

Dynamic Publishers, Inc., USA

Attribute Relations Specifications and Constraints
Using Attribute Based Mechanism of Policy

Machine
Vincent C. Hu1, David D. Ferraiolo2, Serban Gavrila3

1National Institute of Standards and Technology

Gaithersburg. Maryland, USA
vhu,@nist.gov

2National Institute of Standards and Technology

Gaithersburg. Maryland, USA
dferraiollo@nist.gov

3National Institute of Standards and Technology

Gaithersburg. Maryland, USA
gavrila@nist.gov

Abstract: Attribute relations in access control mechanisms or
languages allow accurate and efficient specification of some
popular access control models, they can also be regulated for
some constraints of an access control polices. However, most of
the access control systems including today’s de-facto access
control protocol and specification language, XACML, does not
provide sufficient syntactic and semantic support for the
specification or constraint of attribute relations in their scheme.
In this paper, we show the deficiencies of XACML in
specifying and constraining such capabilities in the
implementations of the Multilevel Security, Hierarchical Role
Based, Separation of Duty, and Safety requirements of access
control systems. In comparison, we then demonstrate the
mechanisms for the capabilities provided by a relation-based
access control mechanism – the Policy Machine.

Keywords: access control, access control model, access
control policy, authorization, privilege management,

XACML

I. Introduction

A critical capability of an access control (AC) system is to
allow an AC administrator to specify relations between AC
attributes. With this capability, an AC system is able to
maintain hierarchical orders (i.e. the inheritance relation of
access privileges) of the attributes of the AC elements
(subjects, actions, objects). The relations of privilege
inheritance is specified by attribute relation (AR), which is
essential for many popular AC models such as Bell-La
Padula [1] (BLP) and Biba (BI) [2] of Multileve Security
(MLS)[3], and Hierarchical Role Based Access Control

(HRBAC) [4] as well as constraint policies such as
Separation Of Duty (SOD) [5].

The syntactic and semantic supports of attribute relation
specifications in AC mechanisms or languages allow not
only accurately specifying but also efficiently enforcing the
relation-based AC models and policy constraints. The
specific advantages of such capabilities include:
 Specifying hierarchical relations for the inheriting or

inherited privileges of subjects, actions, and objects in
AC policies by attribute relations. For example, if subject
X is related to subject Y then subject X inherits all the
access privileges of subject Y.

 Efficient management of AC rules, such that AC policy
administrators can modify privileges based on attribute
groups and relations without making errors. And it is
possible to display all the linkages of existing related
attributes through GUI (Graphic User Interface), thus
providing a complete view of the current privilege
assignments.

 Enforcing SOD policies, which require an AC system to
render all the inherited privileges of the targeted subjects.

 Performance enhancement for evaluating access requests,
because an AC system does not have to go through all the
AC rules to collect attribute information for the grant
decision if higher level attributes of the request can be
found to match the rule.

 Constraining the action and object pairs of an access
privileges of particular attributes for the assurance of
safety, which guarantees no leakage of information.
eXtensible Access Control Markup Language (XACML)

[6,7] is today’s de-facto protocol and specification language
scheme for AC implementations. XACML provides a

Journal of Information Assurance and Security
ISSN 1554-1010 Volume 6 (2011) pp. 141-148
© MIR Labs, www.mirlabs.net/jias/index.html

flexible and mechanism independent representation of
access rules that vary in granularity; it allows the
combination of different authoritative domains’ policies into
one policy set for making access control decisions in a
widely distributed system environment. However, XACML
does not provide a scheme for specifying ARs; instead, ARs
can be implemented in one of its architectural components
(e.g., PEP) by ad-hoc applications.

In this paper, we first show the deficiencies of XACML
in specifying and constraining ARs. We then demonstrate
the virtues of an AR mechanism from a relation-based AC
mechanism – Policy Machine (PM) [8, 9, 10], which
embeds access control policies in standard access control
attributes. PM includes a server engine called Policy Server
(PS) and a policy management system, called General
Policy Management System (GPMS). PS and GPMS
together enable enforcement of multiple access control
policies within a single, unified system. PM is highly
extensible, since it composes and combines access control
policies from a relatively small set of atomic properties
completely expressed with mappings and interrelationships
of the ARs on three basic elements – Subject Sets, Object
Sets, and Operation Sets. Mappings and interrelationships of
ARs are enforced with a database and a fixed set of
functions.

