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Abstract: The rapid advances in communication networks
impose the fact of transferring big amounts of information
worldwide every second. Considerable part of this information
might need protection against fraud, modification and different
types of intrusion. Both, the symmetric and asymmetric
encryption algorithms provide different types of security
services to protect sensitive information. Lately, the National
Institute of Standards and Technology issued Federal
Information Processing Standards to direct the researcher’s
attention to the asymmetric cryptographic algorithms based on
elliptic curves. In this paper, algorithms and design issues
related to two new curves: Doubling Oriented, and Jacobi-
Quartics, are proposed and analyzed. Then, different
implementation approaches are studied and applied for the
different curves. Experimental results are provided to show the
enhancements on the execution delay and the total design area
of the proposed FPGA realizations.

Keywords: about Information Security, Enhanced Realizations,
Doubling Oriented curves, Jacobi-Quartics curves, and Execution
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I. Introduction

The everyday developing communication networks is
responsible for moving big amount of data between their
infinitely many users. There might be hackers trying to hack
certain sensitive data, which makes protecting these data a
major concern of every single user of these networks. The
protection process must be comprehensive and involve
preventing different types of passive and active attacks, such
as sniffing, spying, and identity fraud.
Using the private-key encryption algorithms, such as the
TwoFish, RC4, Tripple DES (3DES), and Advanced
Encryption Standard (AES) and many others [7,8], provides
the required protection and has many advantages, that
include the low realization complexity in hardware and
software. On the other side, the problem of key distribution
between the communicating parties is critical and considered
a main limitation for the use of this category of algorithms.
One solution to this problem is to use the public-key
encryption algorithms which have, on the other hand, higher

complexity realizations due to the vast mathematical
operations involved.
In the last few years, the National Institute of Standards and
Technology (NIST) issued many Federal Information
Processing Standards (FIPS) to direct the researcher’s
attention to the asymmetric cryptographic algorithms based
on elliptic curves. The FIPS 186-3 (ECDSA-June 2009) [1]
recommends the use of these special curves in Digital
Signature Algorithm to protect data in Federal Agencies.
Also, the NIST Special Publication (SP) 800-56A (ECDH-
March 2007) [2] recommends the Diffie-Hellman key
exchange protocol that is based on these curves for
government sensitive information exchange.
The above recommendations are based on many scientific
research facts, and mainly the fact that these curves, once
used in cryptography, can protect information at TOP
SECRET level with relatively small key size when compared
to other algorithms in this field [3]. Moreover, and to
emphasize the importance of this new cryptography field,
and to encourage the researches to propose hardware and
software realizations for security algorithms based on these
curves, the National Security Agency (NSA)issued
guidelines to implement such algorithms, for example: Suite
B Implementer's Guide to SP 800-56A [4]. From all the
above, we can understand the motivation behind this
research.
In this paper, we will study two new types of elliptic curves
[5], the Doubling Oriented and Jacobi-Quartics curves [6].
We must mention that the original message to be encrypted,
is first represented as a point on the selected curve using
either the Affine coordinates system, or the projective
(standard) coordinates system [5,8]. Then, there are
mathematical operations performed on the curve points that
include: Addition, Doubling, and Point Multiplication by a
constant over a finite field (GF (p) or GF (2^n)). The
algorithms that perform these mathematical operations have
different complexity levels [10, 11, and 14].
In this paper, we will present these different algorithms that
perform these point operations over the above mentioned two
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curves. Moreover, more than one design approach are
presented, and applied to get the designs that realize these
algorithms. Adding to that many improving performance-
related issues will be discussed and analyzed.
The next section presents the practical aspects of using the
elliptic curves in cryptographic functions. In Section 3, the
Doubling Oriented Doche-Icart-Kohel curves related point
operations algorithms are derived and presented. Section 4
presents the algorithms to compute point operations for the
Jacobi-Quartics curves. Section 5 presents three different
implementation approaches, and examples of related work in
the literature that adopted them. The experimental results are
obtained and compared in Section 6, followed by
conclusions in Section 7.

