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Abstract: Security risk management is becoming increas-
ingly important in a variety of areas related to information
technology (IT), such as telecommunications, cloud computing,
banking information systems, etc. In this paper, we develop a
systematic quantitative framework for security risk manage-
ment in IT-intensive organizations. This framework provides
a unified viewpoint to consider a wide array of security risk fac-
tors which can disrupt business continuity. Our approach inte-
grates the three phases of security risk management, namely
risk modeling, assessment, and control/mitigation, through a
formulation based on directed graphs, cascades of failures, and
dynamic programming. We consider how security events can
propagate through an organization and how resource allocation
decisions can be made in order to optimally mitigate the amount
of damage they cause. The applicability and effectiveness of
our framework is demonstrated through a simple numerical
study which shows significant cost reductions when compared
to heuristic methods.

Keywords: security risk management, risk modeling, risk as-
sessment, risk mitigation, resource allocation

I. Introduction

Many modern-day large-scale corporations, universities, and
government agencies are heavily dependent on information
technology (IT). Although IT creates numerous opportuni-
ties for growth and improved efficiency, it also comes with a
diverse set of security risks. These include malicious attacks
on IT infrastructures (e.g., viruses, malware), unintentional
or intentional damage caused by employees (e.g., miscon-
figurations of firewalls, disgruntled employees releasing sen-
sitive data), and failures of critical processes, applications,
or infrastructure components (e.g., computing servers, net-
works, data centers). Such events can lead to significant fi-
nancial and productivity losses.

In recent years, there has been substantial growth in the
field of IT security risk management, as organizations at-
tempt to develop systematic approaches to reduce their risk
exposure [1, 2]. Most of these approaches are qualitative
and/or empirical in nature, and they often overlook the com-

plicated interdependencies between different parts of an or-
ganization, even though these interdependencies can have a
large impact on the organization’s overall risk. Therefore, in
this paper, we seek to develop a general quantitative frame-
work for IT security risk management which accounts for
these complex interdependencies. By using mathematical
modeling and analysis techniques, this type of approach can
provide decision support to risk managers, helping them to
be more effective in deploying resources to determine and
reduce their risk levels.

In general, risk management involves three phases: data
collection, risk assessment, and risk mitigation. Conse-
quently, our proposed quantitative framework integrates all
three of these phases in order to provide a unified approach
to the risk management process. First, the framework in-
corporates available risk data – which depends on the do-
main knowledge of security experts within an organization
and which traditionally has been difficult to aggregate and
analyze in a cohesive manner – into a single, flexible, graph-
based risk model. This model informs the risk assessment
phase of the framework, which is based on the methodology
of cascades of failures. The risk assessment mechanism we
present uses the data provided by the risk model to provide
an estimate of the risk costs that will be incurred under the
current security state of the organization. The risk model-
ing and assessment phases then allow for the introduction of
mathematical optimization techniques, such as dynamic pro-
gramming, to control and mitigate risk. Thus, the overall
goal of our framework is to enable an organization to use the
risk data it collects to analyze its overall risk state and then
to deploy resources to reduce its risk exposure over time.

This work draws upon a growing foundation of literature
either directly or indirectly related to the topic of security risk
management. Several important qualitative and empirical ap-
proaches which we build upon are described in security risk
management guides written by large information technology
organizations or standards bodies [1, 2]. Some quantitative
approaches which are related to but different from ours are
the Risk-Rank algorithm [3] (based on diffusion processes
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over graphs), SecureRank [4] (an algorithm for prioritizing
vulnerabilities to patch in computer networks), a queueing-
theory-based model for risk dynamics presented in [5], and
a stochastic modeling approach to security and dependabil-
ity evaluation (based on Markov processes and game theory)
in [6]. Another noteworthy risk analysis approach is Adver-
sarial Risk Analysis, presented in [7], although this work
employs a fundamentally different risk modeling and anal-
ysis technique. In [8], risk management is approached from
a broad business-oriented perspective, and the argument is
made that business processes need to be factored into the
risk management process - a viewpoint that we share. Their
work, however, does not consider interdependencies between
business elements and is limited to simple cost-benefit calcu-
lations of security actions on individual business elements,
as in the approaches of [1, 2].