This paper contains six sections. Section 1 introduces the
AR of AC policies. Section 2 explains AR implementation
in the popular XACML AC scheme. Section 3 introduces
the architecture and functions of Policy Machine (PM).
Section 4 demonstrates PM’s mechanism for specifying
ARs for AC models and constraints for safety requirements.
Section 5 compares PM with related work. Section 6 is the
conclusion.

II. Attribute Relations in XACML

XACML provides an AC policy specification language in
an XML scheme as well as generic architecture components:
Policy Decision Point (PDP), Policy Evaluation Point (PEP),
Policy Information Point (PIP), and Policy Administration
Point (PAP) for the AC enforcement functions. The regular
expressions of XACML Version 2 are listed below:

(1) PS: T+ PS + P + PCA + O
(2) T: S + R + A + E
(3) P: T + RL +RCA + O
(4) RL: T + C + E

where PS is the Policy Set, T is the Target, P is the Policy,
PCA is the Policy Combination Algorithm, O is the
Obligation, S is the Subject, R is the Resource, A is the
Action, E is the Environment, RL is the Rule, RCA is the
Rule Combining Algorithm, C is the Condition, and E is the
Effect of the XACML language scheme.

Regular expressions (2) and (4) are used for composing
AC rules by the basic AC elements: subjects, resources,

actions, and environment variables. Regular expressions (1)
and (3) are for associating (2) and (4) in two different levels.
There is no grammar for the expression of ARs in these four
regular expressions unless specified by enumerating every
relation between attributes. Additionally, XACML allows
functions to be implemented to handle ARs in a PEP or an
extended function. And those two methods are ad-hoc
efforts without formal and structural definition in the
scheme. In comparison, we will introduce an AC
mechanism that provides a well-defined framework for the
specification of attributer relations in Section 3.

Note that even though XACML Version 3 has more (and
concise) elements in the language scheme than Version 2,
for the purpose of explaining the ARs by the basic AC
elements (i.e., subject, action, and object), we use XACML
Version 2. The issues discussed in this paper apply to
Version 3 as well.

A. Specification of MLS and HRBAC Policies

BLPB models for MLS policies require assigning classes
(ranks) attributes to subjects and objects. Formal definitions
are Rs = {…(Sai, Saj)…..} and Ro = {…(Oai, Oaj)…},

where Rs is a set of ARs for subject classes: for instance, Sai

is the “Top Secret” class and Saj is the “Secret” class. Rs

defines the “no read up” property of BLPB. In the same
manner, Oai and Oaj define the object classes and property.

Instead of classes, HRBAC model uses Sai and Saj to define

the hierarchical AR of privilege inheritance from Role Saj to

Role Sai; for example, Role “Professor” inherits all Role

“Teaching Assistant” privileges in a grading system. To
specify and enforce these relations in XACML, AC policy
authors need to specify all the possibilities including direct
and indirect relations between the classes or roles. In the

worst case, it requires O(n2) number of (2) type of
statements from the regular expression to describe the
relations for n number of classes or roles in the policy.
Further, there is no semantic support for checking the
correctness (e.g., cyclic assignment) of the specifications.

B. Specification of Separation of Duty Policies

When required to enforce SOD polices to prevent conflicts
of interest or to control business processes, the access state
of the AC system is dynamically dictated by some system
variables. For example, a SOD policy restricts a subject’s
action and object pairs of privilege not to exceed a
predefined number, so that no subject should be assigned to
more than k number of such capabilities. Another SOD
policy guarantees that no less than k number of subjects can
perform all of a set of action and object pairs of privilege
(i.e., requires at least k number of subjects to perform all of
them). To specify and enforce these SOD policies, XACML
needs to maintain counters for monitoring the number of
such action and object pairs consumed by each subject
currently in the system. Thus, the XACML’s obligation and
environment elements are used to update and retrieve (read

Muter, Groll and Freiling

142 Hu, Ferraiolo and Gavrila

Attribute Relations Specifications and Constraints Using Attribute Based Mechanism of Policy Machine

in) the external counters, respectively. And to compose
SOD policies, statements in regular expression (4) are
needed for referencing the environment variables (e.g.,
external counters) and statements (3) are used to store
updated variables. However, the challenge is to accurately
maintain the constraint variables (the number k in our
examples), because a subject’s access request can be granted
from more than one (4) statement. And (4) may be
encompassed in (1) (2) and/or (3) statements, which provide
no syntax for maintaining the ARs between (4)s. For
example, a subject may be granted access both from Role X
and Role Y to the same object, since there is no way to
specify the fact that X inherits Y, therefore, the k number of
the action and object pairs for this subject is counted twice
(which is supposed to be once) from both X and Y attributes
in the same access session. It is hard to ensure a SOD policy
is implemented without errors in XACML, because even
though ARs can be specified in the language, there are no
syntactic and semantic supports for the correctness of the
specification unless by custom application through functions
in PEP or PDP.