II. Cryptographic Functions of Elliptic Curves

This Section presents the practical use of the mathematical
elliptic curves in cryptographic functions, so the reader can
get more clear idea on the application of these curves to
provide information security. Furthermore, we will
demonstrate in general how to use these curves in the
encryption and decryption processes. Also, we will present
the ElGamal encryption Algorithm in its integer version, and
obtain the elliptic curve version of this algorithm, and
demonstrate how this conversion between the two versions
happened which can generally applied to any cryptographic
algorithm.
We end this Section, by presenting a general formula of the
Digital Signature Algorithm derived for the elliptic curves.
We can find in the literature a related research that proposes
cryptographic operations based on the elliptic curves. For
example, an identity-based Proxy Signature Scheme based
on the ECDSA is proposed in [7], and a scheme for key
sharing based on elliptic curves is proposed in [18].

A. Encryption Using the Elliptic Curves

For clarification purposes, we will introduce simple
techniques to show the elliptic curves encryption/decryption
process [8, 19]. Let’s make the assumption that the points on
the curve are reduced mod a certain prime integer called p.
This means that all the mathematical operations on these
points are carried out and reduced to keep the result in the
range between {0 to p-1}. Before the encryption process
starts, there is a key setup operation that must be performed
as follows:

1. The users select a certain curve, (let’s denote it by
C).

2. The communicating users choose a base point (x, y)
randomly that must satisfy the equation of the
selected curve C.

3. The original message to be encrypted (denoted by
the plaintext) is represented by a point (xm, ym) that
lies on the curve C.

4. Each user selects a private key, which is an integer,
for example, for a certain user U, the private key
will be kU.

5. Each user computes his/her public key which would
be his integer private key multiplied by the base
point, that’s it: PPubKey = kU(x, y). We should
mention that the resulting public key is again a point
on the curve C.

Now, and after the key setup operation completed, the
following steps demonstrate the encryption process:

1. For any one to encrypt and send the message point
(xm, ym) to a user U, he/she needs to choose a
random integer N.

2. Then, generate the ciphertext which consists of two
points on the curve: Cm = {N(x, y), (xm, ym) +
NPPubKey}.

3. There is no way to find out the plaintext from the
ciphertext except by knowing the private key of the
user U which is (kU).

To decrypt the ciphertext (Cm) at the receiver side, the
following steps are used which demonstrate the decryption
process:

1. The point N(x, y) in the ciphertext (Cm) is
multiplied by the private key of the user U, to get
the point: kU (N(x, y)).

2. Then, this point is subtracted from the second point
that constructs Cm, the result will be the plaintext
point (xm, ym).

3. The above two steps are summarized by:

((xm, ym) + N (PPubKey) - kU (N(x, y)) =
(xm, ym) + N (kU(x, y)) - kU (N(x, y)) = (xm, ym)

B. Elliptic Curve Version of ElGamal Encryption
Algorithm

The ElGamal cryptographic algorithm is based on the
discrete logarithm problem. It is considered an efficient and
secure public key algorithm that is used in many security
applications [8]. Before we describe the elliptic curve
version, we briefly mention the procedure of the integer
(normal) version. The three major processes in ElGamal
system are [8]:

1) Key Generation
2) The Encryption
3) The Decryption

If we assumed that Alice wants to send a message (m) to a
certain receiver Bob, then the receiver (Bob) must generate
his keys according to the following steps [8]:



1) Chooses a large prime (p).
2) Chooses an integer α mod p.
3) Chooses a secret integer a, and computes β, where:

β ≡ α a (mod p).
4) The public key components are α, β, and p
5) The private key component is a (secret).

Encryption:

For Alice to encrypt the message (m), she has to choose a
random integer i and computes:

x1 ≡ αi mod p, and
x2 ≡ mβi mod p

Then Alice sends the pair (x1, x2) to Bob for decryption.

Decryption:

After Bob receives the pair (x1, x2), he decrypts it to get the
message (m) as follows:

m ≡ x2 x1
-a (mod p).

Now, after this brief explanation, we describe the ElGamal
Elliptic Curve version.

