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Abstract: Attribute relations in access control mechanisms or 
languages allow accurate and efficient specification of some 
popular access control models, they can also be regulated for 
some constraints of an access control polices. However, most of 
the access control systems including today’s de-facto access 
control protocol and specification language, XACML, does not 
provide sufficient syntactic and semantic support for the 
specification or constraint of attribute relations in their scheme. 
In this paper, we show the deficiencies of XACML in 
specifying and constraining such capabilities in the 
implementations of the Multilevel Security, Hierarchical Role 
Based, Separation of Duty, and Safety requirements of access 
control systems. In comparison, we then demonstrate the 
mechanisms for the capabilities provided by a relation-based 
access control mechanism – the Policy Machine. 

Keywords: access control, access control model, access 
control policy, authorization, privilege management, 

XACML  
 

I. Introduction 
 

A critical capability of an access control (AC) system is to 
allow an AC administrator to specify relations between AC 
attributes. With this capability, an AC system is able to 
maintain hierarchical orders (i.e. the inheritance relation of 
access privileges) of the attributes of the AC elements 
(subjects, actions, objects). The relations of privilege 
inheritance is specified by attribute relation (AR), which is 
essential for many popular AC models such as Bell-La 
Padula [1] (BLP) and Biba (BI) [2] of Multileve Security 
(MLS)[3], and Hierarchical Role Based Access Control 

(HRBAC) [4] as well as constraint policies such as 
Separation Of Duty (SOD) [5].  

The syntactic and semantic supports of attribute relation 
specifications in AC mechanisms or languages allow not 
only accurately specifying but also efficiently enforcing the 
relation-based AC models and policy constraints. The 
specific advantages of such capabilities include: 
 Specifying hierarchical relations for the inheriting or 

inherited privileges of subjects, actions, and objects in 
AC policies by attribute relations. For example, if subject 
X is related to subject Y then subject X inherits all the 
access privileges of subject Y. 

 Efficient management of AC rules, such that AC policy 
administrators can modify privileges based on attribute 
groups and relations without making errors. And it is 
possible to display all the linkages of existing related 
attributes through GUI (Graphic User Interface), thus 
providing a complete view of the current privilege 
assignments.  

 Enforcing SOD policies, which require an AC system to 
render all the inherited privileges of the targeted subjects. 

 Performance enhancement for evaluating access requests, 
because an AC system does not have to go through all the 
AC rules to collect attribute information for the grant 
decision if higher level attributes of the request can be 
found to match the rule.  

 Constraining the action and object pairs of an access 
privileges of particular attributes for the assurance of 
safety, which guarantees no leakage of information. 
eXtensible Access Control Markup Language (XACML) 

[6,7] is today’s de-facto protocol and specification language 
scheme for AC implementations. XACML provides a 
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flexible and mechanism independent representation of 
access rules that vary in granularity; it allows the 
combination of different authoritative domains’ policies into 
one policy set for making access control decisions in a 
widely distributed system environment. However, XACML 
does not provide a scheme for specifying ARs; instead, ARs 
can be implemented in one of its architectural components 
(e.g., PEP) by ad-hoc applications.   

In this paper, we first show the deficiencies of XACML 
in specifying and constraining ARs. We then demonstrate 
the virtues of an AR mechanism from a relation-based AC 
mechanism –  Policy Machine (PM) [8, 9, 10], which 
embeds access control policies in standard access control 
attributes. PM includes a server engine called Policy Server 
(PS) and a policy management system, called General 
Policy Management System (GPMS). PS and GPMS 
together enable enforcement of multiple access control 
policies within a single, unified system. PM is highly 
extensible, since it composes and combines access control 
policies from a relatively small set of atomic properties 
completely expressed with mappings and interrelationships 
of the ARs on three basic elements – Subject Sets, Object 
Sets, and Operation Sets. Mappings and interrelationships of 
ARs are enforced with a database and a fixed set of 
functions. 

This paper contains six sections. Section 1 introduces the 
AR of AC policies. Section 2 explains AR implementation 
in the popular XACML AC scheme. Section 3 introduces 
the architecture and functions of Policy Machine (PM). 
Section 4 demonstrates PM’s mechanism for specifying 
ARs for AC models and constraints for safety requirements. 
Section 5 compares PM with related work. Section 6 is the 
conclusion. 