PM administrators

Subject’s access

GPMS

PS processes

PS database

Grant / Deny

C. Specification of Attribute Contraints

Some policies require to constrain a specific access
privilege only be accessible from specific subject attributes;
In other words, there is no inheritance relation allowed from
or to these attributes. On the contrary, some policies
regulate that a specific subject attribute can only access to a
specific action and object pair through other assigned
subject attributes other than itself. Such constraints are for
safety enforcement, which ensures no leak of privileges
from one subject attribute to other unauthorized ones. Even
though XACML supports default deny of access request in
its rule scheme, the specifying and enforcing of such
requirements have to be implemented in PEP by application.

III. Attribute Relations in Policy Machine

NIST has initiated a project in pursuit of a standardized
access control mechanism referred to as the Policy Machine
(PM) [8, 9, 10]. PM is based on the principle that the
separation of access control policies from mechanisms [11]
allows enforcement of multiple policies within a single,
unified system so that access control rules from different
authorities may be integrated with each other [12].

As shown in Figure 1, the PM architecture is composed
of the Policy Server (PS) for PDP and PEP. PS includes PS
processes and the PS database, and the General Policy
Management System (GPMS). PS receives subject requests
and performs the authorization process by referencing
information from the PS database; it then generates a
Boolean value (grant or deny) as a result. GPMS is the
interface for PM administrators to configure and compose
policies and to manage the PS database.

Figure 1. PM architecture

PM categorizes subjects (users), objects (resources),

and their attributes into policy classes, and appropriately
enforces subsets of the policies in response to a subject’s
access request. The following fundamental data sets for PM
processing are stored in the PS database:
S: The set of PM subjects (users) under the PM’s control
SA: The set of subject attributes of S
OP: The set of operations (access rights) permitted by the
PM
O: The set of objects under the PM’s control
OA: The set of object attributes of O
PC: The set of policy classes the PM is implementing

Table 1 lists the PS authentication functions, and Figure 2
shows the PS database model.

Function Description – mapping relation of
ssa(s) = SAs 

SA

a subject (user) s to a set of subject (user)
attributes SAs. i.e., s is assigned to those

attributes
sas(sa) = Ssa

 S

a subject attribute sa to a set of subjects Ssa
that sa is assigned to

sasa(sa) =
SAsa  SA

a subject attribute sa to a set of inherited
subject attributes; a subject assigned to sa will
inherit the privileges of the subject attributes
in SAsa (note, sa  SAsa)

saop(sa) =
OPsa  OP

a subject attribute sa to a set of operations
OPsa that subjects in sa may perform

opsa(op) =
SAop  SA

an operation op to a set of subject attributes
SAop that may perform operation op

opoa(op) =
OAop  OA

an operation op to a set of object attributes
OAop that can be accessed by op

oaop(oa) =
OPoa  OP

an object attribute oa to a set of operations
OPoa that can be performed on oa

sapc(sa) =
PCsa  PC

a subject attribute sa to a set of policy classes
PCsa that covers sa. i.e. sa is covered by each

policy class pc in that set
pcsa(pc) =
SApc  SA

a policy class pc to a set of subject attributes
SApc that are covered by pc

oapc(oa) =
PCoa  PC

an object attribute oa to a set of policy classes
PCoa that covers oa

pcoa(pc) =
OApc  OA

a policy class pc to a set of subject attributes
OApc that are covered by pc

ooa(o) = OAo

 OA

an object o to a set of object attributes OAo

that o is assigned to

143

Function Description – mapping relation of
oao(oa) = Ooa

 O

an object attribute oa to a set of objects Ooa

that oa is assigned to
oaoa(oa) =
OAoa OA

an object attribute oa to a set of inherited
object attributes; an object assigned to this
attribute will inherit all the privileges of the
object attributes in OAoa (note, oa  OAoa)

Note: all the mapping functions in Table 1 have 1 to m  0
domain to range relation.

Table 1 PM Functions

Figure 2. Set relations and functions of PM.

