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Abstract: Modern vehicles made a meaningful development
to more complexity as well as connectivity in the last decade.
Therefore, they cannot be seen as a closed system anymore. As
the openness of the vehicle is increasing, so does the security
risk for the in-vehicle networks and its components. Apart from
threats for comfort and confidentiality, these attacks can also
affect safety critical systems of the vehicle and hence endanger
the driver and other road users. This paper discusses anomaly
detection capabilities for in-vehicle networks based on sensors
monitoring the internal network traffic. With respect to charac-
teristics of typical vehicular networks, like the Controller Area
Network (CAN), a recognition model for potential attacks dur-
ing the operation of the vehicle without causing false positives is
presented. Moreover, important design and application criteria
for such an extension of the vehicle’s security architecture are
explained and discussed.

Keywords: Automotive Security, Vehicular Anomaly Detec-
tion, In-vehicle Networks, CAN.

I. Introduction and Background

The automotive industry has undergone a substantial devel-
opment in the last decade: More and more electronics and
software is integrated into the vehicle to provide more safety
to the driver in case of new assistant systems or to add
more functionality to the car in a cost-effective way. This
means that the number of electronic control units (ECUs)
has steadily increased. Modern upper class vehicles com-
prise up to 80 ECUs for different application areas and func-
tions that pertain to different automotive networks and do-
mains. Another important development is the interfacing
with external networks for car-to-X communications (e.g.,
WLAN, DSRC, WAVE, IEEE 1609.2) and mobile commu-
nication networks (e.g., GSM, UMTS, Bluetooth) as well as
storage media (e.g., USB, CD, DVD). Even the integration of
nomadic third party devices like navigation systems, mobile
phones, notebooks, etc. is possible, which in the future also
may even gain access to the internal networks. The impact
of the increasing complexity, the number of interfaces and

communication possibilities is that modern and future vehi-
cles are no longer closed systems like in the past; they have
changed into open systems.

The downside of openness is exposure, and with exposure
rises the risk of attacks for future vehicles. Consequently,
the likeliness increases that vehicular IT systems will be sub-
ject to a similar amount of malice that original desktop sys-
tems are faced with [24]. Currently, it is a major trend that
many recent research activities are launched, especially fo-
cusing on in-vehicle security. Since most in-vehicle networks
are optimized with respect to safety and reliability, but do
barely provide any explicit protection mechanisms against
malicious attacks, it might be possible for attackers to in-
ject or manipulate messages on certain automotive networks.
These attacks could result in a negative impact for comfort
and privacy, but also cause serious malfunctions of the ve-
hicle and a threat for safety and human life – for instance
if an attacker manages to inject packets into the powertrain
network or manipulate messages for the Antilock Braking
System (ABS) [21].

In vehicular security it is sometimes useful to look at the
early developments in the security of desktop computers.
There, several well explored measures for the mitigation of
attacks have been analyzed. But the consideration of stan-
dard measures, e.g., firewalls and virus scanners, is not suf-
ficient enough to provide useful protection for vehicular net-
works, because of their focus on a preventive approach and
limited resources. Additionally, vehicles have a very long
life span and are in use for decades in different conditions
and locations. To provide an efficient protection, preventive
measures only are not sufficient enough over this long period
of time. One reason for this is the fact that regular updates of
threat signatures – like they are known from virus scanners
from the PC world – can not be guaranteed in this application
domain. As a consequence, the vehicle’s security system has
to work autonomously without a necessity for user interac-
tion.

In this paper, we focus on areactiveapproach to in-vehicle
network security. We present an approach to extend the se-
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curity architecture of vehicles by implementing monitoring
capabilities for traffic on vehicular networks in order to eval-
uate abnormal events and classify them as a threat or not.

A. Related Work

Previous research regarding in-vehicle networks has mainly
focused on safety issues [2, 18], i.e., protection against unin-
tentional, random events. More recent activities go beyond
and consider security aspects as well [5, 23]. Different poten-
tial attack scenarios on future automotive systems have been
presented [13] as well as the implementations of concrete at-
tacks on the CAN bus [6]. In the world of desktop computers
intrusion detection systems (IDS) are one well known coun-
termeasure by now, and different concepts like misuse and
anomaly-based detection have been developed. More details
and comprehensive IDS surveys can be found in the literature
[11, 22, 25]. In general, the challenge to anomaly detection
systems is to achieve a low rate of false positives, since false
alerts can be very costly. Additionly, it is well known that the
fine-tuning of systems requires suitable test and training data
which is often hard to obtain.