 
II. Attribute Relations in XACML 

 
XACML provides an AC policy specification language in 
an XML scheme as well as generic architecture components: 
Policy Decision Point (PDP), Policy Evaluation Point (PEP), 
Policy Information Point (PIP), and Policy Administration 
Point (PAP) for the AC enforcement functions. The regular 
expressions of XACML Version 2 are listed below: 
 
(1) PS: T+ PS + P + PCA + O 
(2) T: S + R + A + E  
(3) P: T + RL +RCA + O 
(4) RL: T + C + E 
 
where PS is the Policy Set, T is the Target, P is the Policy, 
PCA is the Policy Combination Algorithm, O is the 
Obligation, S is the Subject, R is the Resource, A is the 
Action, E is the Environment, RL is the Rule, RCA is the 
Rule Combining Algorithm, C is the Condition, and E is the 
Effect of the XACML language scheme. 

Regular expressions (2) and (4) are used for composing 
AC rules by the basic AC elements: subjects, resources, 

actions, and environment variables. Regular expressions (1) 
and (3) are for associating (2) and (4) in two different levels. 
There is no grammar for the expression of ARs in these four 
regular expressions unless specified by enumerating every 
relation between attributes. Additionally, XACML allows 
functions to be implemented to handle ARs in a PEP or an 
extended function. And those two methods are ad-hoc 
efforts without formal and structural definition in the 
scheme. In comparison, we will introduce an AC 
mechanism that provides a well-defined framework for the 
specification of attributer relations in Section 3. 

Note that even though XACML Version 3 has more (and 
concise) elements in the language scheme than Version 2, 
for the purpose of explaining the ARs by the basic AC 
elements (i.e., subject, action, and object), we use XACML 
Version 2. The issues discussed in this paper apply to 
Version 3 as well.  

A.  Specification of  MLS and HRBAC Policies 

BLPB models for MLS policies require assigning classes 
(ranks) attributes to subjects and objects. Formal definitions 
are Rs = {…(Sai, Saj)…..} and  Ro = {…(Oai, Oaj)…}, 

where Rs is a set of ARs for subject classes: for instance, Sai 

is the “Top Secret” class and Saj is the “Secret” class. Rs 

defines the “no read up” property of BLPB. In the same 
manner, Oai and Oaj define the object classes and property. 

Instead of classes, HRBAC model uses Sai and Saj to define 

the hierarchical AR of privilege inheritance from Role Saj to 

Role Sai; for example, Role “Professor” inherits all Role 

“Teaching Assistant” privileges in a grading system. To 
specify and enforce these relations in XACML, AC policy 
authors need to specify all the possibilities including direct 
and indirect relations between the classes or roles. In the 

worst case, it requires O(n2) number of (2) type of 
statements from the regular expression to describe the 
relations for n number of classes or roles in the policy. 
Further, there is no semantic support for checking the 
correctness (e.g., cyclic assignment) of the specifications.  

B.  Specification  of Separation of Duty Policies 

When required to enforce SOD polices to prevent conflicts 
of interest or to control business processes, the access state 
of the AC system is dynamically dictated by some system 
variables. For example, a SOD policy restricts a subject’s 
action and object pairs of privilege not to exceed a 
predefined number, so that no subject should be assigned to 
more than k number of such capabilities. Another SOD 
policy guarantees that no less than k number of subjects can 
perform all of a set of action and object pairs of privilege 
(i.e., requires at least k number of subjects to perform all of 
them). To specify and enforce these SOD policies, XACML 
needs to maintain counters for monitoring the number of 
such action and object pairs consumed by each subject 
currently in the system. Thus, the XACML’s obligation and 
environment elements are used to update and retrieve (read 
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in) the external counters, respectively. And to compose 
SOD policies, statements in regular expression (4) are 
needed for referencing the environment variables (e.g., 
external counters) and statements (3) are used to store 
updated variables. However, the challenge is to accurately 
maintain the constraint variables (the number k in our 
examples), because a subject’s access request can be granted 
from more than one (4) statement. And (4) may be 
encompassed in (1) (2) and/or (3) statements, which provide 
no syntax for maintaining the ARs between (4)s. For 
example, a subject may be granted access both from Role X 
and Role Y to the same object, since there is no way to 
specify the fact that X inherits Y, therefore, the k number of 
the action and object pairs for this subject is counted twice 
(which is supposed to be once) from both X and Y attributes 
in the same access session. It is hard to ensure a SOD policy 
is implemented without errors in XACML, because even 
though ARs can be specified in the language, there are no 
syntactic and semantic supports for the correctness of the 
specification unless by custom application through functions 
in PEP or PDP. 

