GU, yields a
DynamicGroup instance by the GMS. To this end, the user

 110A Cooperative Model for Resource Sharing on Grid

must provide information on the characteristics of the group
(e.g. the group policy) in the info parameter. If the meta-
policy is satisfied, then the DynamicGroup Service is cre-
ated and the URL of the group service is returned to the user
and registered to both the MDS.
The URLs of the active DynamicGroup instances are also
stored in the GMS. Thus, other GUs can discover active
DynamicGroups services by querying the GMS and the
MDS. The information provided by these services on each
DynamicGroup includes the group policy, the list of par-
ticipating users, and the shared resources.
The DynamicGroup interface contains the four methods we
defined in Sect. III (namely AddUserToGroup(grp, gu),
AddResourceToGroup(grp, vr),
RemoveResourceFromGroup(grp, vr), and
RemoveUserFromGroup(grp, gu) and a few extra
methods for changing the group policy and permissions
exchange that we discuss below. Note that GUs are identified
by their proxies and VRs are identified by their URLs.
The removal of a group is made through the
DeleteGroup(grp) method of the GMS, where grp is
the URL of a DynamicGroup instance. After the veri-
fication of the meta policy, a successful removal destroys
the DynamicGroup instance and deletes the associated
information from the GMS as well as the subscriptions from
the MDS. All the proxies kept in the group are similarly
destroyed. The management of DynamicGroups by the
GMS is depicted in Fig. 4.

Figure. 4: The GMS and dynamic groups

We notice that unlike an FGS like GRAM, which re-
quires non-negligible resources in term of computational
power, memory and disk space for executing jobs, the GMS
acts only as an information service (customized for man-
aging information on dynamic groups) of GT4. Single
DynamicGroup instances acts in the same way, as index
services.
Thus, the GMS and all DynamicGroup instances exploit
the resources allocated for the GT4 middleware, like the
MDS, and they do not requires specific resources that are
external to the middleware.
In particular, wrt the basic model in Section II, this means
that at the Physical layer, no new PRs are required for sup-
porting GMS and DynamicGroup.

2) Group Services and Permissions

In order to share the access to resources in an effective way,
the operations related to the removal and addition of users in
a group are implemented by the passing or removal of prox-

ies. In particular, the AddUserToGroup(grp, gu) stores a
proxy of gu in the DynamicGroup service instance.
Subsequent invocations of
AddResourceToGroup(grp, vr) made by gu, build
an association list of resources accessible through the
proxy of gu (i.e. Px(gu)). Dually, invocations of
RemoveResourceFromGroup(grp, vr) eliminate el-
ements from this list.
Thus, in order to access a resource shared in a dynamic
group, a user gu′ must acquire from the group a proxy gen-
erated by the user who own the resource. To this end, an
explicit method AskPermission(grpid, vr) is included in
the DynamicGroup interface that governs the provision of
permissions to legal group users.
The invocation of this method by a gu′ allows the user to
ask a proxy from the group identified by grpid for access-
ing the resource vr. As a result of this invocation, the
DynamicGroup instance checks the association lists that
contain vr and provides back to the user a suitable proxy.
Once gu′ gets back a proxy Px(gu), she uses it to access vr
in gu’s stead.
It must be noted that since proxies have a relatively short
validity period, GUs have to regularly provide a new proxy
through the AddUserToGroup operation as soon as the old
expires.
The use of proxies can thus limit the usability of dynamic
groups, since the provisioning of fresh and up-to-date proxies
to the group can be cumbersome for the GU.
However, since the management of proxies is common and
widely recognized problem in Grid environments, some pro-
posals have already been put forward for automating the gen-
eration and provisioning of proxies. For instance, in [10] a
proxy renewal service is presented. It automatically renews
expired proxies following guidelines and constraints pro-
vided by the GU. Moreover, in [11] a framework for proxy
revocation is defined. It allows to automatically revoke prox-
ies in GU’s stead.
The choice between the manual provisioning and the auto-
matic renewal of proxy is related with the level of control the
GU requires on permission shared of the group and it is up to
the strategies and requirements of the single GU.
From a group point of view, the provision of an invalid proxy
as well as the omission of a renewal could correspond to a
temporary violation of the group policy.
In these cases GUs can be revoked for a while and re-
admitted as soon as the group policy is satisfied again. Dur-
ing the revocation period, the GU still belongs to the group
(i.e. its permissions are still shared) but it is banned from the
use of other group permissions.

3) Using Groups

We show how the proposed implementation can support an
effective exploitation of resources shared through groups, by
using again the scenario in Sect. III as an example, but as-
sume that GU1 wants to build a group and that she has dis-
covered the existence of a GMS through the MDS. GU2 can
be given access to V R1 by GU2 in the following way (see
Fig. 5):

1. GU1 queries the GMS for information and obtains the
meta policy.

Merlo111

2. After evaluating the meta policy, GU1 builds a group
policy where it requires, for instance, that any other user
in her groups must share the access to at least a resource
in order to exploit the shared resources. Thus, GU1

invokes the CreateGroup(info), providing the group
policy; let suppose that the request satisfies the condi-
tions in the meta policy, thus a new DynamicGroup
(DG1) is built and registered to GMS and MDS with
URL=urlGU1 .

3. GU1 signs a proxy Px(GU1) and invokes the method
AddUserToGroup(urlGU1

, Px(GU1)) on the newly-
created DG1 service to add its identity to the group.

4. GU1 invokes AddResourceToGroup(urlGU1
, V R1)

on DG1, adding the sharing of V R1 to the group.
DG1 adds V R1 to the list of resources associated with
Px(GU1).

5. GU2 queries the MDS in order to discover dynamic
groups in which the access to V R1 is shared and she
discovers DG1.

6. GU2 queries DG1 for information and gets the group
policy.

7. GU2 evaluates conditions in the group pol-
icy and then chooses to share the access to
V R2 in order to gain access to V R1. Conse-
quently, GU2 signs a proxy Px(GU2) and invokes
AddUserToGroup(urlGU1

, Px(GU2)) on DG1.

8. Then, GU2 invokes
AddResourceToGroup(urlGU1

, V R2) on DG1.
DG1 associates V R2 to Px(GU2).

9. GU2 invokes AskPermission(urlGU1 , V R1) on
DG1. Since GU2 meets the conditions in the group
policy of DG1, Px(GU1) is returned to GU2.

10. GU2 accesses and exploits V R1 through Px(GU1).

Figure. 5: Building and using of dynamic groups in GT4.

V. Related Work

The research on Grid access control has been carried out in
two complementary directions, namely (1) the porting of ex-
isting access control models to the Grid paradigm and (2)
the definition of solutions for supporting the management of
the AC models on Grid middleware, independently from the
single model and the definition of rules.
Regarding the first point, the most interesting proposals re-
gard the porting of Role-Based Access Control model on
Grid. In [18], the RBAC model is ported to a generic, pre-
WS Grid through a properly defined architecture, designed
for working over the middleware. Roles can be defined on
any Grid entity and a simple language to define rules and
role acquisition is provided.
Differently from the previous proposal, in [19] a fully
OGSA-compliant porting of the RBAC model on a Service
Oriented Grid is provided. The proposed approach is based
on the integration of RBAC using Shibboleth as authoriza-
tion service in the OGSA-DAI framework, resulting in a re-
duction of the overhead due to the native2 mapping of Grid
users on physical resource permissions.
Among RBAC, other access control models (not natively em-
bedded and supported in Grid middlewares) have been ported
to Grid through proper over-middleware frameworks. For in-
stance, the Attribute-Based Access Control (ABAC) model
have been proposed in [20]. In this approach, a framework
for managing ABAC on GT4 is provided. This approach
simplifies the management of access control rules for Grid
administrators, by granting a flexible and scalable methodol-
ogy for the definition and modification of rules.
Beyond dynamism of rules, another issue in the native Grid
access control system is the difficult in defining fine-grained
access control for specific resources or users. To this aim, in
[21] a language and a framework for supporting fine-grained
definition of access control policies is proposed. Through
such extension it is possible to define security constraints re-
lated to access control.
Independently from the access control model, solutions for
managing access control on Grid can be broadly classified
in three categories: (1) access rules definition tools, aimed
at simplifying the definition of access rules at administra-
tive level; (2) authorization services focused on provisioning
signed certificates to users with their attributes and permis-
sions; (3) decision-making services devoted to determine if a
given user, provided with credentials, can access a resource;
the decision is generally made by considering both the user
attributes and the resource policies.
The Prima system [12] falls in the first category. It provides
tools to the Grid administrator (i.e. the Globus user) that sim-
plify the access control management.
The Community Authorization Service (CAS) [13] is an au-
thorization service that supports authorization at the PO layer
(i.e. Physical Layer) and at VO site (i.e. Middleware layer).
PERMIS is another example of cross-layering authorization
infrastructure: rules at the Physical Layer are stored in LDAP
servers and defined by PO admins. It supports RBAC and
other group-based policies, but they are defined by a cen-
tral authority and cannot be flexibly changed by GUs. Dif-

2in the OGSA-DAI framework

 112A Cooperative Model for Resource Sharing on Grid

ferently from CAS and PERMIS, Cardea [14] is a frame-
work for managing authorizations coming from administra-
tion systems of different domains. The virtualization over the
authorization systems provided by Cardea grants a more dy-
namic management of authorization, but still based on single
administrative permission assignment.
Akenti [15] provides an access control decision function that
grants/denies access by taking into account both the rules de-
fined by the resource administrator and the user identity; it
provides signed capabilities to authorized Grid users.
The EU-DataGrid Security Infrastructure [16] constitutes a
complete solution, implementing services for supporting the
definition of access rules, an authorization authority (VOMS)
and decision functions operating on the available certificates.
Existing proposals therefore enjoy interesting features but
they also share a common drawback: changes in the access
control policy require the involvement of the administrators.
Our group-based access control model allows Grid users to
exchange access permissions to VRs without the intervention
administrators.

VI. Conclusions

We have presented a group-based access control model for
Grid environments that allows users to share access permis-
sions to VRs without the intervention administrators. Our
approach increases the flexibility of the access control model
offered by state-of-the-art Grid platforms, without requiring
changes in the middleware. We have shown that our solution
can be defined on top of the access control mechanisms of-
fered by state-of-the-art Grid middleware and that it can be
implemented as a service in a service-oriented Grid environ-
ment.
The proposed approach is suitable in trust environments like
scientific Grids, where each GU has a trust relationship with
the others in the VO, or in environments where the exploita-
tion of resource does not involve high-security requirements
applications (e.g. personal information, financial transac-
tions, and so on).
To this regard, the future work will be focused on defining
security solutions that allow the secure use of the proposed
model on insecure Grids.

References

[1] I. Foster and K. Kesselmann. The Grid 2: Blueprint for
a New Computing Infrastructure. Elsevier, 2003. (book
style)

[2] I. Foster. Globus toolkit version 4: Software for service
oriented systems. Journal of Computer Science and
Technology, 21-4:513520, July 2006. (journal style)

[3] gLite Middleware. http://glite.web.cern.ch/glite/.

[4] J. Dongarra. Urgent Computing: Exploring Supercom-
putings New Role, volume 4, 1. Cyberinfrastructure
Technology Watch, P. Beckham, Ed., March 2008.
(book style)

[5] S. Gorlatch, A. Ploss F. Glinka, J. Muller-Iden, R. Pro-
dan, V. Nae, and T. Fahringer. Enhancing grids for mas-
sively multiplayer online computer games. Technical

Report CoreGRID Technical Report - TR-0134, June
17, 2008. (technical report style)

[6] D. Talia C. Comito and P. Trunfio. Grid services: prin-
ciples, implementations and use. International Journal
of Web and Grid Services, 1, 1:48 68, 2005. (journal
style)

[7] W3C. Web Services Description Language
(WSDL) Version 2.0 Part 1: Core Language.
http://www.w3.org/TR/wsdl20/

[8] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The
physiology of the grid: An open grid services architec-
ture for distributed systems integration. 2002. (confer-
ence style)

[9] N. V. Kanaskar, U. Topaloglu, and C. Bayrak. Globus
security model for grid environment. SIGSOFT Softw.
Eng. Notes, 30(6):1 9, 2005. (conference style)

[10] D. Kouril. A credential renewal service for long-
running jobs. In GRID ’05: Proceedings of the 6th
IEEE/ACM International Workshop on Grid Comput-
ing, pages 6368, Washington, DC, USA, 2005. IEEE
Computer Society. (conference style)

[11] S. Zhao, A. Aggarwal, and R. D. Kent. A frame-
work for revocation of proxy certificates in a grid. In
SNPD ’07: Proceedings of the Eighth ACIS Inter-
national Conference on Software Engineering, Artifi-
cial Intelligence, Networking, and Parallel/Distributed
Computing, pages 532-537, Washington, DC, USA,
2007. IEEE Computer Society. (conference style)

[12] M. Lorch and D. G. Kafura. Supporting secure ad- hoc
user collaboration in grid environments. In GRID 02:
Proceedings of the Third International Workshop on
Grid Computing, pages 181-193, London, UK, 2002.
Springer- Verlag. (conference style)

[13] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S.
Tuecke. A community authorization service for group
collaboration. In POLICY02: Proceedings of the 3rd
International Workshop on Policies for Distributed Sys-
tems and Networks (POLICY02), page 50, Washing-
ton, DC, USA, 2002. IEEE Computer Society. (confer-
ence style)

[14] R. Lepro. Cardea: Dynamic access control in dis-
tributed systems. Technical report, 2003. (technical re-
port style)

[15] M. Thompson, A. Essiari, and S. Mudumbai.
Certificate- based authorization policy in a pki envi-
ronment. ACM Trans. Inf. Syst. Secur., 6(4):566 588,
2003. (journal style)

[16] R. Alfieri, R. Cecchini, V. Ciaschini, A. Gianoli, F.
Spataro, F. Bonnassieux, P. Broadfoot, G. Lowe, L.
Cornwall, J. Jensen, D. Kelsey, . Frohner, D. L. Groep,
W. Som De Cerff, M. Steenbakkers, G. Venekamp, D.
Kouril, A. Mcnab, O. Mulmo, M. Sil, and J. Hahkala.
Managing dynamic user communities in a grid of au-
tonomous resources. In CHEP 2003, La Jolla, pages 24
28, 2003. (conference style)

Merlo113

[17] Y. Wen, C. Chen, S. Wang. Crossing Heterogeneous
Grid Systems with a Single Sign-On Scheme Based on
a P2P Layer, Asia-Pacific Services Computing Confer-
ence, 2008. APSCC ’08. IEEE , pp.45-51, 9-12 Dec.
2008 (conference style)

[18] W. Qiang, J. Hai, S. Xuanhua, Z. Deqing and H. Zhang.
RB-GACA: A RBAC Based Grid Access Control Ar-
chitecture, in Grid and Cooperative Computing, LNCS,
pp 487-494, 2004 Springer Berlin / Heidelberg. (book
chapter style)

[19] V. Muppavarapu, A. Pereira, and S. Chung. Role-based
access control for a Grid system using OGSA-DAI and
Shibboleth, in The Journal of Supercomputing, Vol. 54,
Issue 2, pp. 154-179, Springer Netherlands. (journal
style)

[20] B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnan,
and T. Freeman. A Flexible Attribute Based Access
Control Method for Grid Computing, in Journal of Grid
Computing. (journal Style)

[21] J. Wu, C. B. Leangsuksun, V. Rampure, and H.
Ong. Policy-Based Access Control Framework for Grid
Computing. In Proceedings of the Sixth IEEE Interna-
tional Symposium on Cluster Computing and the Grid
(CCGRID ’06). IEEE Computer Society, Washington,
DC, USA, 391-394. (conference style)

Author Biography
Alessio Merlo received
his Ph.D. in Computer Sci-
ence from University of Genoa
(Italy) where he worked on per-
formance and access control is-
sues related to Grid Comput-
ing. He is currently serving as
a research scholar at University
of Genoa, Department of Engi-
neering, where he is working on
a FP7-funded project concern-
ing automatic security testing of
Web applications. His research

interests are focused on performance and security issues re-
lated to Web and distributed systems.

 114A Cooperative Model for Resource Sharing on Grid