The first concept for in-vehicle intrusion detection was in-
troduced by Hoppe et al. [7] with a presentation of three se-
lected characteristics as intrusion detection patterns. This in-
cludes the recognition of an increased frequency of cyclic
CAN messages, the observation of low-level communication
characteristics based on typical properties of electric signals
on the physical layer, and the identification of obvious mis-
use of message IDs. However, it remains unclear how the
obviousmisuse of a message ID is specified. The monitor-
ing and analysis of electric signals on in-vehicle networks
on the physical layer seems very difficult in the automotive
domain. The signal characteristics on the physical layer can
be subject to frequent change due to strong variations during
the automotive life cycle with respect to the automotive envi-
ronment, application fields, temperature ranges, and humid-
ity. Moreover, the definition of these characteristics would
involve extraordinarily high efforts. Besides, a first imple-
mentation of an attack on the electronic window lift has been
published, including an approach for solving the given sce-
nario [6]. The recognition is based on the same three proper-
ties and is directly adjusted to the selected attack scenario, a
comprehensive or generic approach is not included.

Larson et al. [14] introduce an approach to specification-
based attack detection for in-vehicle networks, which shows
how to gain a description of the vehicle’s normal behavior
out of the network protocol and ECU specification based on
the CANopen protocol [9]. Moreover, they discuss differ-
ent aspects with respect to a meaningful IDS sensor place-
ment. The paper reinforces the claim that the challenges
intrusion detection systems (especially anomaly-based ap-
proaches) generally have to cope with become even more
crucial in the automotive domain. While contributing the
idea of specification-based attack detection, Larson et al.[14]
do not attempt to classify types of sensors to give a broader
picture of IDS in vehicular networks.

Hoppe et al. [8] take a more generic approach and ask
whether notification concepts of intrusion detection from
desktop computers can be applied to the automotive domain.
They define anadaptive dynamic reaction modelfor the no-

tification and reaction phase of an IDS, which describes dif-
ferent optical, acoustic, or haptic measures for the reaction to
detected threats and the notification of the driver. Moreover,
several other recent publications discuss anomaly detection
as one potential security approach for future automotive sys-
tems, but leave the details to future work [12, 20, 23, 19].

B. Contributions

In this paper we attempt to go beyond present work by tak-
ing a first step towards an integrated and holistic approach
to anomaly detection for in-vehicle networks. We present
a threat detection scheme for in-vehicle networks that com-
prises nine fundamental types of attack detection sensors
which serve as recognition criteria for automotive IT threats.
We discuss several requirements that have to be fulfilled for
an integration of the approach into the automotive security
framework of future vehicles. Furthermore, we derive a clas-
sification of automotive attack detection sensors and present
a first concept how to integrate our approach into a holistic
intrusion reaction concept. Our approach can be regarded as
a generalization of specification-based approaches that takes
into account the typical characteristics of automotive net-
works like the Controller Area Network (CAN) [18] and their
limitations.

C. Roadmap

Section II describes important design criteria of vehicular
attack detection systems. In Section III we present the ad-
dressed set of automotive attack detection sensors as well as
further aspects for a deployment. Afterwards in Section IV
the integration into the vehicle is discussed, and we conclude
the paper in Section V.

II. Automotive-specific challenges

For the development of an in-vehicle anomaly detection sys-
tem several new issues arise, due to different constraints and
the nature of automotive networks. In the following we dis-
cuss the major conceptual challenges that need to be consid-
ered for the design and the integration of an attack detection
system into the vehicle.

