
Journal of Information Assurance and Security.

ISSN 1554-1010 Volume 6 (2011) pp. 346 -356

© MIR Labs, www.mirlabs.net/jias/index.html

Dynamic Publishers, Inc., USA

Understanding the Value and Potential of Threat

Modeling for Application Security Design

- An E-Banking Case Study

Caroline Möckel
1
 and Ali E. Abdallah

2

1 E-Security Research Centre, London South Bank University,

103 Borough Road, London, SE1 0AA, UK

moeckelc@lsbu.ac.uk

2 E-Security Research Centre, London South Bank University,

103 Borough Road, London, SE1 0AA, UK

A.Abdallah@lsbu.ac.uk

Abstract: Software is the most important line of defense for

protecting critical information assets such as in e-banking. The

continuous increase in sophistication and in volume of cyber

security attacks provides compelling reasons for enhancing the

security of software applications that control critical assets.

There is a broad acceptance that in order to produce dependable

and secure applications, developers need to "build security in"

throughout the software development lifecycle (SDL). Threat

modeling is essential for building security in at all the SDL stages

and in particular at the design stage. In the last few years, several

innovative approaches to threat modeling have emerged and

recently some supporting tools have become available. Using the

Microsoft SDL tool as an example, this paper elaborates,

illustrates and discusses the threat modeling process and its

usefulness to the architectural designs of an e-banking

application. This paper also seeks for a critical reflection on

different approaches and tools, including the ACE tool and

threat trees, accounting for the complexity and difficulty of the

process.

Keywords: Threat modeling, Security design, Data flow diagrams,

Threat modeling tools, Internet banking

I. Introduction

On the basis of security trends and developments of the last
decade, where vulnerabilities and incidents reported have
increased significantly and attacks are constantly getting more
sophisticated while requiring less intruder knowledge [1],
innovative threat evaluation techniques for computer systems
and software are needed. On the business side, security
objectives in areas such as identity management, financial risk,
corporate reputation and business continuity as well as legal
and regulatory perspectives [2] need to be addressed
adequately by modern assessment methods.

The historically prevalent reliance on network security,

provided by general solutions applied to specific applications
such as firewalls, would not overcome logic errors,
architectural flaws and other system design problems. The
failure to produce secure code at the design and development

stage would eventually lead to the exploitation of present
vulnerabilities by an attacker [3,4]. In addition, the relative
cost and negative effect on security return-on-investment
(ROI) to fix these vulnerabilities proves to be highest after
release, the National Institute of Standards and Technology
estimates it might be 30 times as high as the cost to correct
faults at the earlier design stage [5]. In contrast, threat
modeling as a concept promises to raise security to a higher
level of abstraction. By understanding the threat profile of the
system and the related level of mitigation, threat modeling
helps to discover vulnerabilities, serves as a basis for secure
design and provides a framework for code reviews and
penetration testing in the context of the application's security
life cycle [3]. Hence, threat modeling as a structured and
formal way of presenting and assessing security risks for a
specific application has emerged as an independent and
comprehensive methodology [7]. At the same time, threat
modeling is not an explicitly mathematical science, but offers a
high degree of freedom in application, leaving it open also to
non-security experts. Its approach can be asset-centric,
attacker-centric or software-centric, dependent on the target
system examined and the tool or procedure employed. This is
also closely related to the range of tools available for
software-based threat modeling as well as the ongoing
development of the process during the last few years [6].

The largest stake of research and advancement in the area of

threat modeling has been provided by Microsoft, making large
parts of their own systematic review for secure software design
public, for example through a series of books on the issue such
as [3] and [7], their threat modeling software packages such as
the ACE Threat Analysis and Modeling tool or SDL Threat
Modeling tool as well as concepts for threat classification such
as described in STRIDE or risk prioritisation such as
embodied in the development of the DREAD methodology
[8,9]. While Microsoft has published several success stories
for the successful deployment of threat modeling, for example
the 45% reduction of vulnerabilities one year after the release
of Windows Vista in relation to Windows XP [10], the amount
of academic literature dedicated to threat modeling is limited.
Only few materials have been focussing on the practical

application of threat modeling principles in business
environments [11,12,13,14]. Aspects regarding the usefulness
of threat modeling for security issues have not been specified
in many documents [3,16] and very few authors have decided
to base their research on the Microsoft software tools for threat
modeling [13,15]. Even fewer papers have attempted a
comparison of different threat modeling methods at this point
in time [25].

This paper presents, compares and contrasts several

approaches to threat modeling and illustrates their applications
to the identification, analysis and understanding of threats
relevant to the design of an e-banking application. Of central
interest is the Microsoft threat modeling tool in context of the
SDL (Security Development Lifecycle). Although this tool has
been widely used internally at Microsoft, there is a lack of
publicly available literature evaluating the tool based on
particular case studies. Starting with the initial design of an
e-banking application, the paper shows step-by-step how the
tool can be used to systematically identify and analyse the
impact of relevant threats. As a result of this process, an
arguably more secure design is proposed in this paper, which
could be validated by the tool.

This paper is organised as follows. Section II provides the

reader with the necessary background knowledge about threat
modeling, an overview of its foci, concepts and tools. Section
III introduces an exemplary case study on e-banking and is
followed by the composition of a threat model using the SDL
software tool. The threat analysis description includes data
flow diagrams, threat identification, related mitigations and
assurance of the model. Section V analyses alternative tools
and methods, followed by section VI which concludes the
paper with a critical discussion of the issue.