There are also several related studies which impact only
particular phases of our proposed framework. A useful dis-
cussion on the cost of providing security is given in [9]; the
approach presented therein can be fed into our framework,
particularly with respect to determining the costs of risk-
mitigating actions. The risk assessment phase of our frame-
work, which is based on the idea of cascades of failures,
employs some mathematical techniques which are related to
previous work on cascades of failures [10].

In this paper, we begin by describing a general graph-
based risk model to capture an IT-intensive organization’s
risk data in Section 2. This is the model upon which our risk
assessment and risk mitigation strategies will be deployed.
Section 3 describes the risk assessment phase of our frame-
work, while Section 4 explains the risk mitigation phase. A
numerical example illustrating our approach is presented in
Section 5. Finally, in Section 6, we offer some concluding
thoughts and directions for future work.

II. Risk Model Development

In this section, we develop the underlying graph-based model
which we shall use for both risk assessment and risk mit-
igation. This model allows the risk manager to view both
security threats and the assets that they impact as nodes in
the same graph, providing a logical, integrated structure for
analysis and decision-making.

We begin by defining some key terms in security risk man-
agement, which will enable us to characterize the data used in
the risk model. We define a threat as an action or event which
would adversely affect the normal operation of an asset, i.e.,
a business unit, service, process, infrastructure element, etc.
An attack is an attempt to carry out a threat, which can be
successful or unsuccessful; we will also refer to attacks as
activations of threats. Attacks can be carried out by mali-
cious agents, such as hackers or robbers, or by non-malicious
agents, such as inattentive employees or nature. A successful
attack results in the failure or compromise of the target; we
shall use these two terms interchangeably, although it should
be recognized that some effects of attacks are more appropri-
ately described by one or the other. Some examples of differ-
ent types of threats, corresponding attacks, agents which can
carry out these attacks, and failures/compromises caused by
successful attacks are given in Table 1.

With these definitions, the data inputs to our graph-based

risk model come from the answers to the following five ques-
tions, which are reflective of the types of questions asked
during the data collection phase of risk management [1, 2]:

1. What is the set of potential security threats?

2. What are the assets which can be compromised by at-
tacks corresponding to these threats, and how much
would it cost for each of them to fail?

3. What is the average or hypothetical rate at which each
type of attack to the organization occurs?

4. For each identified threat, what are the estimated prob-
abilities that its activation will lead directly to the fail-
ure/compromise of each of the assets it can affect, or
that it will lead to another attack corresponding to a dif-
ferent threat?

5. For each identified asset, what is the probability that
its failure/compromise will directly lead to the fail-
ure/compromise of another asset or to a new attack from
a different type of threat?

The answers to this list of questions are readily mapped
to a directed, weighted graph. Let us define a graph G =
(N ,R), where N = {n1,n2, . . . ,nx , . . .nX } is the set of
nodes in the graph andR = {r1, r2, . . . , ry, . . . rY } is the set
of directed, weighted edges between these nodes. We parti-
tion the setN into two subsets, V = {v1, v2, . . . , vi, . . . , vI}
and U = {u1,u2, . . .uj , . . . ,uJ}, which represent threats
and assets, respectively. From the answer to question (2),
each of the elements in U is assigned a cost of compromise
zj ∈ R+, which represents the cost incurred when asset uj
fails or is compromised. From the answer to question (3),
each of the elements in V is assigned a rate of occurrence,
λi, which represents the average number of activations of
threat vi which occur in a time period t.

The set of edges R forms the operational core of both the
assessment and mitigation phases of our risk management
framework. Each of the edges in this set is called a risk trans-
fer probability (RTP) and represents the probability that the
destination node fails1 as a direct consequence of the failure
of the source node during a single cascade of failures. An
RTP and “the probability that the destination node fails given
that the source node fails” are not the same, since the lat-
ter should also incorporate finding all possible cascades of
failures which can lead indirectly from the source to the des-
tination. An RTP refers only to the direct causal relationship
between the source and destination nodes. Accordingly, if a
pair of elements ofN lacks an RTP between them, then there
is no direct causal relationship between their failures.