A. Data Selection

A general issue for the development of an attack detection
system is what kind of data the attack detection system needs
to observe. In the area of desktop computing, intrusion detec-
tion systems are often separated into host-based and network-
based approaches (or HIDS and NIDS [15]), depending on
their data source. In the vehicle, data sources can be the dif-
ferent sensors and networks but also internal data of ECUs or
gateways. Broadly speaking, the more data can be monitored
and obtained for evaluation, the better the overall picture
about the current situation of the system. However, the more
information needs to be observed, gathered and evaluated,
the more complex and costly the development and analysis
process becomes. Although today’s vehicles include several
different networks, ECUs and communication sources, not
all of these networks may be indispensable for the recogni-
tion of in-vehicle attacks.
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B. Detection Methodology

One major question is how exactly the identification of in-
vehicle attacks should be performed. This includes the vi-
tal question, which basic detection approach turns out to be
most suitable for the automotive area. Misuse detection [17],
sometimes also referred to assignature detection, promises
a low false positive rate, which is important as numerous
false alerts could question the usability of the entire concept
in the vehicle and may negatively affect the driver’s aware-
ness. However, the focus on known attacks and the need
for regular updates make the deployment in the automotive
area difficult. At first, frequent updates require a communi-
cation channel. Mobile channels like GSM or UMTS cause
extra costs and may not be available in every geographic re-
gion or country. Broadcast channels like RDS or future tech-
nologies like TPEG (Transport Protocol Experts Group) over
DAB (Digital Audio Broadcasting) are a theoretic option but
would have several technical challenges in this application
domain. Updates could be included in the inspection service
at the garage, but in this case the update frequency is fairly
low and many car-owners worldwide do not rely on a garage
service at all. Finally, the owner could install a special device
at home which performs the update, resulting in high extra
effort for the customer. Besides, this option may not be appli-
cable for persons without technical skills. Second, signature-
based detection approaches focus on known attacks and en-
counter problems as soon as attack patterns deviate from the
original specification. In summary, all of the previously de-
scribed solutions and aspects show serious drawbacks, which
can make the signature-based approach fairly unattractivefor
automotive manufacturers.

Anomaly detection [4] promises to detect attacks, includ-
ing novel attack patterns, that result in a system state which
differs from the normal specification. However, in the past
anomaly detection systems were typically prone to high false
positive rates and the specification of the system’s normal
behavior has turned out to be a challenging and daunting
task. Nevertheless, if the normal behavior of the vehicular
networks can successfully be defined and adopted we con-
sider anomaly detection to be the more promising approach
to start with in the automotive domain as unknown attacks
may be detected as well and no regular updates are neces-
sary. In the future, hybrid approaches can be promising as
well.

C. Sensor Placement

If the relevant data sources have been determined, the next
question is where and how the acquired information is col-
lected and evaluated. Two main concepts are possible: Sim-
ple sensors that just observe a special data source, e.g., by
monitoring a certain bus system, and transfer the informa-
tion to a central processing unit of the attack detection sys-
tem, where the entire evaluation is performed. This keeps
the sensors fairly cheap and simple but it either massively in-
creases traffic on the automotive network or even requires a
separate communication channel for each sensor to be built.

Alternatively, some intelligence of the attack detection
system can be included into the sensors themselves. Each of
these intelligent sensors can perform some pre-processing,
data selection, or even parts of the threat detection [1]. Some

data may be discarded because it is not considered relevant
for attack detection, repeated data or signals could be sum-
marized and compressed. This massively reduces the amount
of traffic that needs to be transferred to a central attack de-
tection unit but increases the costs per sensor.

D. Detection Performance

For a deployment in the automotive area, an attack detection
system needs to fulfill real-time performance requirements
[10]. Especially attacks which target the safety of the vehi-
cle, e.g., by sending false messages to the brakes, engine, etc.
can only be tackled if this requirement is fulfilled. However,
the automotive environment is a network of embedded sys-
tems comprising highly specialized and cost-optimized com-
ponents, which offer only limited computational power but
are designed to work reliably under very different physical
conditions, temperature ranges, etc. This means, for the im-
plementation of attack detection methods, a reasonable bal-
ance between performance and costs has to be achieved while
ensuring the physical hardware requirements are met.