II. Threat Modeling Foci, Concepts and Tools

A. Threat Modeling Foci

Before even starting to think about the actual threat modeling
process with its specific underlying concepts and designated
steps, the question about the focus of the threat model needs to
be answered. Various aspects can be in the centre of the
modeling process - assets to be protected, the attacker‟s view
or the software architecture of the system. The decision which
focus to employ depends on its related limitations, advantages
or the used tools and methods. Asset-centric approaches
address the protection of assets, understanding and managing
business risk. Deployment patterns and business objectives of
the examined system will most likely be known, assets and
access control will be understood. This makes asset-centric
approaches ideal for clearly defined line-of-business
applications with very specific aims. Microsoft„s Threat
Analysis & Modeling (TAM) tool developed by their
Application Consulting & Engineering (ACE) team is an
example for the practical employment of such an approach. In
contrast, software-centric approaches are more suited for
systems with an unknown deployment pattern and designed to
ensure the security of the software‟s underlying code in the
context of rich client/server application development. The
Security Development Lifecycle (SDL) Threat Modeling tool,
also by Microsoft, is an example for the usage of a
software-centric focus. The attacker-centric focus takes the
adversary‟s view to identify risks to the system. This requires
to think like an attacker, to understand their motivations and

abilities, which may pose a challenge to inexperienced users.
Attacks trees (also called threat trees) can be used to impart
this information [2,20,22].

B. Concepts Underlying Threat Modeling

Most authors agree on the main steps within the threat
modeling process, although there are slight variations in
terminology, scope and focus due to the progression of threat
modeling over the last years. As high-level steps of threat
modeling, [3] mentions understanding the adversary's view,
characterising the security level of the system and determining
the threats. As a pre-requisite and start to the actual threat
modeling process, gathering background information,
identifying assets and creating an architecture overviewas well
as the identification of security objectives [2,14] are
mentioned.

DFD Element Name
Characteristics

Symbol Description

External Interactor

Input to the system

Process

Transforms or manipulates data

Multiple Process

Transforms or manipulates data

Data Storage
 Location that stores temporary or

permanent data

Data Flow
 Depicts data flow from data

stores, processes or interactors

Boundary
 Machine, physical, address

space or trust boundary

Figure 1. Data Flow Diagram Elements,

Symbols and Descriptions [7]

Decomposing the application, mainly by using Data Flow
Diagrams (DFD) alternatively Unified Modeling Language
(UML), is seen as an important early step of the process. The
classification of elements used by DFDs comprises external
interactors, simple and multiple processes with subprocesses,
data storages and data flows, visually described by a variety of
schematic symbols (see fig.1). With their representation of
data flows moving through the system, DFDs help to
understand the levels of trust apparent in the system as well as
the attacker's view of the system [3]. In [17], a detailed
analysis of DFDs has been carried out and potential further
development directions have been indicated. This is followed
by the identification of threats using the STRIDE mnemonic,
which categorises threats as follows: Spoofing identity,
Tampering with data, Repudiation, Information disclosure,
Denial of service, Elevation of privilege [2,7,13,14].

 Element Type
Threat Types

S T R I D E

External Interactor x x

Process x x x x x x

Data Storage x x x x

Data Flow x x x

Figure 2. STRIDE-per-element matrix from [8]

By considering threats of these various categories for each
single element in the DFD (referred to as
STRIDE-per-element in [8]), STRIDE greatly supports the
identification of threats within the application. This is also
based on the realisation that only certain threat types will

347 Möckel and Abdallah

generally apply to certain elements, e.g. all threats behind the
letters S-T-R-I-D-E may affect processes, but only spoofing
and repudiation apply to external entities, following the
STRIDE-per-element matrix chart mentioned, see fig.2. Other
methods to identify threats are threat graphs or structured lists
with categories such as network, host or application or the type
and motivation of attackers [2]. Attacks trees (also called
threat trees) are then often used for further analysis and
understanding of identified threats, determining whether
vulnerabilities of all assets or threat targets in the system,
potentially leading to the successful execution of an attack,
have been considered [3, 7].

The original threat model process as described in [7] is then

followed by a threat rating, symbolised by the 5 letters
D-R-E-A-D for Damage potential, Reproducibility,
Exploitability, Affected Users, Discoverability and assigned
numeric values representing their impact on the overall
security risk. The latest methodology however, as used by
Microsoft to date, builds on STRIDE and incorporates four
main steps, described as diagramming, threat enumeration,
mitigation and verification in [6, 8]. Threat modeling is
recognised as a "cornerstone” of the Software Development
Lifecycle. In the context of the new SDL for Agile
development, threat modeling is seen as a SDL requirement
for new features and all changes within an Agile sprint.

C. Software Tools Supporting Threat Modeling

Threat modeling can be conducted without the usage of any
software tools or particular frameworks, but due to its broad
extent and coverage, a guided process with specified steps and
structured resulting reports may be beneficial for most users.
While Microsoft has released two different threat modeling
tools, there are a range of threat modeling frameworks and
connected tools from various origins and backgrounds
available. This comprises approaches similar to the described
Microsoft framework such as TRIKE, academic
methodologies such as OCTAVE from the Carnegie Mellon
University‟s Software Engineering Institute in collaboration
with CERT, frameworks based around standards such as the
Australian/New Zealand Standard AS/NZS 4360,
governmental systems such as the Common Vulnerability
Scoring System initiated by the US Department of Homeland
Security and various open-source risk management tools [2].
Since all frameworks have varying advantages and limitations,
different systems may be better suited for individual
organisations and their particular abilities and requirements
than others. There is still a lack of assessment criteria for the
quality of threat models and while no model can be said to be
superior to another, the implementation of any structured
threat model process will yield more results than not using a
formal security inspection in the application design at all.

While Microsoft had originally only released one threat
modeling tool, the Microsoft Threat Analysis & Modeling
(TAM) tool by their Application Consulting & Engineering
(ACE) team, this was followed by the public release of the
Security Development Lifecycle (SDL) Threat Modeling tool
used by product development groups for internal security
reviews during application development. These two
independently developed tools are both freely available in
their versions 3.1 for the SDL tool and 3.0 for the ACE tool,
and run on latest Windows systems with Microsoft .NET
Framework Version 2.0 and Visio 2007 for the SDL tool. The

reason for this coexistence may be confusing at first, a closer
look at both distinct products will however reveal their
different approaches to threat modeling, which make each tool
suitable for a certain purpose. As discussed in the previous
section II A, the TAM tool is seen to take an asset-focused
approach suited for line-of-business applications, while the
software-centric SDL tool is the official threat modeling tool
for software with a broad deployment range developed at
Microsoft. Deciding on the right tool to use might be a
problem at times, but ultimately depends on the nature of the
examined application and the required outcomes for the
analysis. For this paper, with its case study on e-banking, it
was decided to demonstrate the SDL tool with its DFD and
STRIDE elements, while keeping in mind that other
methodologies may yield additional or different results to
complement the results of the SDL tool analysis.

III. Online Banking Case Study

Whereas the banking functionality for online banking
applications has been derived from its real-world counterparts,
designing these system and furthermore securing them has put
up an entirely new challenge to banks, service providers,
regulating bodies, software developers and information
security experts but also customers to follow this change.
Fraud figures for online banking are still alarming, with
Financial Fraud Action UK reporting a rise of losses by 55% to
£39m in the first half of 2009 [23] , leaving the banks with an
ongoing quest for the best possible security solution for their
online banking applications and systems.

A large number of authentication techniques and
technologies has evolved over the years, but the distinct
methods employed by particular banks vary greatly from
simple username and password combinations to hardware
tokens with a smart card. Most of these techniques have been
introduced as a reaction to fix vulnerabilities discovered rather
than pro-actively. Basic authentication techniques protecting
users against simple fraud schemes such as social engineering
or basic malware such as phishing or keyloggers have been
overcome by criminal forces in the last few years. Advanced
attacks through complex malware such as spoofing or replay
attacks have been the choice of fraudsters to defeat security
solutions still employed by banks. This includes
one-time-passwords, e.g. the German iTAN solution or basic
token solutions as mentioned in [18] or on-screen passwords
as used by Lloyds TSB for example. To strengthen the security
of their online banking systems, several banks have now
introduced offline card readers based on the so-called Chip
Authentication Programme (CAP) developed by MasterCard.
Barclays UK for example have been largely successful in
defending fraud with their CAP adaption, the PINsentry, and
there are now a huge range of specialist suppliers offering
CAP-based authentication solutions to banks (e.g. VASCO or
Reiner SCT, Germany). Besides its positive reception so far,
the CAP system has also attracted profound professional and
academic criticism, including reverse engineering attempts of
the proprietary protocol [18] or penetration testing [19]. In
addition to these systems, there are various other solutions
available, involving certificates, software or USB smart card
readers, showing the fast pace and high level of competition
within the market.

348Understanding the Value and Potential of Threat Modeling for Application Security Design

Authentication in this case also accounts for the level of risk
involved, based on the nature of the protected assets. Most
banks will offer a freely accessible public website to
unidentified visitors for information and marketing needs
(fig.3) without prompting authentication details. In contrast to
that, access and usage of online banking functions are
restricted and only available to customers registered as users
for these facilities by the bank. Normally, banks will employ
one authentication method to verify the identity of genuine
users and then grant access to the banking portal, but require a
second authentication step for transactions of funds as their
abuse potentially poses a larger financial risk. The public
website, authentication and transaction functions are accessed
by contacting the respective web server from the public
internet. These processes will also be dependent on their
related data bases (see fig.3) and source required data such as
web page scripts, authentication data for verification or
transaction details and records from there. While real-world
online banking applications can only be presented through far
more complex schemes and are often dispersed to multiple
third-party suppliers other than the bank itself, the
demonstrated case study has been simplified to give full credit
to the topic of applied threat modeling.

The overall banking institution will have a significantly

larger information security environment, including internal
LAN networks, related data stores maintained by third parties
and other external suppliers potentially creating risks. While a
number of assets in this environment may become subject of
target-orientated attacks, assets in the focus of online banking
security - and therefore this paper - include credentials for
authentication purposes, transaction data, personal details and
public pages. The basic functional roles in this system can be
specified accordingly as visitors, including unregistered users
and potential attackers, furthermore genuine users in their
position as customers and account holders at the bank and
assigned webmasters with additional administration rights.
The entire information security environment of the bank will
however include a wider range of roles such as auditors,
employees with various sets of rights and other IT functions.

It may be expected that attackers will continue targeting

these assets in future, either by discovering vulnerabilities of

latest security mechanisms or shifting their attacks towards

new threat targets. Based on this assumption and the high

relevance of secure e-banking to both banking customers and

institutions, using a generalised e-banking scenario as

presented in the diagram for illustrating the use of software

tools for threat modeling seems justified. In this constantly

evolving and highly critical security context with its range of

potential future threats, threat modeling may prove to be a

valuable tool for risk management. While this paper evaluates

threat modeling and appropriate tools based on the example of

Microsoft's SDL tool and the analysis of online banking

security threats, findings from this report may surely be

transferred or reproduced for other areas and tools to

substantiate the benefits derived from threat modeling.

IV. Composing the Threat Model

A. Building Blocks of Threat Modeling in the SDL Tool

To practically demonstrate general functionality, results to be
expected by and to show direct outcomes for a real-world
example, a threat modeling process for the case of online
banking security was carried out with the SDL tool. Four
building blocks form the threat modeling process the software
is based on: decomposition of the application through DFDs,
identification and enumeration of threats using
STRIDE-per-element, their respective mitigations and a
verification and assurance part. Improving the security of
designs, documenting this activity and teaching about security
while people work through the threat model have been named
as goals of the process in [6] and [8].

In line with the mentioned four building blocks, the SDL
tool follows a multi-step procedure, other tools will use a
similarly designed approach involving multiple activity layers
[16]. The online banking application is firstly fragmented into
smaller groups of elements using DFDs. Based on the known
structure of the system (see fig.3) and using the provided
drawing tools, DFDs can be build in a simple, yet efficient
way. Prior experience in creating DFDs is not required, but
will be of great advantage, as concepts and elements used in
diagrams are not explained in all depth. The elements
contained in the DFD will then be related to their respective
applicable threat types according to the STRIDE-per-element
concept (see fig.2), producing an extensive list of threats to be
analysed, described and mitigated. The relation between the
provided DFD and the returned threat lists underlines the
requirement for a highly sensible DFD representing the system
as accurately as possible without being too complex. The
verification of the threat model is not subject of the procedure
followed by the SDL tool. However, the last two steps,
including information on the system‟s environment and final
reports, provide a good overview about employed mitigations,
inform various stakeholders and directly prepare the analysis
leading to the verification of the model.

Figure 3. Schematic and Simplified Overview of the Structure of an Exemplary Online Banking System

349 Möckel and Abdallah

Figure 6. Guidance Questions of the SDL Tool

Figure 1. Data Flow Diagram Elements, Symbols and

B. Data Flow Diagram of the System

Like other systems, an online banking application features a
variety of components with different levels of internal
complexity, trust boundaries, inputs and outputs. Starting on
the left of fig.4 (see fig.1 for information on symbols used in
DFDs), humans interacting with the online banking system can
be viewed as external interactors with no or only limited
control over. Data flows describe the way data moves through
the system, transferring critical information such as credentials
or transaction details, but also simple requests or responses
between a public website and its visitors. Processes within an
online banking system such as authentication or transaction
are likely to be of complex nature and require a logical
sequence of simple processes to accomplish their defined task.
Simple processes can usually be found at a lower level of the
system, which is not subject of fig.4. Online banking systems
also contain a number of passive data storages, which hold e.g.
authentication, account and transaction details. Furthermore,
trust boundaries are significant for online banking, seeing that
its general function requires accessing critical data in the form
of financial assets, but also information via the public internet
by visitors. Using the outlined classification of system
components, DFDs can illustrate interactions between
elements, show the movement of information through the
system and explain the general functionality of the system.

The mentioned external interactors, related to the user

system element in fig.3, can be found in the roles of visitors -
including attackers - as well as webmasters and customers (see
fig.4), all with undefined environments and systems
configurations behind their own trust boundary with the public
internet on the other side. These external interactors start a
number of dataflows through engaging with the central
processes of the system. The visitor will request web content
from the public website, which will then request data from the
public webpages data storage and use the returned data to
display the information. The visitor may also send credentials
to the authentication process, which will connect to the
authentication database to verify the credentials provided by

the user and then confirm the authenticity of the user, which
enables the process to assign the “genuine customer status” to
the former unspecified visitor. This customer role may request
a transaction from the transaction process by providing certain
transaction details in text format such as recipient, amount and
other details, which is denominated as web transaction request
in fig.4. In contrast to that, the transaction process will
probably pass on this information in another format suitable
for the transaction database and is therefore termed as DB
transaction request. The transaction database then responds to
the process after the transaction has been approved and
processed, for example depending on sufficient account
balance. Similar to the authentication database, the transaction
database with its critical data content will be behind a trust
boundary, separated from the public internet, different to the
web server and data storage for the public website. Trust
boundaries as plotted in the diagram can help to represent
these relations and trust differences appropriately. The last
role, the webmaster will be able to edit the code of the public
website followed by a confirmation, most likely using a
security-critical, web-based content management system.

The DFD may require several revisions to reach a satisfying

standard, avoiding an overly complex diagram, but
representing the data flows and components accurately. Only a
sensible and meaningful diagram will enable an efficient
identification of threats using STRIDE-per-element, which is
described for the case of online banking security in the
following.

C. Identification and Enumeration of Threats

Calculated based on the elements included in the DFD, a
comprehensive list of approximately 80 potential threats (see
excerpt in fig.5) is created by the tool. This threat list enables
the analysis of the potential threat impact as well as the
assessment of the related mitigation in place within the system.
To represent this extensive process, examples for each threat
category from this list (Spoofing, Tampering, Repudiation,
Information Disclosure, Denial of Service, Elevation of
Privileges) will be examined in the following.

Figure 4. Data Flow Diagram Edited in SDL Tool, based on Exemplary Online Banking System

Figure 5. Auto-Generated Threat List Excerpt (Screenshot SDL Tool)

Figure 5. Auto-

350Understanding the Value and Potential of Threat Modeling for Application Security Design

The customer element is selected as an example for the case
of spoofing, assuming it would be known to most banking
customers because of wide press coverage of phishing cases in
the last few years.

Supported by a range of guidance questions provided by the

tool (see fig. 6), a number of spoofing threats and their
respective mitigations can be defined. Social engineering
methods such as phishing to illegally acquire proof of identity
or authentication details of the user, e.g. user name, passwords,
transaction codes, are a high risk in this case. Malware such as
screen- and keyloggers may also be able to retrieve and abuse
authentication details. Physical theft of authentication factors,
e.g. if the user has written down information, a lost hardware
token or the user is forced to disclose information, may be
other threats identified. Repudiation is added as another
dimension, here, liability in the case of fraud, but also
incorrect user input with potential negative financial impact,
need to be considered.

As an example for tampering, the authentication database is

examined more closely. An attacker may be able to access the
authentication database directly by employing an unsupported
configuration or executing code on a web server connected to
the database and then view, tamper with or store the data
contained in this database, e.g. account names and passwords.
Repudiation, information disclosure and denial of service
threats may also apply to this element, as log files may be
altered or deleted, information can be viewed by an
unauthorised party and database files can be deleted or the
store may be run out of space. This shows the multitude of
threats applicable to data storage elements within a system.
Because all the data flows connected to the authentication
database cross a trust boundary, they should be viewed as
particularly security-critical, in contrast to the public
webpages database, where all connected data flows lie within
one trust boundary.

To expand the example for repudiation as a threat type,

threat modeling results for the transaction database containing
critical data are outlined in more detail. Specific threats in this
category include the alteration of transaction details in favour

of the adversary and the modification of any log file connected
to this incident. If there is a general problem with the
transaction documentation and log file system, other threats
may arise from database administrators intentionally or
unintentionally altering data in a harmful manner, evidence
problems in case of conflicts with customers may also result
from this. Logically, other threat types such as tampering,
information disclosure and denial of service threats may also
affect this element, as defined in the STRIDE-per-element
chart (fig.2) and similar to the case of the authentication
database element mentioned before.

The case of information disclosure is particularly interesting

for data flows transferring valued assets such as credentials. If
the communication channel is not sufficiently protected,
attackers may be able to intercept the transferred information
and get access to the credentials to use them in a fraudulent
manner.

Denial of service attacks will have an impact on many parts

of the system, for example the public website. Several critical
issues - depending on the underlying infrastructure and coding
- such as an connection overload, may make the website
unstable and ultimately unavailable to the user, which may
affect the reputation of the bank and the overall trust in the
security of the bank.

Elevation of privilege threats may affect all processes where

permissions are needed to exercise a certain privilege, for
example in the case of authentication or transaction processes,
where an unregistered user manages to gain access to the
banking portal or transaction area and can then view
confidential information or conduct fraudulent transactions.
This shows that threat types, in this case information
disclosure and elevation of privilege, may be related as
consequences.

Threat Type Spoofing

Some questions to ask about this threat type

Hint: spoofing is pretending to be something you‟re not

Are credentials held on the client or server?

Is there a key distribution center?

Are credentials protected in transmission by strong cryptography?

Is there a protocol for updating a credential?

Could an attacker guess credentials (online or offline)?

Could two credentials be mistaken for each other?

Does the app ever support anonymous users

or accounts with no passwords?

Does the protocol have a backwards compatibility mode?

Are all credentials random and arbitrary?

Does the protocol always require authentication?

Figure 6. Guidance Questions of the SDL Tool

D. Mitigation of Threats

The identification and enumeration of threats needs to be
complemented by assessing the existence and level of

 Figure 5. Auto-Generated Threat List Excerpt

(Screenshot SDL Tool)

351 Möckel and Abdallah

implementation of relevant mitigations, otherwise the risk
posed by certain threats may not be estimated correctly.
Looking at the exemplary threats from the previous section,
several mitigation measures already put in place by most banks
or subject to future implementation can be determined.

Spoofing threats against the customer element can be

mitigated by avoiding attack surfaces for social engineering,
e.g. through random password generators rather than simple
passwords, and offering user awareness programmes and
training. Malware attacks can be mitigated by the usage of
anti-virus and spyware protection as well as online banking
systems resistant to these attacks, e.g. virtual keyboards or
randomly selected characters from secret passphrases.
Physical loss or theft of credentials can be mitigated by several
security recommendations to the user and security design not
encouraging violence against the user [14]. User surveillance
and password attacks can be mitigated by hiding passwords at
the input stage and enforcing the usage of strong passwords.
Repudiation at this stage can only be solved by employing a
workable policy for handling fraud and other conflicts as well
as automatic log files for all user action. While most banks
have employed several of these measures in the past,
repudiation issues as well as security problems on the
customer side prevail.

Tampering with the online banking authentication database

can be mitigated by protecting the data storage from direct
access through a firewall, private network connection between
the web server and the database, sophisticated rights
management for viewing, accessing, altering and deleting data
as well as physical security measures. Here, verification of
input, using parameterised SQL, setting permissions and
monitoring access as well as mutual authentication using SSH,
PKI or Kerberos over channels protected by standard
protocols are indicated as supportive techniques by the SDL
tool.

To overcome repudiation threats against databases, but also

against other elements of the online banking system,
comprehensive logging facilities providing adequate levels of
evidence in case of fraud or conflict need to be established. As
these threats are often based on prior tampering, reference
monitors, access control lists (ACLs) as well as the mentioned
mitigations for tampering threats, can help to ensure security.
Regulatory requirements as well as a bank‟s internal audit
function will also have impact on preventive measures taken in
this context.

 Information disclosure of data transferred over data flows

can be mitigated by employing standard protocols such as
SSL/TLS and extended validation SSL certificates provided
by specific certification authorities for correct identification of
bank‟s websites. Most banks in Europe use HTTPS measures
for their entire web platform, e.g. German Sparkasse or
Santander in Spain, or at least partially for online banking
facilities, e.g. Barclays or Lloyds, UK.

Denial of service threats can be mitigated through

performance testing for accordant system capacity, input
limitation and validation, consistent coding, backup facilities
and the existence of an emergency and business continuity
plan. This shows the importance of threat modeling for the
reduction of operational risk, general risk management,
constant high-quality service delivery and the ongoing

learning, improvement and innovation process within the
banking corporation.

Protection against elevation of privilege threats can be

achieved through sophisticated authentication systems with
two-factor authentication, strong authentication factors and
two separate steps for identification and transaction
authentication. Two-factor authentication is currently
employed by a range of banks in Europe (“chipTAN”,
Sparkasse, Germany; “PINsentry”, Barclays, UK), whereas
other institutions rely on the strength of their authentication
mechanism with one factor (“random characters from
passcode with virtual keyboard/pulldown menu”, Lloyds, UK;
“virtual keyboard”, Santander, Spain).

Since the automatic threat generation function of the SDL

tool creates a relatively extensive threat list (compare to fig.5),
some of these threats may only be theoretically applicable, but
do not necessarily pose a severe threat to the system or need to
be examined in the threat model. In the SDL tool, threats can
only be disregarded after they have been certified by the user
as either within a trust boundary, mitigated in another threat
model or are considered an accepted risk "per bug bar".
Microsoft has transferred the "bug bar" concept from their
SDL to threat modeling to be used instead of their earlier
DREAD method for ranking threats, to overcome the
perceived shortcomings of DREAD such as subjectiveness
and impreciseness. As the concept is closely related to the
STRIDE model, it assigns a STRIDE threat type, a value for
impact on either client or server-side, description of the scope
regarding the potential type of attacker, extent and time scale
as well as a level of severity ranging from low, moderate,
important to critical [24]. In the case study example, threats to
the request and response data flows between the visitor and
public website may be categorised as an accepted risk, since
these are part of the public internet and not concerned with the
transfer of confidential data or transaction details.

E. Verification and Assurance of the Model

On completion of the threat modeling process, the quality,
accuracy and efficiency of the model needs to be validated. It
needs to be questioned whether all potential threats have been
identified correctly and their current level of mitigation has
been assessed accurately. Assuring that a threat model
represents its real-world counterpart most realistically will
ensure that the results derived from the threat modeling
process can be translated into seizable, actionable and
effective revision plans to improve overall system security.
Validated threat model results will also serve as an excellent
basis for defending necessary investments for system security
in front of superiors in management, technology or security
roles.

In [5], Shostack has noted several aspect worth considering

for validation at the end of the threat modeling process. DFDs
diagrams need to be precise and regularly updated. All threats
need to be either mitigated with details on bugs, potential
tradeoffs or test plans included or certified as non-mitigated
for a valid reason. Specific attention should be paid to data
flows crossing a trust boundary and any other element
touching these boundaries, here, all STRIDE threats need to be
evaluated. While this advice appears very straightforward, the
importance of an objective and critical review of all elements,
ensuring the quality of an often complex and lengthy process
with many participants and a high general degree of freedom,

352Understanding the Value and Potential of Threat Modeling for Application Security Design

needs to be stressed at this point. Validation and assurance are
also crucial for the long-term development of the system, as
changes to the system or its environment may affect its
security. Continuous and thorough adaption of the threat
model can support maintaining a high level of security and are
part of recent development strategies such as Agile. The latest
SDL version including threat modeling has given credit to
Agile development patterns.

F. Relating to the Environment and Reporting

Banking institutions may be highly dependent on external
entities, outsourcing partners and third parties, for example
full-service providers running their online banking systems,
operating and computing centres. Especially smaller
institutions will not be in the position to absorb large
investments for technological innovations and may therefore
revert to third party solutions for authentication or transaction
services. While large corporate groups with a number of
subsidiaries may maintain their own technology functions,
their sheer size may cause similar organisational problems.
The SDL tool offers the opportunity to note down these
external dependencies, external security notes as well as issues
for future examination, testing and verification. These
implementation assumptions may include the adoption of
more sophisticated authentication mechanisms, compatibility
of user operating systems and their latest releases, upgrades of
the banking software, legal and supervisory regulations and
recommendations in future and regular reviews of attack and
incident reports. External security notes will for example
contain documentation of authentication mechanisms (e.g.
Chip Authentication Protocol (CAP) by MasterCard as a basis
for many modern security solutions such as Barclays'
PINsentry), security policies of the institution and security
advice provided by and for 3rd party suppliers. Adding all
these dimensions and materials complements the threat model
process, but also shows its complexity and resultant difficulty.
The report section in the SDL tool provides comprehensive
representations of the data input, without proposing any
specific further activities. Thus, to benefit from the generated
reports and their results, all involved stakeholders and parties
need to understand them as fully as possible and translate
theoretic outcomes into practical activities to improve
security.

V. Complementing the Threat Model

A. Attack Trees

While the STRIDE methodology is perfectly capable of
identifying threats, it also needs to be clarified whether the
system is prone to become subject to these threats, depending
on the existence and status of mitigation of the pre-conditions
and requirements for the realisation of these threats. Attack
trees with their node and leaf structure can help to specify
whether vulnerabilities exist by providing so-called attack
paths, which can be seen as the way from the attack root down
to each leaf condition [22]. If no mitigation is provided to an
attack path, it may be viewed as a vulnerability. The lack of
customer awareness on the left side in fig.7 for example is not
a vulnerability itself, but can result in actions such as the
writing down of credentials, which can then enable physical
theft of these and lead to spoofing of customers, giving
attackers the possibility to retrieve confidential information or
conduct transfers. Following the same consequential
sequence, user surveillance may lead to spoofing threats, if

re-usable passwords are in use and an attacker can steal them
through shoulder-surfing, if they are not hidden. Schneier has
described the full potential of attack trees in [21], including
their ability to support the consideration of knowledge about
attackers and specific characteristics of attacks such
budgetary, affected users, expected legal consequences or
required skill level for launching the attack. This ability can
again be illustrated with an example from fig.7: physical theft
may only affect individuals, whereas malware attacks over the
internet may affect many users, but are not that likely if the
attacker lacks specific skills for their execution.

By providing further information on the likeliness of a

certain attack in a specified scenario, attack trees can be
understood as a structured methodology for analysing system
security with a slightly different perspective than the SDL tool.
After system architecture, potential threats and attack goals
have been analysed with the SDL or any alternative tool, attack
trees may be of high value to complement these threat model
results.

B. The ACE TAM Tool

While the limited extent of this paper does not allow for an

extensive portrait of the Threat Analysis & Modeling (TAM)

tool developed by Microsoft‟s Application Consulting &

Engineering (ACE), its potential for profitable threat

modeling, also in conjunction with the SDL tool, should be

taken into consideration. As mentioned earlier, the TAM tool

has its theoretic focus on assets within line-of-business

applications rather than taking a software-centric approach

like the SDL tool. In practice, the TAM tool does not apply

STRIDE but examines threats based on affected roles or

components. In strong contrast to the SDL tool, the user is

guided through the system decomposition and offered an

exemplary task library containing a range of attacks with a

selection of suggested mitigations. This assistance may be

helpful to novice users or non-experts as it leaves out the

creation of DFDs and the definition of specific threats based

on STRIDE as well as possible mitigations. Other differences

of TAM such as the explicit inclusion of business objectives,

access control lists and employed authentication methods may

also support other types of users and applications. A positive

example of practical employment of the TAM tool in a

company is demonstrated in [12], naming advantages such as

identifying previously unknown threats and business impacts

as well as encouraging risk-based discussions with internal

business customers.

In summary, this brief note on the TAM tool indicates that
threat models, their results and gained insights may differ
based on the underlying tool and method. Considering the
complexity of threat modeling, different threat modeling
techniques may help to account for all security-related aspects
within the system. This is by no means intending to prove that
the usage of more than one techniques is useful in any
situation, but acknowledging the fact that threat modeling is a
multilayered and difficult process aimed at applications and
users with a range of backgrounds, various scopes and
requirements.

353 Möckel and Abdallah

VI. Discussion and Conclusion

After the review of basic principles of threat modeling, a
clarification of its current status and the practical application
of the process to the case study of online banking using the
SDL tool, the last section of this paper is dedicated to the
discussion of the results from the previous sections. It can be
seen as a reflective summary of prior findings, assembling a
range of crucial realisations on threat modeling evidenced by
the arguments stated earlier.

The general importance of an instance like threat modeling,

regardless whether conducted with a software tool or not, is
indicated by the rising number of incidents such as security
breaches, financial fraud or data losses in recent years, which
requires pro-active behaviour rather than delayed reaction to
relevant threats. Here, only an abstract, systematic review of
system security will enable the early detection of architectural
flaws, logic errors and other design problems, driving down
the cost and time for their correction, as fixing vulnerabilities
proves to be less costly at an early stage of development.
Banks and other corporations will require a quantifiable and
provable assessment method for system security to integrate
security processes into their overall operational processes and
to justify their security decisions and investments in an internal
or possibly external context. Along the same line of thinking,
regulatory issues and legal requirements for banks may also
touch on certain aspects of threat modeling.

As this paper aims to evaluate the efficiency of the use of

software tools for threat modeling, namely Microsoft's SDL
tool, their advantages and limitations are a central point of this
discussion. The systematic and rigid nature of the
software-assisted threat modeling process becomes apparent
in the automatically generated, extensive threat list, which
requires the user to consider all potential threats, even unlikely
and minor ones. This is crucial for applications with a broad
range of deployment patterns, as certain threats may appear
negligible to the user, but may become highly critical in certain
situations. By working with the threat list based on STRIDE
within the SDL tool, users may also learn that a multitude of
threats may apply to one element, threats may be based on
each other as a consequence and certain threats will affect
many parts of the system. Documentation and education
purposes are also fulfilled during the exercise of threat

identification in a guided threat modeling process. However,
while the analysis of mitigations for threats is also facilitated in
the SDL tool, it does not use an overall rating system to assign
priorities or levels of endangerment to any threats.

Another important issue of software-assisted threat

modeling is the correct perception of its value, ability and
limitations – while these tools are a valuable help, they will not
create a perfect, customised threat model from scratch, but
require sensible input and interpretation at a later stage.
Validation of the model and its ability to mirror its real-world
exemplar are needed, however the identification of general
quality assurance factors for threat modeling seems difficult.
This is also related to the expectation of actionable results to
be achieved from the threat modeling process. The results and
documentation assembled throughout the procedure will only
become meaningful and beneficial to the corporation once
they are turned into parts of a realistic action plan to improve
overall system security. This challenge will not be met by the
threat modeling tool, but has to be addressed by individuals
with sufficient skills and knowledge, who are able to translate
these outcomes into plans and ideas suited to the corporation
and its environment.

This leads to the next interesting aspect emphasised by the

findings of this paper, the overall complexity of threat
modeling. Dependent on influence factors such as the modeled
system itself, the nature of the DFD created, the number of
participants in the threat modeling process, potential
stakeholders and several additional dimensions created by
third parties influencing the system security, the process will
increasingly become more complex. Threat modeling tools
can serve as supportive measures to document and organise all
these aspects. However, the exclusive use of one method or
tool may not cover all layers of security. As seen in the last
sections, other approaches may complement prior results,
dependent on their focus, e.g. attack trees can deliver further
insight into the likeliness of an attack depending on particular
pre-conditions, e.g. the attacker's budget, time or skill
constraints.

As mentioned, the threat modeling process, also when

supported by tools, offers a high degree of freedom, making it
suitable for a range of applications and target groups. This
flexibility however requires a relatively open-ended design of

Figure 7. Exemplary Attack Tree for the Case of Spoofing Threats for the External Interactor "Customer"

354Understanding the Value and Potential of Threat Modeling for Application Security Design

the process, possibly at the cost of novice users. Non-expert
users may therefore prefer more guidance, which can be found
in the TAM tool, while developers may think in a
software-centred way as found in the SDL tool. Catering for
the needs of various target groups is a significant difficulty
threat modeling has to overcome and current tools have only
partially solved, e.g. with a managerial reporting section.

The latest development in the area of threat modeling has

certified its inclusion in the agile development lifecycle, which
seems reasonable as changes to the system will potentially
affect the security of the system. In this context, the usage of
threat modeling tools offers the opportunity for reuse and
reproducibility of results, making them independent from
individuals and available across the organisation.

In the particular context of e-banking, threat modeling may

help to keep up with the fast pace of innovation, to identify
potential vulnerabilities and avoid their exploitation. Threat
modeling can either be directly related to internal security
breaches to maintain an updated threat profile of the bank or a
common industry effort could be considered. Security
measures and authentication methods currently in place can be
evaluated and the impact of any planned changes in security
policy, system architecture or authentication method can
simulated.

Lastly, the question of comparability between various

methods and tools for threat modeling in regard to their
efficiency and effectiveness remains. Based on the lack of
research in the field, the nature and origin of the examined
methods, a direct and meaningful comparison may prove
difficult and its outcome may not yield results of high value to
practitioners and the research community. At this point in
time, it seems to be the case, that rather than contradicting each
other, threat modeling methods are complementing each other
with their different foci, perspectives and scopes, target groups
and scenarios. Threat modeling systems of the future will need
to strive for adaptiveness, generic and comprehensive
underlying frameworks as well as the ability to translate their
results into risk-based security decisions.

In summary, overestimating the importance of threat

modeling is not possible. While it will naturally happen in an
unstructured way in most corporations, a structured approach
will offer a range of advantages. In the case of the SDL tool, it
will force the user to think about every potential threat, teach
them about security and document these efforts, as well as
make them reproducible and accessible to many users.
Different tools with varying foci may suit different target
groups and complement each other's results, accounting for the
complexity of the process. This complexity poses a large
challenge to threat modeling, even with the use of tools, it
remains dependent on the skills of the user, the search for
relevant threat rating systems and quality assurance methods
has not been overly successful at this point in time and no
threat modeling focus or tool will be able to include all
security aspects of a system at one time. This does not mean
that the current threat modeling methods will not yield
interesting results, as indicated through the use of the online
banking case study. It is merely the realisation, while threat
modeling as a specific concept has shown a tremendous
development in its short period of existence, many areas of
interest in this field need to be explored and shared by
researchers or professionals in the future. This does for

example include formal approaches to the modeling process,
concepts for integration into the organisation, development of
quality assurance methods for threat models, ideas for a
beneficial symbiosis of different methods and tools, but also
educational concepts and general coverage including
examples to raise awareness for threat modeling.

References

[1] W. Stallings. Cryptography and Network Security –
Principles and Practices, Pearson Education
International, Upper Saddle River, NJ, 2006.

[2] Open Web Application Security Project (OWASP).
Threat Risk Modeling, available online: http://
www.owasp.org/index.php/Threat_Risk_Modeling, last
accessed: 2010-04-19.

[3] F. Swiderski and W. Snyder. Threat Modeling, Microsoft
Press Corp, Redmond, WA, 2004.

[4] S. Ardi, D. Byers, P.H. Meland, I.A. Tøndel, and N.
Shahmehri. "How can the developer benefit from security
modeling?". In Proceedings of the 2nd International
Conference on Availability, Reliability and Security
(ARES), IEEE Press, pp.1017-1025, 2007.

[5] Microsoft Corporation and iSEC Partners. Microsoft
SDL: Return on Investment, available online:
http://www.microsoft.de/sdl, last accessed: 2010-03-25.

[6] A. Shostack. “Experiences Threat Modeling at
Microsoft”. Modeling Security Workshop, Toulouse,
2008.

[7] M. Howard and D. LeBlanc. Writing secure code:
practical strategies and proven techniques for building
secure applications in a networked world, 2

nd
 ed.

Microsoft Press Corp, Redmond, WA, 2002.

[8] S. Hernan, S. Lambert, T. Ostwald, A. Shostack.
"Uncover Security Design Flaws Using The STRIDE
Approach", MSDN Magazine, November 2006.

[9] D. LeBlanc. DREADful, available online: http://blogs.
msdn.com/david_leblanc/archive/2007/08.aspx,
published 2007-08-13, last accessed 2010-04-19.

[10] Microsoft Security Development Lifecycle Website. The
SDL reduces the Number and Severity of Vulnerabilities,
available online: http://www. microsoft.
com/security/sdl/benefits/measurable.aspx,last accessed
2010-04-19.

[11] P. H. Meland and J. Jensen. "Secure Software Design in
Practice". In Proceedings of the 2008 Third International
Conference on Availability, Reliability and Security
(ARES), IEEE Press, pp.1164-1171, 2008.

[12] J.A. Ingalsbe, L. Kunimatsu, and T. Baeten. "Threat
Modeling: Diving Into the Deep End", IEEE Software,
vol.25 issue 1, pp.28-34, 2008.

[13] B. Potter. "Microsoft SDL Threat Modeling Tool",
Network Security, vol. 2009 no.1, pp.15-18, 2009.

[14] P. Torr. "Demystifying the Threat-Modeling Process,"
IEEE Security and Privacy, vol. 3, no. 5, pp. 66-70, 2005.

[15] M. Gualtieri, M. Gilpin, C. Wang. Use Threat Modeling
to develop more secure Applications, Forrester Research,
Cambridge, MA, 2009.

[16] N.A. Malik, M.Y. Javed, and U. Mahmud. "Threat
Modeling in Pervasive Computing Paradigm". In
Proceedings of the New Technologies, Mobility and
Security (NTMS), IEEE Press, pp.1-5, 2008.

[17] M. Abi-Antoun, D. Wang, and P.Torr. "Checking Threat
Modeling Data Flow Diagrams for Implementation
Conformance and Security". In Proceedings of the 22nd
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp.393-396, 2007.

[18] B. Borchert. Online Banking Verfahren, available online:
http://www2-fs.informatik.uni-tuebingen.de/
~borchert/Troja/Online-Banking.shtml, last accessed
2010-04-19.

355 Möckel and Abdallah

[19] S. Drimer, S. Murdoch, R. Anderson.“Optimised to Fail:
Card Readers for Online Banking”. In Proceedings of the
Financial Cryptography and Data Security, Barbados,
Springer LNCS, 2009.

[20] RedTeam Pentesting. Man-in-the-Middle Attacks against
the chipTAN comfort Online Banking System, available
online: http://www.redteam-pentesting.de, published
2009-11-23, last accessed 2010-04-19.

[21] B. Schneier. Attack Trees, available online: http://www.
schneier.com/paper-attacktrees-ddj-ft.html,last accessed
2010-04-19.

[22] V. Saini, Q. Duan, and V. Paruchuri. "Threat Modeling
Using Attack Trees", Journal of Computing Sciences in
Colleges, vol.23 issue 4, pp.124-131, 2008.

[23] UK Payments Administration. Financial Fraud Action
UK announces latest Fraud Figures, available online:
http://www.ukpayments.org.uk/mediacentre/pressrelease
s/-/page/732/, published 2009-10-07, last accessed
2010-04-19.

[24] B. Sullivan. "Add a Security Bug Bar to Microsoft
Foundation Server 2010", MSDN Magazine, March 2010.

[25] A.L.Opdahl, G. Sindre. "Experimental comparison of
attack trees and misuse cases for security threat
identification". Information and Software Technology,
vol.51, pp.916-932, 2008.

Author Biographies

Caroline Möckel is a second year PhD student at the E-Security Research

Centre at London South Bank University. She holds a MSc in international

business (awarded in 2009 with distinction) from Fachhochschule Mainz,

Germany, and London South Bank University and a BA in multimedia

computing (1st class, 2006) from Cork Institute of Technology, Ireland, Oulu

Polytechnic, Finland, and Hochschule Darmstadt, Germany. Her research

interests lie in the field of e-banking security, usability for security, risk

assessment and management, information assurance as well as e-commerce,

internet business models and the digital future in Europe.

Ali E. Abdallah is a professor of information security, head of the E-Security

Research Centre and director of the Information Assurance MSc degree at

London South Bank University. He was awarded his MSc and DPhil in

computation from Oxford University Computing laboratory and Wolfson

College. Prior to his current appointment, he was a lecturer in Computer

Science at the University of Reading and a Research Officer at Oxford

University. His research interests include software assurance, secure software

development, identity management systems, access control and virtual

organizations.

356Understanding the Value and Potential of Threat Modeling for Application Security Design