PM allows inheritance relations among subject
attributes, and object attributes such that an element inherits
the privileges from the elements that it is inherited from.
The inheritance relation must not have cycles to be
legitimate. A set of elements in an inheritance relation from
one function to another function can be formally described
by the union transitive closure of the two functions: 
ya(x)b(y) denoted by the symbol “xa,b*”. For example,

all inherited subject attributes SAs of a subject s can be

denoted by sssa,sasa*, and all inherited object attributes

OAo of an object o is oooa,oaoa*. We also denote by

xy z that there are mapping relations from x to y to z.

The atomic authorization process of PM is based on the
above model and notation; the following definitions
describe the PS authorization process and the states of PM.
Definition 1 – A tuple T = <s, sa, op, pc, oa, o>  S  SA 
OP  PC  OA  O is an instance of the current
configuration of a PM.
Definition 2 – The Grant_in_policy(s, op, o, pc) function
decides if an access request (s, op, o) is satisfied in a policy
class of PM, i.e. if there exists a tuple T as in Definition 1
such that sa and oa in the policy class pc, s is a member of
sa, o is a member of oa, and op is in saop(sa), and oa is in
opoa(op). Formally,

For s  S, op  OP, o  O, pc  PC, Grant_in_policy(s, op, o,
pc) = True 
 sa  SA and  oa  OA, such that
1) sa  (sssa,sasa),
2) oa  (oooa,oaoa),

3) saop oa,
4) pc  sasapc,pcpc, and

5) pc  oaoapc,pcpc.

By Definition 1 and 2, PM only requires mapping the

relations between elements to decide the permission of a
subject’s request. Through this mechanism, PM provides
syntactic and semantic support of the AR specification.

IV. Application of attribute relations in AC
models

This section demonstrates how PM specifies and enforces
the MLS, HRBAC, SOD policies, and safety constraints by
the AR assignments from the PS database and relation
mapping functions. Subsection A demonstrates the
implementation of a simple BLP and BI model, Subsection
B shows the specification of SOD requirements, and
Subsection C illustrates the enforcement of safety
constraints by examples as described in Section 2.

A. Specification of MLS and HRBAC Policies

Information in MLS policy is typically controlled by
assigning an AC element a security class (label) used to
indicate privilege flow from the security class of a to the
security class of b, which means subjects with security class
a can also have the privileges of security class b (or a
dominates b). In terms of object, object class x inherit object
class y means any access privilege to class x can be also
applied to class y.

PM can emulate MLS models by using its subject and
object ARs. The subject security classes (labels) can be
represented in PM’s subject attributes. Further, the objects
security classes (labels) can be represented in PM’s object
attributes, and the subject attributes are linked to the object
attributes through operations. For example, to implement the
BLP model, PM may construct two sets of relations for each
of the subject attributes and object attributes as shown in the
simple example of Figure 3. (For clear demonstration,
different from Figure 2, we omit the PC, which should be
linked by every subject and object attributes in the figure.
We also omit S, and O sets, which can be any subjects and
objects) The attribute with lower-case r in the attribute labels
of subject and object attributes are for the read actions,
which are required for the basic confidential rule. The
attributes with lower-case w in the attribute labels are for the
star property of BLP. In Figure 3, TS is subject/object
attribute label for “Top Secret” subject/object class, S is for
“Secret” class, and C is for “Confidential” class. W is for
write action, R is for read action for each class (for example,
TSR or CW). Each subject/object belonging to a class is
assigned to both labels w and r subject/object attribute (for
example, TSr and TSw). Assume that class TS dominates
class S, and class S dominates class C; Subjects with the Cw
subject attribute can write objects with the object attribute
Cw, Sw and TSw. Sw can write Sw and TSw. TSw can only
write TSw. TSr can read TSr, Sr, and Cr. Sr can read Sr and
Cr. Cr can only read Cr. Note that a subject/object must be

 S O

 PC

 SA OA OP

sasa

ssa

oapc sapc

sas opsa

saop

oaop

opoa

oaoa

ooa

oao

OPOA=OPOA

pcoa pcsa

144 Hu, Ferraiolo and Gavrila

Attribute Relations Specifications and Constraints Using Attribute Based Mechanism of Policy Machine

assigned to the same r and w group of subject/object
attributes (TS, S or C). For example, a subject should be
assigned to the Cw subject attribute if she was assigned to
the Cr subject attribute and vice versa.

Figure 3. Simple Bell-La Padula Implementation.