E. Notification and Reaction

If an attack detection system continuously monitors the au-
tomotive network and starts to recognize an attack, imme-
diately the next challenge turns up: What is an appropriate
reaction for the system to carry out? In the world of desk-
top computers, a common response to a potential threat for
an attack detection system is to pop up a message on the
user’s screen indicating the location, type and source of the
attack and calling for user input what to do. In the automo-
tive world, however, the situation is more difficult: Imagine
a customer driving his car on a motorway with high speed
when the vehicular attack detection system recognizes an at-
tack. Displaying an alert message on the vehicle’s instrument
cluster and asking what action to perform, would cause high
distraction for the driver and may also increase the chance
for an accident. Moreover, the driver may not have sufficient
technical knowledge or experience in order to know what re-
action to decide for. Also, the time required for the user to
decide and respond is too high to prevent the effect of an at-
tack to prevail. Because of this, the design goals of an auto-
motive IDS have to include an autonomous reaction concept
in combination with a high detection reliability. Finally,only
if no other option is left, the system should decide to interact
with the driver. First approaches of such a user interaction
have been discussed elsewhere [8].

F. Detection Reliability

The detection reliability of an automotive intrusion detection
system can be described by thedetection rate, which is the
percentage of incidents, which have been successfully de-
tected as an attack (true positives). The incidents spuriously
marked as attacks are calledfalse positives. The recogni-
tion rate an automotive IDS should strive to achieve needs to
be much higher than the detection rate for common desktop
computers, due to the immediate possible effects the attacks,
but also the reactions of the automotive IDS, can have on the
safety of the driver and other road users.
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In general, the detection rate has to be correlated to the
notification and reaction model of the IDS. Typically, most
intrusion detection systems cause a notable number of false
positives. Here a big challenge turns up: On the one hand,
a vehicular IDS should act autonomously without asking the
driver for feedback — especially not if the vehicle is in a
driving situation, as described in Section II-E. On the other
hand, an automatic intervention to an incident which turns
out to be afalse positivecould lead to similar safety risks
than a real attack does. Therefore, this work focuses on ap-
proaches which allow the identification of attacks without
causing any false positives. In Section IV, we furthermore
show how to evaluate the criticality of an incident detected
by the approach introduced in this contribution. This focus
on reliable detection measures is especially a requirementfor
the application of a notification and reaction model, which
goes beyond a passive notification of the driver and also com-
prises active measures of intervention and response. Accord-
ingly, if the IDS incorporates a detection approach which
yields a higher number offalse positives, this fact needs to
be considered by the notification and reaction model. An ex-
emplary consequence could be the avoidance of intervening
measures and a restriction to passive notifications [8].

III. In-Vehicle Network Attack Detection

In this section we present a set of different network-based
detection sensors, which allow the recognition of anomalies
occurring inside the vehicular network. We point out the con-
ditions that are required for each sensor type by introduc-
ing different applicability criteria. Afterwards we show how
these criteria can be used to derive a structure for the sensor
types.

A. Anomaly Detection Sensors

A major challenge in anomaly detection is to determine a
reliable way how anomalies can be identified without gener-
ating too many false positives. Therefore, we present a set of
different anomaly detection sensors for in-vehicle networks
which comprise one major advantage: In contrast to other
solutions in the area of anomaly detection [11] they do not
produce any false positives. The reason for this is the fact
that all sensors are based on unambiguous and reliable in-
formation only, namely, the network protocol specifications,
the defined cooperative networking behavior of the devices
(e.g., message duplication tables of ECUs), redundant data
sources in the vehicle, or a combination of these. Therefore,
if an incident is detected it is assured that the system is in
an abnormal state, however, the sensors may not be able to
detect all possible attacks (resulting in false negatives). Ob-
viously, it cannot be determined if the anomaly is caused by
a malicious attack or by other reasons, e.g., a hardware error.
However, this is a general problem all anomaly detection sys-
tems of this type have to face in theory and it does not reduce
the applicability of the approach. In fact, the detection of
hardware errors results in a very worthwhile information for
the driver as well. In this first approach, we assume that the
IDS itself does not get compromised by an adversary. Future
approaches may consider additional, technical measures, like
trusted computing, to enforce this assumption [3]. All detec-

tion sensors we introduce are based on the typical behavior
of automotive bus systems like CAN, but are described from
an abstract point of view to allow an easy adaptation to other
transfer media.