Key generation in the Elliptic Curve Version:

Key generation process done by Bob is summarized by [8]:

1. Bob chooses an elliptic curve (C) defined over GF
(p), where p is a large prime.

2. Bob chooses a POINT (α) on the selected curve (C).
3. Bob chooses a secret integer (a), and computes β =

aα.
4. The public key components are the points α and β.
5. The private key component is a (kept secret).

Encryption in the Elliptic Curve Version:

Now, for Alice to encrypt here message, she has to do the
following:

1. Alice has to represent her message as a point on the
elliptic curve (C).

2. Then she chooses a random integer i.

3. And computes:
x1 = i. α, and

x2 = m + i. β

This pair (x1, x2) is sent to Bob for decryption.

Decryption in the Elliptic Curve Version:

In order for Bob to get the message point, he computes:

m = x2 – a.x1

To prove that the above system works, we substitute the
values of x1 and x2 in the above equation to get:

m = m + i. β – a. i. α

But we know that the relation between α and β is: β = a. α.

By substituting the value of β, we get the message:

m = m + i. a. α – a. i. α = m

In general, to obtain an Elliptic curve version of a certain
cryptographic algorithm, we have to replace certain
mathematical operations in the original algorithm with other
operations suitable for the points on the curve. These
modifications are summarized in the following Table:

Operation in Original Alg. Elliptic Curve Version
Integer multiplication Point addition
Integer exponentiation Scalar point multiplication
Table 1: Obtaining Elliptic Curve Version of a
Cryptographic Algorithm.

From Table 1, we can convert any algorithm to the elliptic
curve domain by replacing the integer multiplication by point
addition, and the exponentiation is replaced by the Scalar
point multiplication. These modifications were applied to the
ElGamal algorithm to obtain the elliptic curve version as can
be seen from the above explanation.

C. Digital Signature Algorithm Based on EC

Due to many identity fraud accidents happened over the
Internet and through non-secure transactions, the process of
digitally sign the documents becoming more and more
important. There are many algorithms to perform digital
signature. Among the most secure algorithms is the Elliptic
Curve Digital Signature Algorithm (ECDSA) [1, 8].

The ECDSA involves the following steps:
1. Key Generation
2. Signature Generation
3. Signature Verification

Each of these major steps is described in more details below.

ECDSA Key Generation

Each user of the digital signature scheme does the following
steps to generate a key:

1. The user selects a curve (call it C), where the points
on this curve are reduced mod a prime p (the curve
is defined over the prime Galois finite field). We
must mention that the number of points on the curve
C should be divisible by a large prime n.

2. The user selects a point P = (x, y) of order n.

3. The user selects a random integer (i) such that 1 ≤ i
≤ n-1.

4. The user multiplies the random integer (i) by the
point P to get a new point on the curve: G = i.P.

5. The user's public key consists of (G, n, P, C). The
user's private key is i.
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ECDSA Signature Generation

After the key is generated, a message (m) can be signed as
demonstrated by the following steps:

1. The user selects a random integer L such that 1 ≤ L
≤ n-1.

2. The user multiplies the point P(x, y) by L to get a
new point on the curve: LP= (x1, y1). Compute r =
x1 mod n. If r = zero then select new value for L as
described in step 1 above.

3. The user computes L-1 mod n.

4. The user compute the hash value of the original
message (m) using a certain hash function to get
h(m).

5. Then, compute s = L-1 (h (m) + i. r) mod n. If s=0
go back to step 1.

6. The signature that will be used to sign the message
(m) is both integers (s, r).

ECDSA Signature Verification

After the signature (s, r) is generated, it needs to be verified
as described below:

1. The user needs to obtain an authentic copy of the
public key (G, n, P, C).

2. Also, the values of r and s must be verified to be in
the range {1, n-1}.

3. The user computes w = s-1 mod n, and computes h
(m) using the same hash function applied used in
step 4 of the Signature Generation process.

4. Compute v1= (h (m).w) mod n and v2 = (r. w) mod
n.

5. Then, compute v2G + v1P = (x2, y2), and u = x2 mod
n.

6. If r = u, then the signature will be verified and
accepted, otherwise, it will be rejected.

III. Doubling Oriented Doche-Icart-Kohel EC.

The Doubling Oriented Doche-Icart-Kohel is defined by the
equation [6]:

Where, the prime p is used to reduce the coefficients. The
point doubling operation denotes the addition of a single
point represented in the affine coordinates by P=(x1, y1) on
the curve to itself to get the result stored in the point P + P =
(x3, y3), given that it is not equal to zero.
The algorithm that performs point doubling operation in
general for points on any curve is given below [19, 24]:

Algorithm1,General point doubling operation for any curve

The value of ω depends on the curve equation. For the
Doubling Oriented curves, the value of ω is computed by
taking the derivative of the curve Equation with respect to x
to get:

By substituting this value of ω in Algorithm 1 above, we get
the customized steps to double a point P = (x1, y1) on the
Doubling Oriented curves:

Algorithm2, Customized point doubling operation for the
Doubling Oriented curves.

For implementation issues, many researchers prefer to use
the projective coordinates system to represent the points on
the curve. The reason behind that is to remove the division
step in Algorithm 1, and replace it with many multiplication
steps. The researchers realized that there is an urgent need to
develop enhanced dedicated division algorithms to overcome
the extra delay caused by this step.

A. The Projection X/Z, Y/Z2 for Doubling Oriented curves.

There are many projections that can be used to replace the
point (x, y) by the new point (X, Y, Z). Mainly, we will use
the standard projection of (X/Z, Y/Z2). Now, to derive the
doubling algorithm for a certain point represented using the
above projection of X/Z and Y/Z2 on the Doubling Oriented
curves, we need to replace P=(x, y) as follows: (x  X/Z, y
 Y/Z2), and the resulting ω will be:

Finally, and after substituting these new values in Algorithm
1, we get:

Algorithm3, Doubling of a point represented in projective
coordinates on Doubling Oriented curve.

If we assume that Z1 = 1, then the cost to execute Algorithm
3 will be One multiplication and Five squaring operations
and Seven additions.
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For any value of Z1 ≠ 1, the resulting Algorithm will be:

Algorithm4, Doubling of a point represented in projective
coordinates on the Doubling Oriented curve for Z1 ≠ 1

The cost in this case is two multiplications and five squaring
operations and seven additions. In the next Section, we will
follow the same methodology to derive the Algorithms for
the Jacobi-Quartics curves.

IV. Jacobi-Quartics Curves

The Jacobi-Quartics curve with coefficients reduced mod a
prime (p) is defined by the equation [5, 6]:

To derive equations to compute point doubling operation, we
need to find the value of ω and substitute it in Algorithm 1.
The value of ω depends on the curve equation, for the
Jacobi-Quartics curves, the value of ω is computed by taking
the derivative of the curve Equation with respect to x to get:

By substituting this value of ω in Algorithm 1 in the previous
section above, we get the customized steps to double a point
P=(x1, y1) represented in the affine coordinates on the Jacobi-
Quartics curve:

Algorithm5, Customized point doubling operation for the
Jacobi-Quartics curves.

In the next subsection, we will present the related algorithms
to compute the point doubling operation for a point projected
on the curve.

A. The Projection X/Z, Y/Z2 for Jacobi-Quartics curves

As mentioned earlier, there are many projections used to
replace the point (x, y) with the new point (X, Y, Z). We will
use the standard projection of (X/Z, Y/Z2). Now, to derive
the doubling algorithm for a certain point represented using
the above projection of X/Z and Y/Z2 on the Jacobi-Quartics
curves, the value of x in the point p=(x, y) is replaced by
X/Z, and the y value is replaced by Y/Z2. These new values
result in a new ω:

By plugging these new values in Algorithm 1, we get the
projective coordinate Doubling algorithm for the points over
the Jacobi-Quartics curve:

Algorithm6, Doubling of a point represented in projective
coordinates on the Jacobi-Quartics curve.

The assumptions made here are: a2 + c2 = 1, Z1= 1. The cost
to execute Algorithm 6 with the above assumptions satisfied
will be one multiplication and four squaring operations and
nine additions.

For the general case, the value of Z1 is not equal to one (Z1 ≠
1), the Algorithm will be:

Algorithm7, Doubling of a point represented in projective
coordinates on the Jacobi-Quartics curve for Z1 ≠ 1.

The cost in this case is one multiplication and seven squaring
operations and seven additions.

V. Implementation Approaches.

The direct hardware realization of Algorithm 2 to double a
point (x, y) on the chosen curve involves many division
operations. So, the researcher can directly think in three
design and implementation approaches. The first approach is
to propose an enhanced hardware to speed up the division
(which has the longest execution delay among all other
arithmetic operations). The second approach will be using an
equivalent algorithm that has no division operation (replace
it by multiplications), and this is the case of the projective
coordinates (Algorithms 3,4 and 6,7). Finally, the third
choice will be the Software Implementation.
In the next subsections, we will study the realizations that
adopted each of these research directions, and how we can
apply them to our new curves designs.

A. The First Approach: Enhanced Division Hardware.

We can find much previous work that is related to this
approach. Variety of division algorithms along with their
implementations was proposed. We mention some of them in
this subsection to explain the idea of this approach.
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The researchers in [9] proposed an efficient realization to
compute the modular division. The proposed design
implements the Montgomery Inverse Algorithm which
basically consists of computing two operations: the
Montgomery product, and the "almost Montgomery inverse".
There are many proposed Montgomery multipliers to
compute the product efficiently [12, 13].
A modification of the work presented in [9] is proposed in
[10]. A new correction step was introduced for the algorithm.
This correction eliminated the multiplication (product) in the
inversion process. The proposed hardware for the new
modified algorithm benefit from the multi-bit shifting
method, and has the main characteristic of scalability, so the
user can change the operand size.
The salable designs consume less area and have better
performance than the fully parallel ones, which make it a
very efficient solution for the long precision division
modular computations.
A different division algorithm that uses a counter method
was proposed in [11]. The implementation of this new
method simplified and reduced the division operation
tremendously.
The researchers in [14] presented a systolic array
implementation of Euclid's inversion based algorithm. The
systolic array structure is built from a set of interconnected
logic cells that are synchronized to perform a certain task.
This design technique is very suitable for VLSI realizations,
but on the other hand, it has a large area tradeoff.
The order of time complexity for these algorithms, it varies
between O (1) and O (n2), where the area complexity is in the
range between O (n) and O (n3), where n is the number of
bits.

B. The Second Approach: Eliminating Division Operation.

As mentioned at the beginning of this Section, the second
alternative to get an enhanced realization of the elliptic
curves algorithms is by getting rid of the division operation.
In this Section, we will present some of the related work that
adopted this approach.
In [21], the researchers presented generic architecture that
can be adjusted to satisfy different area/performance
requirements according to the size of the finite field of
characteristic two.
The work proposed in [22] implements the equation of the
standard Elliptic Curve given by the equation: Y2 = X3 + aX
+ b over GF (p). The projective coordinates used are
different ((X/Z, Y/Z) and (X/Z2, Y/Z3)). The proposed
architecture is programmable in terms that you can choose
the number of bits (size) of the prime (p), and it uses the idea
of parallel multipliers to reduce the impact of using many
multiplications instead of division operation.
The research in [23] proposed a high performance versatile
architecture for scalar multiplication. The maximum field
size is 255-bits. The design can efficiently process the fields
of n=133 and n=193 bits.

A comprehensive survey about high-speed hardware
implementations of Elliptic Curve Cryptography was
presented in [24]. The authors summarized most of the
related work to this research area. The classified the work
based on many categories, which include: general
architectures and arithmetic units and complete elliptic curve
processors.

C. The Third Approach: Software Implementation.

There are few realizations for elliptic curve operations in
software. A good example is the work done [15]. A design
that combined both hardware and software implementation
was proposed in [16]. There are many reasons that direct the
researches a way form this choice especially when it comes
to high security applications. Software implementations are
supported by operating systems (OS), which makes it
vulnerable to all security threats associated with this OS, and
as a result the application security will be compromised [17].

VI. Experimental Results

In this research, we studied and analyzed each of the three
possible approaches mentioned in the previous Section to
obtain efficient realization of elliptic curve operations. Then,
in this research we applied these approaches mentioned in
the previous Section to propose three different
implementations for the elliptic curves operations (mainly
point doubling), for one of the two curves studied in this
paper (Doubling Oriented Doche-Kohel-Icart).

A. The First Approach Results and Issues.

The direct implementation of Algorithm 1 (points are
presented in affine coordinates) must include enhanced
division hardware. The researchers in this field proposed
many efficient hardware algorithms to compute modular
division. It is known that, if the total time to compute
inversion (division) is less than the total time to perform the
required multiplications replaced this division step, then it is
worth it to perform the division to get an effecting hardware
realization [10]. This equation depends on how many
number of multiplications is needed to replace the division
step, which basically depends on the curve used, and on the
type of the projections used to obtain the projective
coordinates representation of the point.
In our case, let’s investigate the worst case scenario for the
Doubling algorithms in projective coordinates for two
curves. For the Doubling Oriented curves, Algorithm 4
shows that we need two multiplications and five squaring to
perform point doubling. If we assume that the squaring time
is equivalent to the multiplication time, we end up by seven
multiplications. For the Jacobi-Quartics curves, Algorithm 7
shows the worst case scenario where one multiplication and
Seven squaring operations are needed to perform the point
doubling operation, and again if we made the assumption
that the squaring time equals to a multiplication time, then



we end up by Eight multiplications. Form the above
comparisons, we conclude that this approach will be efficient
if we used a division algorithm that can perform the division
operations required by Algorithm 2 (affine) in time less than
the time required to perform seven multiplications for the
Doubling Oriented curves. So, before we decide to use this
approach in hardware realizations for the elliptic curve
operations, we need to study the arithmetic algorithms
carefully and their hardware implementation over the
selected finite field. Efficient implementations for these
algorithms can be found in [20].

B. The Second Approach Results.

In the previous subsection, we showed that in the worst case
scenario (Z1 ≠ 1), we need approximately 7 multiplication
operations to compute the point doubling operation
(projective coordinates) using to Algorithm 4 for the
Doubling Oriented curves, while 8 multiplications are
needed to perform the same operation (projective
coordinates) using Algorithm 7 for the Jacobi-Quartics
curves. According to the above, and to obtain optimum
performance, we decided to impalement the doubling
operation for the Doubling Oriented curves using Algorithm
4. The design was described in hardware description
language (VHDL), and simulated using the Mentor Graphics
simulation tool (ModelSim) [25] to verify the results.
Finally, the FPGA target chip (xc5vlx110) was selected to
synthesize the design using Xilinx Synthesize tool [26], to
obtain area and delay results.
Table 2 shows the critical path delays (in nano-seconds)
curves for different precisions starting form 16 to 256 bits.

Precision
(bits)

16 32 64 128 256

Delay
(Nano Sec)

13.2 13.8 14.1 14.3 14.4

Table 2: Critical Path Delay Results.

It can be seen from this Table that the minimum delay (clock
period) is 13.2 nano sec which happens precision of 16 bits.
The maximum occurred at 256 bits which is equal to 14.4
nano sec. This behavior is expected since the design
complexity is a function of the operands size which is in
terms determined by the finite field size.
The critical path delay presented in the Table will be used to
compute the total time required to perform the Scalar Point
multiplication operation, which is the main operation in any
Elliptic Curve computations.
In general, the required time to compute one sequential
multiplication is given by:

In our implementation (that uses Doubling Oriented curves),
it takes one cycle to perform the operation on one bit, and so,
the time required to compute one multiplication at operand
precision of n = 512 bits is TDou_Mul:

Also, we can compute the time required by point addition
(TAdd) which requires 8 multiplications [6], and point
doubling (TDbl), which requires 7 multiplications, at operand
precision of n = 512 bit as follows:

The scalar point multiplication (multiplying a point on the
curve (P) by a constant k to get kP, using Double-and-Add
method [19, 24]. On average, for maximum precision of n-
bits in a certain GF (p) field, the number of point doubling
operations needed are n, and approximately n/2 point
additions are needed [19, 22].
If the result needed to be converted back to the affine
coordinate, we have to consider the time for one inversion
operation. The time needed to compute modular for our
design to be effecting more than the affine coordinates based
design (first approach); we need to consider the WORST
case which estimated the inversion time by 7 multiplication
times. Based on the above approximations, we are able now
to find the equation to compute the Scalar point
multiplication time TSM to be:

Lets take n=256 bits, then form Table 2, the time delay
(clock period) is 14.4 nano sec. And we can compute the TSM

for the Doubling curve as follows:

By performing the same computations, the TSM at n =256
will be 10.4 ms. For comparison purposes, we compare our
work with related FPGA implementations that used the same
approach (second approach: projective coordinates). We can
see that our proposed FPGA implementation computes the
scalar point multiplication in 2.61 ms, and 10.4 ms at
operands sizes 128 and 256, respectively. The proposed
FPGA elliptic curve generator in [27] computes the point
multiplication in about 3.84 ms at precision of 192 bits. Also,
the proposed design in [28] computes the point
multiplication in a relatively close amount of time which is
about 3 ms. From the above discussion, we can notice that
our FPGA implementation gives close results to related
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implementations that uses different curves (basically the
standard elliptic curve). This result proves that new elliptic
curves can be used in cryptography such the Doubling
oriented and gives the same performance. For the area
analysis, Table 3 shows the obtained area results from the
synthesis:

Precision
(bits)

16 32 64 128 256

Area (No.
of Gates)

2412 4204 7788 14956 29292

Table 3: Area Results.

We can notice form Table 3 that the minimum and maximum
area occurred at when the precisions 16 and 256 bits,
respectively, and as expected. It is also can be found from
the Table the area equation to be:

We can conclude that the order of area complexity of our
proposed design is O (n), which means that the area
increases linearly with the operand size increment. This
result is approximately similar to the area of many other
designs that have O (n) area complexity [22, 27, and 28].

C. The Third Approach Results

The third implementation approach is the software
implementation. We implemented our design in software
with the following personal computer specifications:

 Intel Core 2 Duo CPU T7500 @ 2.20 GHz.
 GB RAM.
 Windows 7 Operating System.

The implementation was programmed in C#.net. The results
of these implementations were performing the point doubling
operation in about 15 ms at operand size of 128 bits. This is
much slower than the FPGA implementation proposed
according to second approach in the previous subsection.
Another reason that makes this approach is not preferable is
the security vulnerabilities associated with the hosting
operating system, which in turns affect the security of the
implementation directly.

VII. Conclusions

In this paper, algorithms to compute point doubling
operation on two new curves: Doubling Oriented, and
Jacobi-Quartics, is proposed and analyzed.
The algorithms perform the computations for points defined
on affine and projective coordinates. Then, we studied
different implementation approaches. Mainly, the first
approach is the affine coordinate’s implementation which
requires the use of division operation, and the second
approach is the projective coordinate’s implementation that
substitutes the division by many multiplication operations,
and finally, the software implementation. Then, we

investigated many examples from the literature that used
these approaches, and we discussed many design issues to
enhance the performance. Based on that, we found that the
best approach in terms of efficiency is the second approach,
and so, we applied it and used it to implement the point
operations for the Doubling Oriented curve defined over GF
(p).
To obtain the experimental results, the best case which is
using the projective coordinates algorithm with the Doubling
Oriented curves, was implemented in FPGAs. The target
chip was selected to be xc5vlx110. The critical path delay
synthesis results were used to compute the total time
required to compute scalar point multiplication using
Doubling Oriented curve with the projective coordinates is
2.61 ms at 128-bit operand precision, and 10.4 at 256
operand precision. This result is close to many other FPGA
implementations.
We can conclude from this research, that we can use new
elliptic curves in cryptography with new projective
coordinates other than the Standard Curves (given by the
equation Y2 = X3 + aX + b) and the ordinary coordinate of
(X/Z, Y/Z). The Doubling Oriented elliptic curve FPGA
implementation introduced here with the projection (X/Z,
Y/Z2) gave almost similar results to the implementations of
the most common used curves and projective coordinates.
The area results showed a complexity of O (n), and this is
similar to many other designs, which supports our
conclusion.
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