There is no fundamental difference between the BI and

BLP models. Both models are concerned with information
flow in a lattice of security classes, with information flow
allowed only in one direction in the lattice. The BLP model
allows information flow upward in the lattice, whereas the BI
model allows it downward. Since direction is relative, a
system that can enforce one of these models can also enforce
the other; this only requires a relatively straightforward
remapping of attribute labels to invert the dominance
relations needed1.

A main feature of HRBAC is to allow a subject Role to
inherit (therefore, dominate) access privilege from other
roles. Similar to BLP and BI models, the hierarchy of
privilege inheritance for HRBAC can be directly specified
by the subject attributes of PM, such that if subject attribute
x dominates subject attribute y, then subject with role x
inherits all the access privilege of subjects with role y.

Figure 4.1 and 4.2 show example attribute assignments of
MLS and HRBAC of a PM system states from subjects and
objects point of views respectively. As the relation need only
be assigned to directly related attributes, it only requires O(n)
relation assignments if there are n classes for BLP or BI, or
role inheritance relations for HRBAC. Thus, the complexity

is many times more efficient compared to O(n2) assignment
statements in Section 2 A. Note that in this paper, we only
focus on the efficiency and accuracy in specifying the AR
required AC models and constraints. The process complexity
(efficiency) for the enforcement of these models and
constraints is either inevitable (e.g., collecting all the ARs in
SOD models such as the examples in the next Subsection B)
or algorithm/application dependent, thus, not discussed in
this paper.

1 It is often suggested that the BLP and BI model can be
combined in situations where both confidentiality and
integrity are of concern.

Figure 4. 1. Sample attribute relation assignments in PM
from subjects’ point of view

Figure 4. 2. Sample attribute relation assignments in PM
from objects’ point of view

B. Specification of Separation of Duty (SOD) Policies

SOD policies define constraint requirements for an AC
system to ensure no access state can exceed some predefined
system limitations. To enforce SOD without leaking access
privileges as described in Section 2, it is necessary to
maintain all subject/object attribute relations for any subject
or object if multiple attribute assignments are allowed.
Hence, in order to specify SOD policies in addition to the
basic relation mapping functions in Table 1, PM needs to
have the following extended functions to retrieve current
mappings of ARs in the system:
 sa_opoa(sa) returns all (op, oa) pairs mapped to the sa.
 opoa_sa(op, oa) returns all sa that mapped to the (op,

oa) pair.
Note that all the functions in Table 1 are direct mapping
between attributes; functions return no attributes when the
attribute is used only as a connection node for a dominate or

subject
attribute
relations

object
attribute
relations operations

CW

Sw

Cw

TSw

TSr

Sr

Cr

Cw TSr

Sr

Cr TSw

Sw

TSR

SW

SR

TSW

CR

145

inheritance relation. The following examples a) and b)
illustrate the specifications of the AC rules in PM for
enforcing the two SOD policies samples described in
Section 2 B.

a) The SOD constraint specifies that no subject should
be assigned to more than k privileges of a given set. Note
that when k = 1, this policy is a Privilege to Privilege
Conflicts Policy (PPC), i.e. a set of privileges (OP  OA)
should not be assigned to the same subject. PM implements
this policy by calculating the number of subject attributes
the requesting subject is dominating or inheriting associated
with the constrained privileges, and the number cannot
exceed k. To implement this policy, before granting the
access request by Grant_in_policy(s, op, o, pc), rules must
be qualified is formally specified by sa_opoa and functions
in Table 1 as the following:

SoDPM =  OPOA, k , OPOA = (op1, oa1),…..

(opn,oan), 1 k  OPOA, and

s  S (
( sasa(sa ssa(s)) sa_opoa(sa))  OPOA k

)
Tuple SoDPM contains the set of restricted privileges

OPOA, and limited number of privileges k.  used in
sa_opoa(sa)  OPOA is because a subject may be assigned
to duplicated privileges through different ARs.

b) The SOD constraint specifies a set of privileges (OP
 OA) that no less than k number of subjects can perform all
of them.(i.e., requires at least k number of subjects to
perform all of them). PM specifies the rules for the SOD
constraint by calcuating the minimum number of subjects
who have (are associated with) all the privileges in the OP 
OA set, which should equal or exceed k. To implement this
policy, before granting the access request by
Grant_in_policy(s, op, o, pc), rules must be qualified are
formally specified by opoa_sa and Table 1 functions as the
following:

SoDPM = OPOA, k, OPOA = (op1,oa1),….. (opn, oan)

MINt=1..|COVERAGE| |(unique(coveraget), coveraget 

COVERAGE =  S1 …Si…Sn, such that

 (opi, oai)  OPOA, SAi = opoa_sa(opi, oai) (

sagi  SAi, SAgi = sasa(sagi) (

(saqgi SApi, Si=  sas(saqgi)))

|  k
sasa(sa) returns all the subject attributes dominated or

inherited from sa including sa itself. Tuple SoDPM contains
the set of restricted privileges and the restricted k number of
subjects. S1…Sn denotes the product set from S1 to Sn.