S-1: Formality SensorVehicular bus systems, like CAN,
are very reliable and robust communication media. However,
if we move forward from a strict reliability perspective and
start to consider intelligent attackers, the standard measures
of vehicular bus systems to ensure dependable communica-
tion are not sufficient any more. An intelligent attacker could
add or manipulate devices in such a way that these compo-
nents do not completely adhere to the protocol specifications
any longer, e.g., in order to cause abuffer overflow. There-
fore, a basic element for a vehicular anomaly detection sys-
tem is a sensor which checks every message for formal cor-
rectness of the communication protocol, e.g., by verifying
the packet header, delimiters, field sizes, checksums, etc.

S-2: Location SensorFor every message in an automotive
network it is specified which sub-network this type of mes-
sage is allowed in. Hence, even when a message is formally
correct, it can still be part of an attack, e.g., if that type of
message is not allowed within a given domain. For instance,
a packet which adjusts engine settings in the powertrain do-
main is usually not allowed in the telematic domain.

S-3: Type SensorThe Type Sensor accesses the payload
of the message and checks if the data type in the payload
matches the expected type. A exemplary type mismatch
would be a message comprising aninteger value where a
booleanis expected. The type sensor can only be sensibly
implemented at an abstraction level, where type information
is already available. In current automotive networks this is
usually not the case. Nevertheless, if an abstraction levelis
chosen which provides type information, e.g., during data
processing at ECU level, the sensor can be integrated.

S-4: Range SensorThe Range Sensor accesses the pay-
load of the message and checks if the data range of the pay-
load stays within the allowed boundaries. For instance, even
if the data typeintegeris correct, in a message conveying the
current vehicle speed, a value of > 300km/h usually indicates
an anomaly (depending on the type of car).

S-5: Frequency SensorMany messages in the automo-
tive network are sent cyclically with fixed intervals, even
when a function is not active or does not change its status.
Other messages are only sent on demand cyclically or non-
cyclically, e.g., when the driver presses a button to activate
a function (like messages for the power windows). The fre-
quency sensor checks if the interval between cyclic messages
is within defined upper and lower bounds, but also verifies
the interval between non-cyclic messages for realistic and
feasible frequency. This type of sensor also ensures that a
flooding attempt on the vehicular network in order to per-
form adenial-of-service attackcan be detected.

S-6: Correlation SensorTypically, the vehicular network
is comprised of different domains and sub-networks, which
are interconnected by dedicated automotive gateways. Of-
ten, several messages are not limited to a single bus system
but are required by several devices in different sub-networks
simultaneously. Therefore, for proper operation those mes-
sages are transcribed by the linking gateways. The correla-
tion sensor is an independent entity, which verifies that mes-
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Nr Sensor Description
S-1 Formality Correct message size, header and field size, field delimiters, checksum, etc.
S-2 Location Message is allowed with respect to dedicated bus system
S-3 Type Compliance of payload in terms of data type
S-4 Range Compliance of payload in terms of data range
S-5 Frequency Timing behavior of messages is approved
S-6 Correlation Correlation of messages on different bus systems adheres to specification
S-7 Protocol Correct order, start-time, etc. of internal challenge-response protocols
S-8 Plausibility Content of message payload is plausible, no infeasible correlation with previous values
S-9 Consistency Data from redundant sources is consistent

Table 1: Automotive Anomaly Detection Sensors

sages which normally only occur in combination on specific
sub-networks adhere to the defined specification. This allows
recognizing attacks where the access of the attacker is limited
to a particular bus system or domain.

S-7: Protocol SensorSeveral devices in the vehicle im-
plement small communication protocols on a challenge-
response basis. Exemplary applications for such protocols
are the diagnosis functions at system startup or the key ex-
change of the electronic immobilizer. Even without knowl-
edge of the keys, the Protocol Sensor monitors the traffic with
respect to the specification of these challenge-response pro-
tocols, e.g., by checking if somebody tried to tamper with
the order of the messages in the protocol, if the timing (e.g.,
start- and end point-of-time) of the protocol is valid, etc.

S-8: Plausibility SensorThe Plausibility Sensor consid-
ers the semantics of the message payload and checks if the
data content is realistic. Implausible data can be values
which stay within their defined data range, but show infea-
sible correlation with previous values or other messages of
that domain. An example would be a sequence of messages
containing the vehicle speed which is shifting from 20 km/h
to 200 km/h and backward immediately without sufficient in-
termediate values. A formal specification of such relations,
which is applicable here, has been illustrated in the paper by
Larson et al. [14]. In our case, a restriction to reliable and
non-heuristic definitions ensures that only true positivesare
indicated by the system.

S-9: Consistency SensorThe Consistency Sensor ex-
amines the semantics of the message payload, but in con-
trast to the Plausibility Sensor it is not limited to a specific
sub-network or domain. Instead, it can access various data
sources in the car. The Consistency Sensor uses the fact
that several events trigger consequences and effects which
are noticed by different components, sensors or ECUs in the
vehicle. In particular, the sensor operates in such a way that
it verifies the correctness of the data by using redundant or
duplicate information, which can be acquired from different
sources in the vehicle. An exemplary event the Consistency
Sensor would indicate, is the situation that the tire rotation
sensors show the vehicle is standing, but the GPS sensor of
the navigational system indicates a movement.

To summarize, the contribution of the anomaly detection
sensors does not lie in the individual complexity of each de-
tection criterion, but in the investigation and extractionof the
critical factors a typical modern vehicular network is charac-
terized by, and the combination of these factors into a holis-
tic IDS scheme allowing the recognition of in-vehicle threats
without generating false positives. An overview of the sen-
sors is given in Table 1.

B. Applicability of Detection Sensors

A comparison of the different sensor types reveals that for
each sensor different requirements, conditions and accessop-
tions hold. For instance, whereas some sensors only require
a single packet for a successful detection, others need a num-
ber of messages for being able to work.

This paper identifies six applicability criteria, which show
the requirements and working conditions of the sensors. In
the following we explain these criteria and discuss the con-
sequences each criterion implies. An overview of the appli-
cability criteria and the corresponding parameter values for
each anomaly detection sensor is given in Table 2.
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Formality true 1 1 n.a. false false

Location true 1 1 n.a. false false

Type true 1 1 n.a. true false

Range true 1 1 n.a. true false

Frequency true n 1 false false false

Correlation true n n true false false

Protocol true n n true false false

Plausibility false n 1 false true true

Consistency false n n true true true

Table 2: Applicability of in-vehicle anomaly detection sen-
sors

1) AC-1: Specification-Based

Vehicular networks have very strict specifications for the
communication system including every message that is al-
lowed on a bus system. For CAN, these specifications are
covered in the CAN-Matrix of the specific network. There-
fore, criterionAC-1 describes if the result of the sensor can
reliably be determinedonlywith the help of the specification,
like the CAN-Matrix. Otherwise, e.g., if further data sources
are required or attack patterns have to be defined the value is
false. For an integration into the vehicle this criterion means,
that the specification needs to be included into the sensor but
no further data, e.g., through the wiring to a redundant data
source, is required.
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2) AC-2: Number of Messages

This criterion refers to the minimum number of messages re-
quired for this sensor. We distinguish between one and many
messages (n). A one here always implies a one for the cri-
terionnumber of bus systemsand makes criterionAC-4non-
applicable(n.a.). Sensors which require more than one mes-
sage usually have higher hardware requirements with respect
to performance, memory, etc.

3) AC-3: Number of Bus Systems

This criterion means the minimum number of bus systems
the sensor needs access to in order to perform a detection.
We distinguish between one and many bus systems (n). The
integration of sensors into the vehicle which require access
to multiple bus systems is more complex and requires higher
efforts. The multiple access points can either be included into
a central gateway or can be placed in a distributed manner
(see Sect. II-C).

4) AC-4: Different Message Types

This criterion isfalse if one type of messages can be suffi-
cient for a detection, andtrue if two or more message types
are necessary. It is not applicable if criterionAC-2 is one,
indicated byn.a.. In the context of CAN two messages are of
the same type if they have an identical identifier, meaning the
ECUs addressed by this message are the same but the values
transmitted can be different.

5) AC-5: Payload-Inspection

This criterion describes if at least one part of the payload of
a message is taken into account. One major implication of
this parameter value is, that if the value istrue the sensor can
only process unencrypted messages as in general no read ac-
cess to an encrypted payload is possible. Although currently
most in-vehicle networks do not use encryption, this might
be a very important aspect in the future. Usually, a payload-
based sensor implies higher performance requirements for
the anomaly detection system since the entire payload needs
to be read and processed.

6) AC-6: Semantic-Based

This criterion istrue if semantic aspects of the payload are
considered. Obviously, it can only be true, if the payload is
taken into account. However, even when the payload of a
packet is considered the semantic meaning of the data is not
always relevant, e.g., when only a range check of the payload
content is performed.

C. Towards a Classification

The applicability criteria can be used to organize and struc-
ture the different sensors we described for the detection of
anomalies in vehicular networks. Therefore, we determine
two key applicability criteria which are suitable to classify
the set of anomaly detection sensors. Based on our first expe-
riences with the sensors, we identifyAC-2(Number of Mes-
sages) andAC-5 (Payload-Inspection) as potential key crite-
ria and receive the classification shown in Fig. 1.

Both applicability criteria are suitable for a classification
because they do not influence each other and their values can
be clearly and unambiguously determined.AC-2 is a ma-
jor criterion, because the minimum number of messages re-
quired for detection has proven to cause strong implications
for the design and implementation complexity of a detec-
tion sensor. If the payload of a packet is inspected, the re-
quirements for the performance of a sensor usually are much
higher. This is a crucial fact which underlines the relevance
of criterion AC-5, because performance, and especially its
financial implications, are critical aspects in the highly cost-
driven automotive industry [16].

Fig. 1 shows an arrangement into four classes: The two
leftmost classes are packet-based, the two rightmost classes
are stream-based as they consider multiple messages. If we
assume an increasing complexity for payload-inspection, the
classesPacket-InspectionandStream-Inspectioncan be con-
sidered to have a higher complexity for implementation and
realization in the automotive domain. Fig. 1 includes a map-
ping to the sensors introduced in Table 1, which serve as ex-
amples for each class. Consequently, the list of sensors in the
classification might be supplemented at a later point of time,
e.g., if new technical possibilities arise or the focus is driven
towards another vehicular bus system.

Figure. 1: Classification of Anomaly Detection Sensors

IV. Integration of Sensor Results

The anomaly detection sensors described in Sect. III-A bear
the advantage that no false positives are produced. In this
section, we show how the results of the sensor data can be
evaluated furthermore, to facilitate a straightforward integra-
tion of the approach into a holistic IDS concept for the auto-
motive domain.

A requirement for an integration of an IDS approach into
the automotive domain is an evaluation of how severe a sit-
uation needs to be rated. Although a sensor recognizing
an anomaly automatically implies that something is wrong
within the vehicular system, a detection engine can support
the notification and reaction phase of an IDS with additional
information. This information can be used to support the de-
cision of how to react when an anomaly has been detected.
For instance, it may not always be inevitable to notify the
current user of a successfully detected anomaly. In this ap-
proach, especially two criteria are considered for the evalua-
tion:

• Number of recognized events
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Under certain circumstances, a single anomaly might
still be tolerable up to some degree, as it would usually
just result in an error message and a retransmission by
the sending ECU. An exemplary situation might be an
incorrect CAN identifier or message checksum occur-
ring in a specific CAN message, which is caused by dis-
turbances or perturbation in regard to electromagnetic
compatibility (EMC). A situation, however, where not
just a single message is affected but suddenly the per-
centage of retransmissions in the network strongly in-
creases, is considered much more critical as it can be
an indicator of an attack. Consequently, the number of
recognized events within a specific period of time is re-
garded in the evaluation.

• Type of sensors recognizing an event
The impact an anomaly has for the system can be eval-
uated with the help of the type of sensor it was detected
with. Some sensors can be more important than others,
and therefore imply a higher criticality. A spurious mes-
sage detected by a Location Sensor, for instance, may be
more significant than a single incident recognized by a
Frequency Sensor, due to the fact that an entirely dislo-
cated message is much more unusual than a slight and
singular drift in frequency.