PM administrators 

Subject’s access 

GPMS 

PS processes 

PS database 

Grant / Deny 

C. Specification of  Attribute Contraints 

Some policies require to constrain a specific access 
privilege only be accessible from specific subject attributes; 
In other words, there is no inheritance relation allowed from 
or to these attributes. On the contrary, some policies 
regulate that a specific subject attribute can only access to a 
specific action and object pair through other assigned 
subject attributes other than itself. Such constraints are for 
safety enforcement, which ensures no leak of privileges 
from one subject attribute to other unauthorized ones. Even 
though XACML supports default deny of access request in 
its rule scheme, the specifying and enforcing of such 
requirements have to be implemented in PEP by application.  

 
III. Attribute Relations in Policy Machine  

 
NIST has initiated a project in pursuit of a standardized 
access control mechanism referred to as the Policy Machine 
(PM) [8, 9, 10]. PM is based on the principle that the 
separation of access control policies from mechanisms [11] 
allows enforcement of multiple policies within a single, 
unified system so that access control rules from different 
authorities may be integrated with each other [12]. 

As shown in Figure 1, the PM architecture is composed 
of the Policy Server (PS) for PDP and PEP. PS includes PS 
processes and the PS database, and the General Policy 
Management System (GPMS). PS receives subject requests 
and performs the authorization process by referencing 
information from the PS database; it then generates a 
Boolean value (grant or deny) as a result. GPMS is the 
interface for PM administrators to configure and compose 
policies and to manage the PS database. 
 

 
 

Figure 1.  PM architecture 
 
PM categorizes subjects (users), objects (resources), 

and their attributes into policy classes, and appropriately 
enforces subsets of the policies in response to a subject’s 
access request. The following fundamental data sets for PM 
processing are stored in the PS database: 
S: The set of PM subjects (users) under the PM’s control 
SA: The set of subject attributes of S 
OP: The set of operations (access rights) permitted by the 
PM 
O: The set of objects under the PM’s control 
OA: The set of object attributes of O 
PC: The set of policy classes the PM is implementing 

Table 1 lists the PS authentication functions, and Figure 2 
shows the PS database model. 

Function Description – mapping relation of   
ssa(s) = SAs  

SA 

a subject (user) s to a set of subject (user) 
attributes SAs. i.e., s is assigned to those 

attributes 
sas(sa) = Ssa 

 S   

a subject attribute sa to a set of subjects Ssa 
that sa is assigned to  

sasa(sa) = 
SAsa  SA   

a subject attribute sa to a set of inherited 
subject attributes; a subject assigned to sa will 
inherit the privileges of the subject attributes 
in SAsa (note, sa  SAsa) 

saop(sa) = 
OPsa  OP   

a subject attribute sa to a set of operations 
OPsa that subjects in sa may perform 

opsa(op) = 
SAop  SA   

an operation op to a set of subject attributes 
SAop that may perform operation op  

opoa(op) = 
OAop  OA 

an operation op to a set of object attributes 
OAop that can be accessed by op 

oaop(oa) = 
OPoa  OP 

an object attribute oa to a set of operations 
OPoa that can be performed on oa 

sapc(sa) = 
PCsa  PC   

a subject attribute sa to a set of policy classes 
PCsa that covers sa. i.e. sa is covered by each 

policy class pc in that set 
pcsa(pc) = 
SApc  SA 

a policy class pc to a set of subject attributes 
SApc that are covered by pc  

oapc(oa) = 
PCoa  PC   

an object attribute oa to a set of policy classes 
PCoa that covers oa  

pcoa(pc) = 
OApc  OA   

a policy class pc to a set of subject attributes 
OApc that are covered by pc 

ooa(o) = OAo 

 OA 

an object o to a set of object attributes OAo 

that o is assigned to  
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Function Description – mapping relation of   
oao(oa) = Ooa 

 O 

an object attribute oa to a set of objects Ooa 

that oa is assigned to  
oaoa(oa) = 
OAoa OA   

an object attribute oa to a set of inherited 
object attributes; an object assigned to this 
attribute will inherit all the privileges  of the 
object attributes in OAoa (note, oa  OAoa) 

Note: all the mapping functions in Table 1 have 1 to m  0 
domain to range relation.  

Table 1 PM Functions 

 
Figure 2.  Set relations and functions of PM. 

 

PM allows inheritance relations among subject 
attributes, and object attributes such that an element inherits 
the privileges from the elements that it is inherited from. 
The inheritance relation must not have cycles to be 
legitimate.  A set of elements in an inheritance relation from 
one function to another function can be formally described 
by the union transitive closure of the two functions:  
ya(x)b(y) denoted by the symbol “xa,b*”. For example, 

all inherited subject attributes SAs of a subject s can be 

denoted by sssa,sasa*, and all inherited object attributes 

OAo of an object o is oooa,oaoa*. We also denote by 

xy z that there are mapping relations from x to y to z. 

The atomic authorization process of PM is based on the 
above model and notation; the following definitions 
describe the PS authorization process and the states of PM. 
Definition 1 – A tuple T = <s, sa, op, pc, oa, o>  S  SA  
OP  PC  OA  O is an instance of the current 
configuration of a PM.  
Definition 2 – The Grant_in_policy(s, op, o, pc) function 
decides if an access request (s, op, o) is satisfied in a policy 
class of PM, i.e. if there exists a tuple T as in Definition 1 
such that sa and oa in the policy class pc, s is a member of 
sa, o is a member of oa, and op is in saop(sa), and oa is in 
opoa(op). Formally, 
 
For s  S, op  OP, o  O,  pc  PC, Grant_in_policy(s, op, o, 
pc) = True      
 sa  SA and  oa  OA, such that   
1)  sa  (sssa,sasa), 
2)  oa  (oooa,oaoa),  

3)  saop oa, 
4)   pc  sasapc,pcpc, and 

5)   pc  oaoapc,pcpc. 

 
By Definition 1 and 2, PM only requires mapping the 

relations between elements to decide the permission of a 
subject’s request. Through this mechanism, PM provides 
syntactic and semantic support of the AR specification. 

 
IV. Application of attribute relations in AC 
models 
 
This section demonstrates how PM specifies and enforces 
the MLS, HRBAC, SOD policies, and safety constraints by 
the AR assignments from the PS database and relation 
mapping functions. Subsection A demonstrates the 
implementation of a simple BLP and BI model, Subsection 
B shows the specification of SOD requirements, and 
Subsection C illustrates the enforcement of safety 
constraints by examples as described in Section 2.   

A.  Specification of  MLS and HRBAC Policies 

Information in MLS policy is typically controlled by 
assigning an AC element a security class (label) used to 
indicate privilege flow from the security class of a to the 
security class of b, which means subjects with security class 
a can also have the privileges of security class b (or a 
dominates b). In terms of object, object class x inherit object 
class y means any access privilege to class x can be also 
applied to class y. 

PM can emulate MLS models by using its subject and 
object ARs. The subject security classes (labels) can be 
represented in PM’s subject attributes. Further, the objects 
security classes (labels) can be represented in PM’s object 
attributes, and the subject attributes are linked to the object 
attributes through operations. For example, to implement the 
BLP model, PM may construct two sets of relations for each 
of the subject attributes and object attributes as shown in the 
simple example of Figure 3. (For clear demonstration, 
different from Figure 2, we omit the PC, which should be 
linked by every subject and object attributes in the figure. 
We also omit S, and O sets, which can be any subjects and 
objects) The attribute with lower-case r in the attribute labels 
of subject and object attributes are for the read actions, 
which are required for the basic confidential rule. The 
attributes with lower-case w in the attribute labels are for the 
star property of BLP. In Figure 3, TS is subject/object 
attribute label for “Top Secret” subject/object class, S is for 
“Secret” class, and C is for “Confidential” class. W is for 
write action, R is for read action for each class (for example, 
TSR or CW). Each subject/object belonging to a class is 
assigned to both labels w and r subject/object attribute (for 
example, TSr and TSw). Assume that class TS dominates 
class S, and class S dominates class C; Subjects with the Cw 
subject attribute can write objects with the object attribute 
Cw, Sw and TSw. Sw can write Sw and TSw. TSw can only 
write TSw. TSr can read TSr, Sr, and Cr. Sr can read Sr and 
Cr. Cr can only read Cr. Note that a subject/object must be 

 S  O

 PC 

 SA  OA  OP 

sasa 

ssa 

oapc sapc 

sas opsa 

saop 

oaop 

opoa 

oaoa 

ooa 

oao 

OPOA=OPOA 

pcoa pcsa 
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assigned to the same r and w group of subject/object 
attributes (TS, S or C). For example, a subject should be 
assigned to the Cw subject attribute if she was assigned to 
the Cr subject attribute and vice versa. 
 