An important feature of our risk model is that an RTP can
be placed between any two nodes; in particular, the graph is
not required to be acyclic, as in Bayesian networks. This al-
lows for more intuitive data collection and risk analysis. For
example, one can expect that the failure of asset j can di-
rectly lead to the failure of asset j′, but also that (at some

1Note that the term fail here also refers to threats “failing” - this just
means that an attack is triggered. Since it will turn out that there is no
difference between threats and assets in terms of the mechanics of a cascade
of failures as described in Section III, we shall refer to both failures and
attacks as simply failures.
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Table 1: Examples of threats, assets, attacks, agents, and failures/compromises.
Threat Asset Attack Agent Failure/Compromise

Sensitive corporate data
is stolen

Sensitive
data

A hacker tries to gain access to a sensitive corporate
server by guessing employee passwords

Hacker Sensitive data is stolen and propri-
etary corporate secrets are revealed

Power outage brings
down web servers

Web
servers

Construction company accidentally cuts power lines
to server facility and it takes hours to repair

Construction
company

Significant loss in web page hits,
advertising revenue, and reputation

Virus infects corporate
networks and causes
massive data loss

Corporate
networks,
data

Employee accidentally opens email with .exe attach-
ment, allowing a virus to enter the network and possi-
bly infect other computers

Employee,
virus
creator

If the virus spreads, significant pro-
ductivity losses and effort spent in
attempting to recover lost data

other time) the failure of asset j′ can directly lead to the fail-
ure of asset j. By allowing for cyclic graphs, we enable the
risk manager to easily incorporate such data into the model,
even though it would not make sense for both of these events
to occur during the same failure cascade; we discuss this is-
sue in Section III. Indeed, the only restriction placed on R
is that an RTP cannot have the same source and destination
node, since this would have no meaning in our construction
(it would represent the probability that a node fails as a direct
result of its own failure).

Each RTP can take on values out of a discrete, ordered
set of probabilities D = {d1, d2, . . . , dw, . . . , dW } , dw ∈
[0, 1], d1 < . . . < dW . The values of the RTPs are provided
by the answers to questions (4) and (5) above. A discrete
set is used because in most approaches to risk management,
the probabilities represented by the RTPs are estimated by
humans, and therefore some level of quantization is typically
used. For example, security levels are often rated in terms of
High, Medium, and Low [1]. The assumption that all RTPs
draw their values from the same set D is made simply for
notational convenience, but it can easily be relaxed to allow
RTPs to take values from different sets of probabilities.

We can now define the security profile (SP) of the organi-
zation during time period t as a vector

s(t) = sk =
(
dw1

, dw2
, . . . , dwy

, . . . , dwY

)
where dwy is the value of the RTP ry . The set of all possible
security profiles is the set S = {s1, s2, . . . , sk, . . . , sK}.

In order to make the notion of RTPs more concrete and to
highlight how they can be used to model a diverse set of real-
world scenarios, we partition R into four subsets, which are
treated in the same manner mathematically but which have
substantially different interpretations. These subsets are de-
scribed below, and their relationships to the partitions of N
are summarized in Figure 1.

• RVU =
{

rviuj
, i = 1, . . . , I, j = 1, . . . , J

}
contains

all the edges inRwhich lead directly from a threat to an
asset. Each element rviuj ∈ RVU represents the proba-
bility that if threat i is activated, asset j fails as a direct
result. For example, if vi represents a hacker attempt-
ing to plant a virus and uj is the computer which is the
hacker’s direct target, then rviuj

is the probability that
the hacker is successful in compromising that computer
directly as a result of the attack.

• RUU =
{

rujuj′ , j = 1, . . . , J, j′ = 1, . . . , J, j 6= j′
}

is the set of all edges in R which connect one asset to
another asset. Element rujuj′ ∈ RUU represents the
probability that uj′ fails as an immediate consequence

of uj being compromised or failing. If uj represents a
data server and uj′ is a business process which depends
on that server, then rujuj′ is the probability that the fail-
ure of the server compromises the business process.

• RUV =
{

rujvi
, j = 1, . . . , J, i = 1, . . . , I

}
contains

those elements of R which go from an asset to a threat,
and they represent the probabilities that the failures of
assets directly cause the activation of additional threats.
If uj is a security camera system and vi is the threat of
property theft, then the failure of uj leads directly to an
activation of threat vi with probability rujvi

.

• RVV =
{

rvivi′ , i = 1, . . . , I, i′ = 1, . . . , I, i 6= i′
}

contains the elements of R which connect threats to
one another, and rvivi′ ∈ RVV represents the proba-
bility that threat i′ is activated as an immediate conse-
quence of the activation of threat i. If vi represents a
disgruntled employee and vi′ represents a theft of sen-
sitive data, then the activation of vi would immediately
trigger the activation of vi′ with probability rvivi′ .