In the following, the integration method is developed step
by step and both aspects are incorporated into a holistic
method for an estimation of the criticality of an incident.

An incident is a situation where at least one sensorSi rec-
ognizes an anomaly at a certain point in time. Therefore
we model the sensorSi as a function of time to the range
{0, 1}. Detection of an anomaly at timet is then denoted as
Si(t) = 1, wherei ∈ {1, ..., n} is the type of sensor (cur-
rently n = 9). We assume that the time domain is discrete
and not continuous, i.e., there is a mapping of the time do-
main to the natural numbers.

We introduce a basic estimation of how critical an inci-
dent is by a separation into three classes with an increasing
criticality:

C = {important, critical, severe} (1)

These classes allow to differentiate between three basic crit-
icality levels, which facilitate a reaction to anomalies and a
suitable notification of the driver, e.g., by different optical,
acoustic or haptic measures according to theadaptive dy-
namic reaction modelproposed by Hoppe et al. [8].

If we define a weightwi determining the impact for every
sensor, the accumulated weights of all sensors at a timet can
be acquired by

Crit(t) =
n∑

i=1

Si(t)wi. (2)

This equation can be used to estimate thecriticality of an in-
cident at a given point in timet, based on the assumption that
a larger number of sensors detecting an anomaly as well as
higher weighted sensors result in a more critical classifica-
tion.

Under certain circumstances, a single anomaly, like an in-
correct checksum in a specific CAN message which is caused

by disturbances in regard to electromagnetic compatibility
(EMC), might still be tolerable up to some degree as it would
usually just result in an error message and a retransmission
by the sending ECU. A situation, however, where not just
a single message is affected but suddenly the percentage of
retransmissions in the network strongly increases, is consid-
ered much more critical. Therefore, we use a sliding window
approach to include previous events into the evaluation and
defineXi(t) as the sum of all incidents for sensorSi within
the last window of sizeSLWup to timet:

Xi(t) =

t∑

j=t−SLW

Si(j) (3)

Note that we assume that time is not continuous, i.e., mea-
surements are taken at discrete points in time and can there-
fore be summed up instead of using integration.

Equivalently to equation 2, we estimate the criticality of
an incident with respect to previous events and define thresh-
oldsT for each criticality classC: Timportant< Tcritical <

Tsevere. This leads to the following equation for the detec-
tion of a critical event:

n∑

i=1

Xi(t)wi > T (4)

We divide the equation through the arithmetic mean of all
weights and adjust the thresholds appropriately (indicated by
T ′), in order to uncouple the threshold from the individual
weights and number of sensorsn. Hence, we receive

n
n∑

i=1

wi

·

n∑

i=1

Xi(t)wi > T ′ (5)

which gives an estimation of the criticality of an event at time
t. Here, the weights allow a balancing of the different sensor
types and the sliding window ensures that an accumulated sit-
uation is evaluated. A reasonable size for the sliding window
still has to be identified. We expect a strict lower boundary
size to be the highest loop period of all affected, cyclic CAN
messages defined by the CAN-Matrix. However, the optimal
size of the sliding window still needs to be determined by
future investigations.

V. Conclusion

After describing challenges in the area of in-vehicle net-
works, this paper presented a threat detection scheme for
such automotive networks – in this case examplified and ori-
ented to the CAN bus – that is based on a set of sensors.
These sensors can serve as real-time criteria for the recog-
nition of IT-security related threats and do not cause false
positives. We suggested to integrate this reactive approach
into the security architecture of future vehicles in addition to
preventive measures to build up a holistic attack protection.
Moreover, different characteristics and typical limitations of
automotive networks that affect the design and deployment
of threat detection systems have been considered. The shown
indicators and measures provide a good fundamental toolbox
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for the detection of several threats in order to achieve a rea-
sonable basic level of security for detecting attacks on in-
vehicle networks. But of course, intelligent attacks are still
possible without detection. This, for instance, is the caseif
an attacker is able to inject messages that are fully compliant
to the network’s normal behavior and plausible to previous
values. So overall, there is still much future work to be per-
formed.
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