Figure 3.  Simple Bell-La Padula Implementation. 
 
There is no fundamental difference between the BI and 

BLP models. Both models are concerned with information 
flow in a lattice of security classes, with information flow 
allowed only in one direction in the lattice. The BLP model 
allows information flow upward in the lattice, whereas the BI 
model allows it downward. Since direction is relative, a 
system that can enforce one of these models can also enforce 
the other; this only requires a relatively straightforward 
remapping of attribute labels to invert the dominance 
relations needed1.  

A main feature of HRBAC is to allow a subject Role to 
inherit (therefore, dominate) access privilege from other 
roles. Similar to BLP and BI models, the hierarchy of 
privilege inheritance for HRBAC can be directly specified 
by the subject attributes of PM, such that if subject attribute 
x dominates subject attribute y, then subject with role x 
inherits all the access privilege of subjects with role y.  

Figure 4.1 and 4.2 show example attribute assignments of 
MLS and HRBAC of a PM system states from subjects and 
objects point of views respectively. As the relation need only 
be assigned to directly related attributes, it only requires O(n) 
relation assignments if there are n classes for BLP or BI, or 
role inheritance relations for HRBAC. Thus, the complexity 

is many times more efficient compared to O(n2) assignment 
statements in Section 2 A. Note that in this paper, we only 
focus on the efficiency and accuracy in specifying the AR 
required AC models and constraints. The process complexity 
(efficiency) for the enforcement of these models and 
constraints is either inevitable (e.g., collecting all the ARs in 
SOD models such as the examples in the next Subsection B) 
or algorithm/application dependent, thus, not discussed in 
this paper. 

  
 

 
1 It is often suggested that the BLP and BI model can be 
combined in situations where both confidentiality and 
integrity are of concern. 

Figure 4. 1.  Sample attribute relation assignments in PM 
from subjects’ point of view  

 

Figure 4. 2.  Sample attribute relation assignments in PM 
from objects’ point of view  

 

B.   Specification of Separation of Duty (SOD) Policies 

SOD policies define constraint requirements for an AC 
system to ensure no access state can exceed some predefined 
system limitations. To enforce SOD without leaking access 
privileges as described in Section 2, it is necessary to 
maintain all subject/object attribute relations for any subject 
or object if multiple attribute assignments are allowed. 
Hence, in order to specify SOD policies in addition to the 
basic relation mapping functions in Table 1, PM needs to 
have the following extended functions to retrieve current 
mappings of ARs  in the system: 
 sa_opoa(sa) returns all (op, oa) pairs mapped to the sa. 
 opoa_sa(op, oa) returns all sa that mapped to the (op, 

oa) pair. 
Note that all the functions in Table 1 are direct mapping 
between attributes; functions return no attributes when the 
attribute is used only as a connection node for a dominate or 

subject 
attribute 
relations 

object 
attribute 
relations operations 

CW 

Sw 

Cw 

TSw 

TSr 

Sr 

Cr 

Cw TSr 

Sr 

Cr TSw 

Sw 

TSR 

SW 

SR 

TSW 

CR 
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inheritance relation. The following examples a) and b) 
illustrate the specifications of the AC rules in PM for 
enforcing the two SOD policies samples described in 
Section 2 B. 

a) The SOD constraint specifies that no subject should 
be assigned to more than k privileges of a given set. Note 
that when k = 1, this policy is a Privilege to Privilege 
Conflicts Policy (PPC), i.e. a set of privileges (OP  OA) 
should not be assigned to the same subject. PM implements 
this policy by calculating  the number of subject attributes 
the requesting subject is dominating or inheriting associated 
with the constrained privileges, and the number cannot 
exceed k. To implement this policy, before granting the 
access request by Grant_in_policy(s, op, o, pc), rules must 
be qualified is formally specified by sa_opoa and functions 
in Table 1 as the following: 

SoDPM =  OPOA, k , OPOA = (op1, oa1),….. 

(opn,oan), 1 k  OPOA, and  

s  S ( 
( sasa(sa ssa(s)) sa_opoa(sa) )  OPOA k 

 ) 
Tuple SoDPM contains the set of restricted privileges 

OPOA, and limited number of privileges k.   used in 
sa_opoa(sa)  OPOA is because a subject may be assigned 
to duplicated privileges through different ARs. 

b) The SOD constraint specifies a set of privileges (OP 
 OA) that no less than k number of subjects can perform all 
of them.(i.e., requires at least k number of subjects to 
perform all of them). PM specifies the rules for the SOD 
constraint by calcuating the minimum number of subjects 
who have (are associated with) all the privileges in the OP  
OA set, which should equal or exceed k. To implement this 
policy, before granting the access request by 
Grant_in_policy(s, op, o, pc), rules must be qualified are 
formally specified by opoa_sa and Table 1 functions as the 
following: 

SoDPM = OPOA, k, OPOA = (op1,oa1),….. (opn, oan)  

MINt=1..|COVERAGE| |(unique(coveraget), coveraget  

COVERAGE =  S1 …Si…Sn, such that 

 (opi, oai)  OPOA, SAi = opoa_sa(opi, oai) ( 

sagi  SAi, SAgi = sasa(sagi) ( 

(saqgi SApi, Si=  sas(saqgi))) 

|   k 
sasa(sa) returns all the subject attributes dominated or 

inherited from sa including sa itself. Tuple SoDPM contains 
the set of restricted privileges and the restricted k number of 
subjects. S1…Sn denotes the product set from S1 to Sn. 

MINt=1..n f(t) returns the minimum value from the functions 
f applied to different variables 1 .. n. The function unique(D) 
(or cardinal set of (D)) returns unique (non-duplicate) 
elements of the set (D). For example, (op1, oa1) is accessible 

by subjects a, b, and  c; (op2, oa2) is accessible by subjects 

c, and d; and (op3, oa3) is accessible by subjects b, c, and e. 
Thus, the all possible simultaneous accesses to all OPOA 
privileges are enumerated in COVERAGE = {(a,c,b), (a,c,c), 
(a,c,e), (a,d,b), (a,d,c), (a,d,e), (b,c,b), (b,c,c), (b,c,e), (b,d,b), 
(b,d,c), (b,d,e), (c,c,b), (c,c,c), (c,c,e), (c,d,b), (c,d,c), 
(c,d,e)}, where (a,c,b) = coverage1, ……and here (c,d,e) = 

coverage18, and unique(coverage1) = (a,c,d), 

unique_subject(coverage2) = (a,c), and 

unique_subject(coverage14) = (c). And MIN t=1..18 | 

coveraget |= | coverage14 | = 1. 
Examples a and b shows the SOD rule specifications by 

the PM‘s standard PS functions based on the ARs. Without 
these functions, the complexity in specification is nontrivial. 

In addition to enforce at run-time when computing the 
access decision, the inheritance constraints can also be 
implemented in the PM’s GPMS (in Figure 1), which 
restricts the assignments of attribute relations as required in 
this section.  

  
C. Specifying Attribute Constraints for Safety  

One of the safety requirements of AC systems is to ensure 
that the protected information can only be accessible by 
direct assignment to a group of permitted users. In PM, such 
requirement can be enforced by constraining the protected 
privilege of the information so that it can only be accessible 
through assigned subject attributes [13], which can neither 
inherit nor be inherited by other subject attributes. This is 
illustrated in Figure 5, where the protected privilege 
assigned to say is not allowed to be inherited by saz, nor can 

say inherit privilege from sax. 

s1 
sax 

 
 

Figure 5.  Example of no inheritance allowed 
 

To enforce such constraint, the Grant_in_policy function in 
Definition 2 needs to be extended to include three more 
parameters: sac, which represents the permitted subject 

attribute, opc is the action, and oac is the object attribute of 

the protected privilege. All other parameters from the 
Definition 2 remains the same. Thus, the modified function 
is Grant_in_policy(s, op, o, p, sac, opc, oac) = True with the 

additional conditions  
1.1) sasa(sac) = , 

1.2)  sai  SA,  sac sasa(sai)  

o say 

saz 

op oa 

X

Protected privilege Xs2 

s3 
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after rule 1), and  
6) saop(sac) = {opc}, 

7) opsa(opc) = {sac}, 

8) opoa(oac) = {opc}, 

9) oaop(opc) = {oac}. 
after rule 5), thus, constraint that only sac is allowed to 

access oac by opc.   

Contrary to A above, another example of inheritance 
constraint is that a subject attribute sax has to inherit a 

specific attribute say in order to access any resources that 

say is permitted to access. The rational for such constraint is 

the case that sax (e.g. team member) is allowed to read a 

document after the say (e.g. team leader) is assigned to work 

on the document.  Figure 6 illustrates an example for such 
assignments in PM, where subject attribute sax is not 

allowed to access oa by op except inherit the privilege from 
the subject attribute say. 

 

 
  

Figure 6.  Example of specific inheritance required 
 

To enforce such constraint, the Grant_in_policy 
function in Definition 2 needs to be extended to include 
four more parameters sax, say, opc, and oac, where opc, and 

oac are the protected action and object attribute. The rest of 

the parameters from Definition 2 remain the same. The 
modified function is Grant_in_policy(s, op, o, p, sax, say, 

opc, oac) = True with three additional conditions to ensure 

that 1, sax inherits say, 2, there is no assignment from sax to 

opc, and 3, opc is assigned to oac as following: 

6)  say  sasa(sax),  

7) sax op oa = False, 

8) oac opoa(opc) . 

Note that the additional conditions in the modified 
Grant_in_policy function enforce the policy by checking the 
conformance of the safety policy. The policy can also be 
enforced by implementing these conditions in the GPMS of 
PM. 

 
V.  Related Work 
 

In general, AC models and mechanisms can be expressed by 
graph-based approaches or logical approaches. In graph-
based approaches, access control models are modeled 
through graphs whose state changes upon the application of 
graph transformations. In logical approaches, such AC 
elements are expressed through logic programs according to 
the semantics chosen for these programs. Although the two 
approaches have almost the same expressive power, they are 
complementary with respect to the purpose of use [14]. 

[15] proposed a Flexible Access Control Model (FACM) 
as a graph approach to simplify the specification and the 
verification of safety via constraints, that is, with 
expressions able to specify the safety requirements of any 
access control configuration. The proposed model provides 
user-friendly notation and presentation of ARs and 
constraints. However, the main usage of the graph 
representation is to help in the specification, design, rather 
than as a pure computational model, unlike PM, which 
provides computational functions in the PS server, and 
allows policy authors to specify AC rules by directly 
mapping ARs into rules semantic. 

[12] proposed a logical approach named A Logical 
Framework for Reasoning about Access Control Models 
(ACMP) based on the C-Datalog program with the 
expressive power that can model a variety of access control 
policies. The framework is flexible in representing subjects, 
objects, privileges, hierarchies, and sessions, as well as 
positive and negative authorizations, which provide a 
precise mathematical foundation for reasoning about ARs. 
However, in addition to its logical programs are not being 
intuitive to most users, ACMP does not provide views of 
access instance and relations between attributes, unlike PM, 
which allows administrators to check/filter the relations at 
the point of view of any selected access element. This 
capability otherwise requires tracing through AC rules, and 
it is hard to achieve with the increased number of entries in 
the ACMP program. 

 
VI. Conclusion 
 
The flexibility and expressiveness of XACML make it 
complex to work directly with some AC mechanisms. 
Specifying ARs in XACML calls for completely specified 
relations for each and every directly or indirectly related 
attribute, thus produces a highly verbose document even if 
the actual policy rules are trivial. (In general, AC policies 
expressed in an abstract language are difficult to create and 
maintain by AC policy administrators [16].). Because, PM 
is not a language, it is free from the syntactic and semantic 
complexity of a language. When describing hierarchical 
relations between attributes or policies, PM only requires 
adding links between them, therefore, avoiding the time 
delays due to the sequence of overhead algorithms. In 
supporting the enforcement of SOD policy constraint rules, 
PM provides an infrastructure that allows the efficient 
specification of rules to collect the attributes for the policy. 

o say 

sax 

op oa 

X 
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In addition, ACPT allows the flexibility in define access 
granting constraints to support safety requirement of an AC 
system. As PM possesses both the graphical and logical 
properties, it not only provides the syntactic and semantic 
support for the implementation of AR based policies, thus 
simplify the required attribute engineering in some AC 
policies, but also has a WYSIWYG (What You See IS What 
You Get) graphic user interface (Figure 4) that visually aids 
in the management of policy documents. Administrators can 
“see” how the managed access control attributes are related 
to each other, as well as the policy under which the 
attributes are covered. This feature is especially important 
when adding and deleting rules in the AC policies. 
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