MINt=1..n f(t) returns the minimum value from the functions
f applied to different variables 1 .. n. The function unique(D)
(or cardinal set of (D)) returns unique (non-duplicate)
elements of the set (D). For example, (op1, oa1) is accessible

by subjects a, b, and c; (op2, oa2) is accessible by subjects

c, and d; and (op3, oa3) is accessible by subjects b, c, and e.
Thus, the all possible simultaneous accesses to all OPOA
privileges are enumerated in COVERAGE = {(a,c,b), (a,c,c),
(a,c,e), (a,d,b), (a,d,c), (a,d,e), (b,c,b), (b,c,c), (b,c,e), (b,d,b),
(b,d,c), (b,d,e), (c,c,b), (c,c,c), (c,c,e), (c,d,b), (c,d,c),
(c,d,e)}, where (a,c,b) = coverage1, ……and here (c,d,e) =

coverage18, and unique(coverage1) = (a,c,d),

unique_subject(coverage2) = (a,c), and

unique_subject(coverage14) = (c). And MIN t=1..18 |

coveraget |= | coverage14 | = 1.
Examples a and b shows the SOD rule specifications by

the PM‘s standard PS functions based on the ARs. Without
these functions, the complexity in specification is nontrivial.

In addition to enforce at run-time when computing the
access decision, the inheritance constraints can also be
implemented in the PM’s GPMS (in Figure 1), which
restricts the assignments of attribute relations as required in
this section.

C. Specifying Attribute Constraints for Safety

One of the safety requirements of AC systems is to ensure
that the protected information can only be accessible by
direct assignment to a group of permitted users. In PM, such
requirement can be enforced by constraining the protected
privilege of the information so that it can only be accessible
through assigned subject attributes [13], which can neither
inherit nor be inherited by other subject attributes. This is
illustrated in Figure 5, where the protected privilege
assigned to say is not allowed to be inherited by saz, nor can

say inherit privilege from sax.

s1
sax

Figure 5. Example of no inheritance allowed

To enforce such constraint, the Grant_in_policy function in
Definition 2 needs to be extended to include three more
parameters: sac, which represents the permitted subject

attribute, opc is the action, and oac is the object attribute of

the protected privilege. All other parameters from the
Definition 2 remains the same. Thus, the modified function
is Grant_in_policy(s, op, o, p, sac, opc, oac) = True with the

additional conditions
1.1) sasa(sac) = ,

1.2)  sai  SA, sac sasa(sai)

o say

saz

op oa

X

Protected privilege Xs2

s3

146 Hu, Ferraiolo and Gavrila

Attribute Relations Specifications and Constraints Using Attribute Based Mechanism of Policy Machine

after rule 1), and
6) saop(sac) = {opc},

7) opsa(opc) = {sac},

8) opoa(oac) = {opc},

9) oaop(opc) = {oac}.
after rule 5), thus, constraint that only sac is allowed to

access oac by opc.

Contrary to A above, another example of inheritance
constraint is that a subject attribute sax has to inherit a

specific attribute say in order to access any resources that

say is permitted to access. The rational for such constraint is

the case that sax (e.g. team member) is allowed to read a

document after the say (e.g. team leader) is assigned to work

on the document. Figure 6 illustrates an example for such
assignments in PM, where subject attribute sax is not

allowed to access oa by op except inherit the privilege from
the subject attribute say.

Figure 6. Example of specific inheritance required

To enforce such constraint, the Grant_in_policy
function in Definition 2 needs to be extended to include
four more parameters sax, say, opc, and oac, where opc, and

oac are the protected action and object attribute. The rest of

the parameters from Definition 2 remain the same. The
modified function is Grant_in_policy(s, op, o, p, sax, say,

opc, oac) = True with three additional conditions to ensure

that 1, sax inherits say, 2, there is no assignment from sax to

opc, and 3, opc is assigned to oac as following:

6) say  sasa(sax),

7) sax op oa = False,

8) oac opoa(opc) .