Figure. 1: Relationship between partitions ofR and N .

The description of these subsets of R highlights how this
modeling approach can be applied to a diverse set of scenar-
ios. Based on this general risk model, we can develop a large
number of different graph structures in order to character-
ize real-world situations. For example, certain subsets of R
may not be relevant, depending on the application. Indeed,
the current state of the art approach to security risk manage-
ment [1, 2] essentially only considers the subset RVU ; how-
ever, this overlooks the interdependencies between organiza-
tional elements which can lead to the types of cascades of
failures described in Section III.

By defining the partitions of N and R shown in Figure
1, we have established a single mathematical framework for
dealing with both threats and assets. Although the interpreta-
tions assigned to the members of N and R differ depending
on which partition they belong to, they remain part of the
same graph. This allows us to formulate a general control
problem in Section IV for evaluating and comparing the ef-
fects of a large variety of types of actions that a risk manager
might take.
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III. Risk Assessment

Given the risk model above, we now develop the risk as-
sessment phase of our framework. We seek to determine the
consequences of the graph having a particular security pro-
file over some time period of interest. To do so, we draw
upon models for probabilistic cascades of failures, utilizing
an approach related to that in [10].

We begin by making a simple intuitive argument based on
the example risk model in Figure 2. Suppose that there are

Figure. 2: Example deployment of risk model of Section II.

three security levels for each RTP and that the security profile
is sk = (d2, d3, d2, d3, d3, d2, d1) during a 3-month time pe-
riod t. Now suppose that an attack corresponding to threat v2

occurs. In the next step of the cascade, asset u1 will fail with
probability d3, and asset u2 will fail with probability d2. The
failure of one or both of these assets can subsequently cause
the failure of u3, although here the analysis of the probability
of this event becomes a little more complex, as we describe
below. In general, as the cascade continues, more nodes will
fail, and eventually the cascade will end after having caused
the failure of some subset of the nodes in N .

To formalize this argument, we impose the following set
of rules on how cascades occur:

1. Each failure cascade occurs independently of all other
cascades during time period t. Any single failure cas-
cade begins and ends within the same time period.

2. The organization’s SP does not change over the span of
a single time period2.

3. Every cascade has a threat as its root node. The average
number of cascades in time period t which begin with
threat vi is λi.

4. During an individual cascade, each node can fail once
at most, and no repairs occur.

5. When a cascade ends, some subset of the elements in U
will have failed, and the associated cost of the cascade
is the sum of the costs of compromise zj corresponding
to the failed assets.

6. After a cascade has ended, the system is repaired and all
assets/threats are restored to their unfailed state. There-
fore, the system is in its uncompromised state at the be-
ginning of each new attack.

2Of course, the length of the time period can be scaled by the model user
in order to make this assumption valid.

This set of rules is designed to reflect a large number of
real-world scenarios. For example, if we take the perspec-
tive of a company’s Chief Information Officer (CIO), then a
reasonable conjecture is that the time periods of interest are
fiscal quarters. Many of the risks that a CIO is concerned
about, e.g., theft of data, power outages, denial of service at-
tacks, virus attacks, etc., occur over a much shorter time span
- hours, minutes, or even less. Once such an attack ends, the
system is typically repaired quite quickly, but the attack will
have inflicted some amount of financial damage. As an ex-
ample, when a denial of service attack on a website ends,
the website is quickly available again, but with a loss of user
traffic during the attack. The assumption that the SP remains
constant during a single time period (and accordingly, during
an individual cascade) reflects the fact that the time it takes
to enact changes to the SP is often much longer than the time
span of the individual cascades of failures or malicious at-
tacks which these changes seek to prevent.

Using the rules above, we now establish the probabilistic
manner by which a cascade propagates through the organi-
zation. For this part of our discussion, it will be useful to
introduce some new notation and definitions. First, we de-
fine parent nodes as follows: for any node nx ∈ G, its parent
nodes are the source nodes of all the edges in R which have
nx as their destination node. The set of parent nodes of nx is

Ψx = {ψx,1, ψx,2, . . . , ψx,p, . . . , ψx,P }

The corresponding set of RTPs which have nx as their desti-
nation node is then

RΨ
x =

{
rΨ
x,1, r

Ψ
x,2, . . . , r

Ψ
x,p, . . . , r

Ψ
x,P

}
Every cascade occurs as a series of stages indexed by the
integers τ = 1, 2, 3, . . ., with stage 1 always being the ac-
tivation of some threat vi. We define Ψx (τ) ⊆ Ψx, with
members ψx,p,τ , as the set of parent nodes of nx which failed
during stage τ − 1; this is the set of active parents of nx
in stage τ . The corresponding set of RTPs in stage τ is
RΨ
x (τ) ⊆ RΨ

x , with members rΨ
x,p,τ . Finally, we define Ωτ

as the set of nodes which have not yet failed by the beginning
of stage τ . We will assume that only active parents can cause
new nodes to fail in each stage.

If node nx belongs to Ωτ and has only one active parent
ψx,p,τ in stage τ , then the probability that it fails in that stage
is simply given by the value of rΨ

x,p,τ . If nx has multiple ac-
tive parents in stage τ , then the probability that it fails dur-
ing stage τ is calculated as if each active parent attempts to
make it fail independently of the other active parents; they
each take one turn at trying to make the node fail3. In other
words, the probability that, during stage τ , an unfailed node
with multiple active parents survives is given by the proba-
bility that it survives an independent attack from each of its
active parents. Finally, if nx does not have any active parents
in stage τ , i.e., if Ψx (τ) = {∅}, then the node cannot fail in
that stage. Observe that if Ψx (τ) = {∅} for all nx ∈ Ωτ ,
then the cascade terminated in stage τ − 1, since no new
nodes failed during that stage. The foregoing discussion can

3Other probabilistic structures which do not assume this independence
are possible, but for simplicity we examine the independent case here.
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be encapsulated in the following equation:

Pr(nx ∈ Ωτ fails in stage τ)

=

{
1−

∏P
p=1(1− rΨ

x,p,τ ) Ψx(τ) 6= {∅}
0 Ψx(τ) = {∅}

(1)

It is important to keep in mind that although cascades oc-
cur as a result of a sequence of events, we treat each cascade
as occurring instantaneously with respect to the time period
t - the time period t and the cascade stages τ represent dif-
ferent time scales. A helpful analogy is that each cascade
occurs as an individual “lightning strike” over the network of
nodes in the organization, with the average number of these
lightning strikes per time period equal to

∑I
i=1 λi.

Based on this cascade propagation model, we can deter-
mine the probabilities of all possible failure cascades which
begin with an attack of a particular threat by creating an
event-based tree. An event in stage τ is either the failure
of some combination of nodes in Ωτ or the end of a cascade.
To build an event-based tree, for each event which could oc-
cur in stage τ , we determine all possible subsequent events
which can occur in stage τ + 1. The probability of each pos-
sible event in stage τ + 1, given the event which preceded it
in stage τ , is calculated under the assumption that each node
in Ωτ+1 fails or survives independently of all other members
of Ωτ+1. All events in stage τ + 1 which can result from
a particular event in stage τ are constructed to be mutually
exclusive. For example, in Figure 2, since nodes u1 and u2

are the only nodes which can fail in stage 2 as a result of the
activation of v1 in stage 1, then the possible events in stage 2
would be

• Assets 1 and 2 fail.

• Only asset 1 fails.

• Only asset 2 fails.

• Neither asset 1 nor asset 2 fails, so the cascade ends.

Then, we determine all of the possible events which can oc-
cur in stage 3, given each of these events (any event corre-
sponding to the end of a cascade cannot lead to any further
events). The result of this process is a tree, as shown in Fig-
ure 3. Any path from the root node of the tree to a cascade-
ending event (choosing one event per stage) represents a pos-
sible cascade which can occur if v2 generates an attack.

Moving now to the general case, we describe a simple iter-
ative process for enumerating the event-based tree associated
with a particular threat vi and for finding the probability of
every possible associated cascade.

1. For each possible event which can occur in stage τ , list
all of the events which can then occur in stage τ + 1.

2. Find the conditional probability of each of these events
given their predecessor in stage τ , using Equation 1 and
the assumption of independence of individual failures
during a single stage.

3. Multiply the conditional probability of each event given
its predecessor by the probability that its predecessor
occurs to obtain each event’s unconditional probability,
i.e., the probability that a cascade which starts with vi
results in this event during stage τ + 1.

4. Continue until no more events can occur, i.e., until all
events in stage τ are cascade-ending events.

Observe that the event “Cascade Ends” can occur after every
other type of event, and that the conditional probability of
this event given its predecessor event is the probability that
every node survives in that stage. Also observe that this pro-
cess for determining possible failure cascades accounts for G
possibly being cyclic, as discussed in Section II.

Once the probabilities of all of the possible cascades as-
sociated with each threat have been determined, we can as-
certain the cost of being in a certain SP for one time period,
based on traditional calculations of risk cost (the probability
of failure multiplied by the cost of failure), as

cRA(sk) =

I∑
i=1

λi

(
J∑

j=1

zjPr(uj fails | vi fails, SP is sk )

)
(2)

i.e., cRA is a cost function which maps each security profile
to a cost in R+.

We note that our framework supports other methods to de-
termine the cost associated with a security profile, and that
different approaches may be preferred for certain applica-
tions. For example, epidemiological models can be used to
determine asset failure probabilities [11]. The reason for this
flexibility is that the goal of the risk assessment phase is sim-
ply to associate a cost with each SP; as will be made evident
in the next section, the exact mechanism employed to deter-
mine these costs does not affect the underlying risk mitiga-
tion methodology of our framework.

IV. Risk Mitigation and Control

A. Control Formulation

With a method established for assessing the risk cost asso-
ciated with a security profile, we can proceed to use our
framework for risk mitigation. The expected risk cost over
time can be reduced by investing in security improvements
(for example, by allocating resources to improve corporate
firewalls or adding personnel to bolster IT security). In our
framework, the impact of such investments is a change in the
SP of the system; in particular, the values of individual RTPs
are reduced by making relevant investments. For example, if
vi represents the threat of a disgruntled employee releasing
sensitive corporate data and uj represents that data, then the
real-life action of reducing the employee’s access privileges
would correspond to a reduction in the value of rviuj .

Using the particular risk assessment approach developed
in Section III, as individual RTPs are reduced, the corre-
sponding risk cost associated with the overall SP decreases.
Accordingly, we can set up an optimization problem using
dynamic programming, where the goal is to minimize the
risk cost accumulated over time by taking appropriate ac-
tions. The key components of a dynamic programming for-
mulation are a state space, a set of possible actions, a transi-
tion rule between states, and a cost function.

We define the state space as S , which is the set of all
possible SPs defined in Section II. It is important to note
that while this state space arises naturally out of our frame-
work, it is subject to Bellman’s “Curse of Dimensionality,”
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Figure. 3: Event-based tree for threat v2 for the example in Figure 2.

i.e., as the number of edges inR grows, the number of possi-
ble states grows exponentially. There are several approaches
for dealing with this. First, if the number of edges in the
graph is relatively small (e.g., taking the perspective of a
CIO looking at a high-level view of an organization, with
perhaps tens of departments as assets and a small list of high-
impact threats), then standard optimization techniques such
as dynamic programming are likely possible. Furthermore, if
the transition rule between states is taken to be deterministic,
then a dynamic programming formulation maps to a shortest
path problem, which can accommodate a large state space.
If transitions are stochastic and the state space is very large,
approximate dynamic programming or heuristics based on
graph theory can be used [12]. In order to demonstrate the
core ideas of our risk management approach, we consider
only deterministic dynamic programming here and reserve
discussion of other techniques for a separate investigation.

The actions available to the risk manager are invest-
ments out of a budget of b(t) dollars in each time period
t. These investments can map to actions such as purchas-
ing/implementing security software, deploying defense re-
sources, hiring employees, assigning man-hours, etc. In gen-
eral, b(t) is assumed to evolve according to some underly-
ing random process. However, we shall assume that the risk
manager’s budget for each stage is independent of his budget
for previous stages, i.e., he cannot save money in one period
to spend in another - this is reflective of the budgeting pro-
cess in many organizations. Additionally, for simplicity, we
shall assume that this quantity is constant and deterministic,
although dynamic programming formulations are still possi-
ble even if it is random.

The effect of allocating a portion of this budget to an indi-
vidual RTP ry is to cause the value of ry to change accord-
ing to a (possibly time-dependent) investment impact func-
tion Fy : D → D, so that

ry(t+ 1) = Fy(by(t), ry(t), t) (3)

where by(t) is the amount invested in reducing ry during
time period t and ry(t) is the current value of ry . The
value of by(t) is also assumed to be taken from a dis-
crete set, which has minimum value 0 and maximum value
b(t). Fy(by(t), ry(t), t) can be probabilistic, in which case
stochastic dynamic programming methods would need to
be employed. However, for the purposes of this paper, we
shall assume that F is a time-invariant, deterministic func-

tion which is the same for all RTPs. Therefore, we shall
simplify our notation for the investment impact function to
F (by(t), ry(t)). At this point, an action space for our dy-
namic program can be derived by finding all possible combi-
nations of investment choices which can be made in a single
time period. We can list these as

A = {a1, a2, . . . , al, . . . , aL}

With states and actions defined, we now describe how state
transitions occur. In general, this model can accommodate
any type of probabilistic Markovian state transition process;
however, we limit ourselves to a simpler deterministic case
here for illustrative purposes. We impose the following re-
strictions on the problem, which will determine how the state
can change from time t to time t+ 1:

1. At the end of each time period, the risk manager can
choose to invest b(t) dollars into the system (i.e., the
entire budget) or not to invest at all.

2. If the risk manager chooses not to invest in time period
t, then the SP will be the same in the next time period.

3. If the risk manager chooses to invest in time period t,
then the entire budget of b(t) dollars must be invested
into a single RTP4. The effect of this investment is to
reduce the RTP from dwy

in stage t to dwy−1 in stage
t + 1, unless the RTP is already at d1, in which case
investing in that RTP has no effect. In terms of the in-
vestment impact function, we have

F (by(t), ry(t)) =

{
dwy−1 by(t) = b(t), ry(t) > d1

dwy
otherwise

(4)

The last dynamic programming element to define is how
cost accumulates over time. Accordingly, we define a cumu-
lative cost function

C (T ) = cRA(s(T )) +

T−1∑
t=1

[cRA(s(t)) + ca(a(t))] (5)

4In general, not every RTP can be controlled; some RTPs are likely to
be outside the sphere of influence of the risk manager. While in this paper
we assume that every RTP is controllable, this assumption can be relaxed by
changing the action space appropriately.
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where C(T ) is the total risk cost incurred by the system up
until time T , s(t) represents the state during time period t,
a(t) represents the action taken during time period t, the cost
function cRA is taken from Section III to be the cost of a
security profile based on the risk assessment phase of our
framework, and the cost function ca maps actions to their
costs, i.e., to the corresponding investment amount. Based
on the simplified state transitions described above, we have

ca(a(t)) =

{
b(t) a(t) = invest in any RTP

0 a(t) = do not invest
(6)

The objective of our optimization problem is to minimize the
cost C(T ) for some T .

B. Solution Method

We investigate one typical optimization objective which a
risk manager may want to achieve: the minimization ofC(T )
over a finite time horizon T . This problem can be solved as a
deterministic shortest path problem. We can set up the stan-
dard dynamic programming algorithm as

HT (k) = cRA(sk)

Ht(k) = min
k′∈S

[ca(ak ′) + cRA(sk)

+ Ht+1(sk′)] , t = 1, . . . , T − 1 (7)

where Ht(k) is the optimal cost-to-go of being in state k at
time t and ak ′ is the particular action which takes the system
from state k to state k′.

Since any finite-state deterministic dynamic programming
problem is equivalent to a shortest path problem, we can
choose any one of a number of efficient algorithms to solve
for the optimal sequence of actions and the minimum cost,
given a particular starting state. Depending on the assump-
tions used in setting up the problem, different techniques may
be preferred. Under the specific state transition conditions
that we describe above, we find it useful to employ an ap-
proach related to label-correcting methods [13]. Suppose that
our initial security profile is s(1), and that we have T stages
over which to perform our cost minimization. Since the num-
ber of possible states may be quite large and not every state
may be reachable, it would be inefficient to fully enumer-
ate the state space, calculate the cost cRA of every possible
state, and then solve according to the general dynamic pro-
gramming recursion, especially because calculating cRA as
described in Section III can itself be a time-intensive process.
Indeed, under our conditions from above, any state in which
any of the RTPs has a larger value then it does in s(1) would
be unreachable. Furthermore, T may not be large enough to
reach the minimum cost SP, so there may also be some subset
of S which is unreachable because there is not enough time
to get there. These two facts justify the use of the following
technique, based on forward dynamic programming.

1. Given the set St of states which are possible at time t,
determine the set of states St+1 that are reachable in
time t+ 1. If any of these states have not been reached
before, add them to the list of “discovered states,” and
determine their cost using cRA.

2. For each of the reachable states sk′ ∈ St+1, determine
the set of states in time period t which could have led to
it. Call this set Stk′ .

3. For each possible state s(t + 1) = sk′ , determine the
minimum cost-to-arrive at that state, Gt+1(sk′), based
on the equation

Gt+1(sk′) = min
sk∈St

k′

{Gt(sk) + ca(ak′) + cRA(sk)}

where again ak′ is the action which leads from sk in
time period t to sk′ in time period t + 1.5 To evalu-
ate the cost cRA(sk), use the list of “discovered states.”
Store Gt+1(sk′) and the associated optimal action ak′

to arrive into this state.

4. Repeat until GT (sk′) is found for every possible state
sk′ ∈ ST . Then, the overall optimal cost is

G∗ = min
sk′∈St+1

{GT (sk′) + cRA(sk′)}

The optimal sequence of actions which leads to this op-
timal cost can be deduced by looking backwards starting
at the final state sk′ associated with G∗.

V. Simple Numerical Example

We now provide a numerical example to show the entire
framework in action. Suppose that the risk manager has
worked with domain experts in his organization to identify
the set of threats and their attack rates, the set of assets and
their costs of compromise, and the set of RTPs along with
their current values (and the set of values D that they can
take). This data is incorporated into Figure 4. The risk man-

Figure. 4: Risk model description for numerical example.

ager can proceed to perform risk assessment on this model
using the method described in Section III. The cost of the
current SP turns out to be about 5.6 million dollars/quarter.

Now, suppose that the risk manager also has a budget of
b(t) = $1k which he can invest to reduce risk each quarter,
and that he is interested in a time span of 6 quarters; there-
fore, he can take 6 actions to reduce his risk in the manner

5Note that, due to our state transition rule, we do not need to minimize
over the action ak′ , since there is only one action ak′ which leads from sk
in time period t to sk′ in time period t+ 1.
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described in Section IV. We have chosen a small budget for
the example simply for illustrative purposes; this will encour-
age the risk manager to take actions, since now the risk cost
incurred by not acting will most likely outweigh the action
cost b(t). By using the solution technique outlined in Sec-
tion IV-B, he obtains the optimal set of actions and security
profiles for each of his time periods of interest. A compari-
son of the optimal solution to an approach in which actions
are chosen at random is shown in Figure 5. It is clear that
the optimal solution can provide very significant cost savings
over the average cost incurred by random action sequences -
in this particular example, the optimal solution achieves a
27.8% improvement (approximately nine million dollar cost
reduction) over the average cost of randomly chosen actions
over the same time span. Another interesting result is that,

Figure. 5: Performance comparison showing that the opti-
mal action strategy achieves a 27.8% improvement over the
average cost of random actions.

for this example, the optimal solution achieves a 16.7% im-
provement (approximately 4.5 million dollar cost reduction)
over the average cost which would result if we allowed the
risk manager to randomly choose actions which only affected
RTPs in RVU (i.e., mapping the problem to the current state
of the art approach mentioned in Section II). Therefore, ig-
noring networked connections between assets can result in
significantly higher risk costs incurred over time.

VI. Conclusion

In this paper, we have presented an integrated quantitative
framework for security risk management. Based on the gen-
eral risk model of Section II, we developed a risk assessment
technique based on cascades of failures, and we provided a
formulation for risk mitigation through mathematical opti-
mization. We then discussed a stylized numerical example in
which our framework significantly reduced risk costs.

There are many possible directions for future work; we
highlight only a couple here. Several interesting extensions
to the current model can be made to explore issues related
to observability. These issues are faced by any risk manage-
ment technique; it is often the case that there are unobserved
dependencies, undiscovered security threats, insufficient or
erroneous data to characterize the risk state, or inaccurate
determinations of the effects of control actions. Therefore,
assessing the robustness of our framework to these types of
problems is an important direction for future study.

Another area for future work is the application of differ-
ent techniques for the risk mitigation phase of our frame-
work. Stochastic dynamic programming techniques can pro-

vide insight into stochastic security profile transitions. Addi-
tionally, we are investigating approximate dynamic program-
ming techniques to handle extremely large state spaces.

A third area for further work which shows much promise
is the application of game theoretic analysis techniques to our
framework. It is often the case that attackers are intelligent
and malicious as opposed to random, which means that their
actions can be more accurately modeled using game theory.
Accordingly, introducing game theory into the model can po-
tentially have intriguing effects.
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