Note that the additional conditions in the modified
Grant_in_policy function enforce the policy by checking the
conformance of the safety policy. The policy can also be
enforced by implementing these conditions in the GPMS of
PM.

V. Related Work

In general, AC models and mechanisms can be expressed by
graph-based approaches or logical approaches. In graph-
based approaches, access control models are modeled
through graphs whose state changes upon the application of
graph transformations. In logical approaches, such AC
elements are expressed through logic programs according to
the semantics chosen for these programs. Although the two
approaches have almost the same expressive power, they are
complementary with respect to the purpose of use [14].

[15] proposed a Flexible Access Control Model (FACM)
as a graph approach to simplify the specification and the
verification of safety via constraints, that is, with
expressions able to specify the safety requirements of any
access control configuration. The proposed model provides
user-friendly notation and presentation of ARs and
constraints. However, the main usage of the graph
representation is to help in the specification, design, rather
than as a pure computational model, unlike PM, which
provides computational functions in the PS server, and
allows policy authors to specify AC rules by directly
mapping ARs into rules semantic.

[12] proposed a logical approach named A Logical
Framework for Reasoning about Access Control Models
(ACMP) based on the C-Datalog program with the
expressive power that can model a variety of access control
policies. The framework is flexible in representing subjects,
objects, privileges, hierarchies, and sessions, as well as
positive and negative authorizations, which provide a
precise mathematical foundation for reasoning about ARs.
However, in addition to its logical programs are not being
intuitive to most users, ACMP does not provide views of
access instance and relations between attributes, unlike PM,
which allows administrators to check/filter the relations at
the point of view of any selected access element. This
capability otherwise requires tracing through AC rules, and
it is hard to achieve with the increased number of entries in
the ACMP program.

VI. Conclusion

The flexibility and expressiveness of XACML make it
complex to work directly with some AC mechanisms.
Specifying ARs in XACML calls for completely specified
relations for each and every directly or indirectly related
attribute, thus produces a highly verbose document even if
the actual policy rules are trivial. (In general, AC policies
expressed in an abstract language are difficult to create and
maintain by AC policy administrators [16].). Because, PM
is not a language, it is free from the syntactic and semantic
complexity of a language. When describing hierarchical
relations between attributes or policies, PM only requires
adding links between them, therefore, avoiding the time
delays due to the sequence of overhead algorithms. In
supporting the enforcement of SOD policy constraint rules,
PM provides an infrastructure that allows the efficient
specification of rules to collect the attributes for the policy.

o say

sax

op oa

X

s1 Protected privilege

s2

147

In addition, ACPT allows the flexibility in define access
granting constraints to support safety requirement of an AC
system. As PM possesses both the graphical and logical
properties, it not only provides the syntactic and semantic
support for the implementation of AR based policies, thus
simplify the required attribute engineering in some AC
policies, but also has a WYSIWYG (What You See IS What
You Get) graphic user interface (Figure 4) that visually aids
in the management of policy documents. Administrators can
“see” how the managed access control attributes are related
to each other, as well as the policy under which the
attributes are covered. This feature is especially important
when adding and deleting rules in the AC policies.

References

[1] Bell D.E. and Lapadula L. J., “Secure Computer

Systems: Mathematical Foundations and Model,” M74-
244, MITRE Corp., Bedford, Mass., 1973 (also
available as DTIC AS-771543).

[2] Biba K. J., “Integrity Considerations for Secure
Computer Systems,” ESD-TR-76-372, USAF
Electronic Systems Division (also MTR3153, MITRE
Corp.), Bedford, Mass., April 1977.

[3] NCSC, “Trusted Computer System Evaluation
Criteria,” National Computer Security Center, 1985.

[4] Ferraiolo D. F., Cugini J. A., and Kuhn D. R., “Role-
Based Access Control (RBAC): Features and
Motivations,” Proc. of the 11th Annual Conference on
Computer Security Applications, IEEE Computer
Society Press, Los Alamitos, Calif, pp 241-248, 1995.

[5] Jajodia S., Samarati P., and Subrahmanian V. S., “A
logical language for expressing authorizations,” Proc.
IEEE Symp. On Research in Security and Privacy,
Oakland, Calif, pp 31- 42, May 1997.

[6] OASIS, “Extensible ACCess Control Markup Language
(XACML), TC,”
http://www.oasisopen.org/committes/tc_home.php?wg_
abbrev=xacml

[7] Yague, I. M. “Survey on XML-Based Policy Languages
for Open Environments”, Jouranl of Information
Assurance and Security (JIAS), Volume 1, Issue 1,
March 2006.

[8] Hu C. V., “The Policy Machine For Universal Access
Control,” Dissertation, Computer Science Department,
University of Idaho 2002.

[9] Hu C. V., Frincke D. A., and Ferraiolo D. F., “The
Policy Machine For Security Policy Management,”
Proc. ICCS Conference, San Francisco, 2001.

[10] Ferraiolo D. F., Gavrila S., Hu C. V., and Kuhn D. R.
“Composing and Combining Policies under the
PolicyMachine,” ACM SACMAT, 2005.

[11] Jajodia S., Samarati P., and Subrahmanian V. S., “A
Logical Language for Expressiing Authorizations,”
Proc. IEEE Symp, Oakland, California, 1997.

[12] Coetzee M. and Eloff J. H. P., “Virtual Enterprise
Access Control Requirements,” Proc. of SAICSIT, pp.
285-294, 2003.

[13] Hu C. V., Kuhn R., Xie T., Hwang J., “Model
Checking for Verification of Mandatory Access Control
Models and Properties”, International Journal of
Software Engineering and Knowledge Engineering
(IJSEKE) regular issue volume V20N5, September
2010.

[14] Bertino et al, “A Logical Framework for Reasoning
about Access Control Models,” ACM Transactions on
Information and System Security, Vol. 6, No. 1, pp 71–
127, February 2003.

[15] Jaeger, T and Tidswell, “Practical Safety in Flexible
Access Control Models”. ACM Trans. Inform. Syst.
Secu. 4, 2 pp 158-190, May, 2003.

[16] Lorch M. et al, “First Experiences Using XACML for
Access Control in Distributed Systems,” ACM
Workshop on XML Security, Fairfax, Virginia, 2003.

Author Biographies

Vincent C. Hu is a computer scientist in the computer security division of
the National Institute of Standards and Technology (NIST). His interests
include access control, grid systems, and quantum computing. He designed
and developed the Access Control Policy Tool (ACPT) by applying model
verification and combinatorial array testing techniques; He currently works
on the evaluation metrics for access control systems. Vincent received his
Ph.D. degree in computer science from the University of Idaho at Moscow,
Idaho in 2002.

David D. Ferraiolo is a computer scientist and acting manager of System
and Emerging Technologies Security Research Group in the computer
security division of the National Institute of Standards and Technology
(NIST). His primary technical interests are in information security, and
access control systems. He co-developed the role based access control
model (RBAC) used throughout industry, and currently is leading the effort
of developing the Policy Machine. David received a combined B.S. in
computer science and mathematics from the State University of New York
at Albany in 1982.

Serban I. Gavrila is a computer scientist with the Computer Security
Division of National Institute of Standards and Technology (NIST). His
primary technical interests are in access control systems. He enjoys Java
programming and has co-developed distributed systems for controlling
access to computer resources, among them the Policy Machine. Serban
received his B.S. degree in computer science from the University of
Bucharest at Bucharest, Romania in 1972.

148 Hu, Ferraiolo and Gavrila

http://www.oasisopen.org/committes/tc_home.php?wg_abbrev=xacml
http://www.oasisopen.org/committes/tc_home.php?wg_abbrev=xacml

	A. Specification of MLS and HRBAC Policies
	B. Specification of Separation of Duty Policies
	C. Specification of Attribute Contraints
	A. Specification of MLS and HRBAC Policies
	B. Specification of Separation of Duty (SOD) Policies
	a) The SOD constraint specifies that no subject should be assigned to more than k privileges of a given set. Note that when k = 1, this policy is a Privilege to Privilege Conflicts Policy (PPC), i.e. a set of privileges (OP (OA) should not be assigned to the same subject. PM implements this policy by calculating the number of subject attributes the requesting subject is dominating or inheriting associated with the constrained privileges, and the number cannot exceed k. To implement this policy, before granting the access request by Grant_in_policy(s, op, o, pc), rules must be qualified is formally specified by sa_opoa and functions in Table 1 as the following:
	b) The SOD constraint specifies a set of privileges (OP (OA) that no less than k number of subjects can perform all of them.(i.e., requires at least k number of subjects to perform all of them). PM specifies the rules for the SOD constraint by calcuating the minimum number of subjects who have (are associated with) all the privileges in the OP (OA set, which should equal or exceed k. To implement this policy, before granting the access request by Grant_in_policy(s, op, o, pc), rules must be qualified are formally specified by opoa_sa and Table 1 functions as the following:

