
Journal of Information Assurance and Security.
ISSN 1554-1010 Volume 6 (2011) pp. 357–368
© MIR Labs, www.mirlabs.net/jias/index.html

Specification, Analysis and Transformation of
Security Policies via Rewriting Techniques

Tony Bourdier

INRIA Nancy & Université Henri Poincaré & LORIA – PAREO Team
BP 101, 54602 Villers-lès-Nancy Cedex, France

Tony.Bourdier@inria.fr

Abstract: Formal methods for the specification and analysis
of security policies have drawn many attention recently. It is
now well known that security policies can be represented using
rewriting systems. These systems constitute an interesting for-
malism to prove properties while provides an operational way
to evaluate authorization requests. In this paper, we propose to
split the expression of security policies in two distinct elements:
a security model and a configuration. The security model (ex-
pressed as an equational problem) describes how authorization
requests must be evaluated depending on security information.
The configuration (expressed as a rewriting system) assigns val-
ues to security information. This separation eases the formal
analysis of security policies, and makes it possible to automati-
cally convert a given policy to a new security model.
Keywords: Security policies, formal analysis, algebraic specifica-
tions, rewriting systems.

I. Introduction

Security constitutes a crucial concern in modern information
systems. Several aspects are involved, such as user authen-
tication (establishing and verifying users’ identity), cryp-
tology (changing secrets into unintelligible messages and
back to the original secrets after transmission), authorization
management (preventing illicit or forbidden operations from
users). To define which actions are permitted and denied, a
security policy must be established. A security policy de-
scribes first the constraints which must be satisfied to allow
a given action (the security model) and then the information
required for evaluating these constraints (the configuration of
the policy).
The first security models appeared in the 70s. Since, the vari-
ety of information systems has led to the emergence of mul-
tiple models [2], ranging from the simple access control list
(ACL) [24] to more elaborated models as role-based access
control models (RBAC) [23] or organization-based access
control models [17] including lattice-based models [22, 19].
The choice of a model rather than the other one can depend
on the structure of the information system, on its features
or simply on the sensibility of the administrator. Further-
more, information systems are rarely immutable. They can
change to follow the evolution of the organization they sup-
port (merger, reorganization, . . .) or to improve the infor-
mation management. In this sorely changing context, main-

taining a security policy can lead to the change of the model
from which the policy is expressed. The translation of a pol-
icy from a model to another one is a very difficult and critical
task. Indeed such process, when made “manually”, favors
error introduction and then security flaws. That is why, to
preserve the confidence in a policy after its translation, it is
necessary that the transformation is made in a automatic way
by a formally verified algorithm.
More generally, is admitted for some years the importance of
using formal methods to specify models and security poli-
cies. For example, to achieve high levels of certification
(EAL1 5, 6, 7), it is necessary to provide a formal specifi-
cation enabling to obtain mechanized formal proofs, to carry
out techniques for test generation, or to perform static ana-
lyses ensuring required properties. Recently, much work has
been done for testing or analysing security policies using for-
mal methods. In [7], the authors proposed to describe some
access control models using C-Datalog (an object-oriented
extension of Datalog) and to compare them using results
from logic programming. In [6], constraint logic program-
ming is used for designing RBAC and temporal RBAC mod-
els. In [15], a preorder over security models, based on simu-
lations, is defined and is used to compare some well-known
models (Chinese Wall, HRU, BLP and RBAC). A method for
generating security tests from the Common Criteria expres-
sion of a security policy is presented in [20] while a method
for automatic validation of network security policy configu-
rations using SMT solvers is proposed in [25]. More partic-
ularly, many works showed how security policies can be rep-
resented by using rewriting systems and how rewriting may
be used for evaluating authorization requests and for prov-
ing some properties. In [14], a first formalization of security
policies based on rewriting is proposed for controlling in-
formation leakage. Numerous papers proposed to describe
classical or new security models as rewriting systems and
prove properties over them : ACL and RBAC [4], ASAC [9],
DEBAC [5] and an Action Control model [3]. The prob-
lem of composing security policies is addressed in [13, 8]
with strategic rewriting and a combination of λ-calculus
and rewriting respectively. Dynamic rewrite-based security
policies enforcement is handled in [12] and a methodology
for specifying and implementing security policies using the
rewrite-based framework Tom is proposed in [10]. Lastly, a

1Evaluation Assurance Level

Dynamic Publishers, Inc., USA

way to perform “what-if queries” over policies specified as
rewriting systems is described in [18] in order to increase the
trust of the policy author on the behavior of the policy.
In this paper, we introduce a new framework, based on
rewriting systems, for specifying security policies. We pro-
pose a formalization of policies in two phases: first a model
expressed with equational problems and secondly a configu-
ration expressed as a rewriting system. We demonstrate that
this approach preserves advantages of “mono-block” security
policies specifications by rewriting systems and moreover
opens new perspectives. Indeed, we show that such speci-
fications are operational, they allow to show properties and
that queries can be performed over them. We also propose an
algorithm which transforms a policy from a model to another
one. The methods we provide for analysis and transforma-
tion of policies are founded on tree automata techniques, a
narrowing-based semantic unification algorithm and a recent
technique for building regular logical model.
The structure of this paper is as follows. In section II we
present notions and notations we use throughout this paper.
Section III, devoted to the presentation of our framework,
shows how security models and policies must be specified.
Section IV presents main decidability results and shows how
to analyse a policy in our formalism. Section V is dedicated
to the transformation of policies. Finally, the section VI con-
cludes with some perspectives for further work.

II. Background

In this section we present notions and notations used
throughout this paper. More details about term algebra and
rewriting systems can be found in [1] while more details
about tree automata can be found in [11]. Non-standard def-
initions will be emphasized.

A. Term algebra

We call (many-sorted) signature any pair Σ = (S ,F)
such that S is a finite non-empty set whose elements are
called sorts and F is a finite and non-empty set, disjoint
from S , whose elements are called functional symbols. Any
f of F is provided together with a non-empty sequence
〈 s1, . . . , sn, s 〉 of elements of S , which is denoted by f :
s1 × . . .× sn� s. 〈 s1, . . . , sn 〉 is called the source sort of
f , s its target sort and s1 × . . . × sn � s its profile. Any
signature Σ is supposed to be finite and partitioned into a set
of constructors ΣCons and a set of defined symbols ΣDef .
Given a signature Σ = (S ,F), a set of variables is a count-
able set denoted by X , disjoint from F , and such that any
of its elements x is associated with a sort s of S . The
set of terms over a signature Σ = (S ,F) and a set of
variables X of sort s ∈ S is the smallest set, denoted by
T (Σ,X)s, such that any variable x ∈ X of sort s belongs to
T (Σ,X)s and for any f : s1 × . . . × sn � s ∈ F and
t1 ∈ T (Σ,X)s1 , . . . , tn ∈ T (Σ,X)sn , f(t1, . . . , tn) be-
longs to T (Σ,X)s. The set of terms over Σ and X is the set
T (Σ,X) =

⋃
s∈S T (Σ,X)s. If X is empty, then T (Σ,X)

is written T (Σ) and its elements are called ground terms. A
term of T (ΣCons ,X) is called a constructor-term and a term
of T (ΣCons) is called a data-term.

Definition 1. A sort s is Σ-safe iff T (ΣCons) is finite.

Let t be a term over Σ andX . Var(t) denotes the variables
occurring in t. If any variable of t occurs only once in t, then
t is said linear. A term containing exactly one variable is
called a context and is denoted by C where C[t] denotes the
term obtained by replacing in C the unique variable with t.
A position within t is a sequence ω of integers describing the
path from the root of t (seen as a finite labeled tree) to the
root of the subterm at that position, denoted by t|ω . We use ε
for the empty sequence. Pos(t) denotes the set of positions
of t. t(ω) is the symbol of t at position ω and t [s]ω the term t
with the subterm at position ω replaced by s. A substitution σ
is a mapping from X to T (Σ,X) which is the identity except
over a finite set of variables Dom(σ), called the domain of
σ, extended to an endomorphism of T (Σ,X). A substitution
σ is often denoted by {x 7→ σ(x) | x ∈ Dom(σ)} and is said
ground if all the variables of its domain are mapped to ground
terms. For conciseness and readability reasons, we denote
by ~s the tuple consisting of s1 × . . . × sn or 〈 s1, . . . , sn 〉.
Tuples of terms will sometimes be considered as particular
terms whose head is the special symbol # (e.g. the tuple
〈 t1, . . . , tn 〉 will be denoted by ~t and sometimes seen as the
algebraic term #(~t)). If ti is of sort si, then ~t (or #(~t)) is of
sort ~s.

B. First order logic

In order to simplify notations, predicate symbols are seen as
functional symbols whose target sort is Bool (then, any sig-
nature is supposed to contain the sort Bool and ΣCons Bool =
{true, false}) and thus, an atom is an equality over terms of
sort Bool and true or false. A formula is either an atom,
an equality over terms of a same sort s 6= Bool or one of the
following expressions: ∃x : ϕ, ∀x : ϕ, ϕ ∧ ϕ′, ϕ ∨ ϕ′, ¬ϕ
where ϕ and ϕ′ are formulae (⇒,⇔, . . . and equalities over
terms of sort Bool are shortcuts). Free and bound variables
of a formula ϕ are denoted by FVar(ϕ) and BVar(ϕ), re-
spectively. An interpretation = of a signature Σ = (S ,F)
w.r.t. to a set D =

⋃
s∈S Ds consists of a family of ap-

plications =(f) from Ds1 × . . . × Dsn to Ds associated to
each symbol f : s1 × . . . × sn � s 6= Bool of Σ, and
a family of relations =(p) over Ds1 × . . . × Dsn for each
symbol p : s1 × . . . × sn � Bool of Σ \ {true, false}.
An =-valuation is a map ν from variables to D. To each
term of T (Σ,X) we associate a value =(t)(ν) as follows:
for any variable x, =(x)(ν) is ν(x) and for any symbol f
of Σ,=(f(t1, . . . , tn))(ν) is=(f)(=(t1)(ν), . . . ,=(tn)(ν)).
The semantics of a formula ϕ in = w.r.t. the valuation ν is
denoted by =(ϕ)(ν) and is defined as follows:
• =(p(t))(ν) is true iff =(t)(ν) belongs to =(p),
• =(t = t′)(ν) is true iff =(t)(ν) is equal to =(t′)(ν),
• =(∃x : ϕ)(ν) is true iff there exists a ν′ such that
Dom(ν′) = {x} and =(ϕ)(ν ∪ ν′) is true,
• =(∀x : ϕ)(ν) is true iff for all ν′ such that Dom(ν′) =
{x}, =(ϕ)(ν ∪ ν′) is true,
• =(¬ϕ)(ν) is true iff =(ϕ)(ν) is false,
• =(ϕ∧ϕ′)(ν) is true iff =(ϕ)(ν) and =(ϕ′)(ν) are true,

and
• =(ϕ ∨ ϕ′)(ν) is true iff either =(ϕ)(ν) or =(ϕ′)(ν) is

true.

358 Bourdier

We say that ϕ holds in = and we write = |= ϕ iff =(ϕ)(ν)
is true for any valuation ν. Given a formula ϕ over Σ, a
(logical) model of ϕ is a Σ-interpretation= such that= |= ϕ.
An interpretation (or a model) w.r.t. D is said finite iff D is
finite.

Definition 2. Given a signature Σ, a Σ-interpretation is an
interpretation = of Σ w.r.t. T (ΣCons) such that for any f ∈
ΣCons , =(f) : (t1, . . . , tn) 7→ f(t1, . . . , tn).

C. Tree automata

We call tree automaton any quadruple A = 〈Q,Σ, F,→A 〉
such that Σ is a signature, Q is a finite set of states, F is a
subset of Q whose elements are called final states and →A

is a set of transitions of the form f(q1, . . . , qn)→A q where
q1, . . . , qn, q are inQ and f is a symbol of Σ. A tree automa-
ton is said deterministic iff all its transitions have a differ-
ent left-hand side and it is said complete iff for any sym-
bol f and states q1, . . . , qn, f(q1, . . . , qn) is the left-hand
side of at least one transition. Without loss of generality,
we can consider that all automata are deterministic and com-
plete. →A is extended to a relation →∗A as follows: if for
any i in {1, . . . , n}, ti →∗A qi and f(q1, . . . , qn) →A q,
then f(t1, . . . , tn) →∗A q. We call set of terms recognized
by a tree automaton A = 〈Q,Σ, F,→A 〉 the set of ground
terms t ∈ T (Σ) such that there is a final state q ∈ F
such as t →∗A q. We use the same notations to repre-
sent an automaton and the set it denotes. A set of terms
is said regular iff it is recognized by a tree automaton. A
set of n-tuples (or equivalently a n-ary relation) of ground
terms E is said regular iff the set of terms #(~t) such that
~t ∈ E is regular. It is said n-regular iff the set of terms
t1 ⊗ . . .⊗ tn such that ~t ∈ E is recognized by an automaton
were t = t1 ⊗ . . . ⊗ tn is the term over (Σ ∪ {Λ})n such
that: ∀ω ∈ ⋃ni=1 Pos(ti), t(ω) = 〈 t1[ω), . . . , tn[ω) 〉 where
u[ω) = u(ω) if ω ∈ Pos(t) and Λ otherwise. If all terms of
a regular set E have the same head (root) symbol, we denote
it by E|ε. If t is a linear term,Rec(t) denotes the automaton
recognizing ground instances of t. For any regular setsA and
A′,A∩A′,A∪A′,A\A′ are regular. For any sort s, T (Σ)s

is also regular. If A is a regular set and C a context, the sets
{C[t] ∈ T (Σ) | t ∈ A} and {t ∈ T (Σ) | C[t] ∈ A} are
regular. They are respectively denoted by C[A] and C−1[A].

D. Rewriting systems and equational problems

A rewrite rule is an ordered pair of terms denoted by lhs →
rhs such that Var(rhs) ⊆ Var(lhs). The terms lhs and
rhs are respectively called the left-hand side and the right-
hand side of the rule. A (term) rewriting system (or TRS) is
a finite (in this paper) set of rewrite rules. Given a rewriting
systemR, a term t rewrites to a term t′, which is denoted by
t →R t′ iff there exists a rule lhs → rhs in R, a position
ω in t and a substitution σ satisfying t|ω = σ(lhs) such that
t′ = t [σ(rhs)]ω . We say that tmatches lhs at the position ω.
If a term matches no left-hand side of a rewriting system R,
then it is said to be irreducible for R or in R-normal form.
The set of ground terms of Σ in R-normal form is denoted
by NF (R). →∗R denotes the reflexive transitive closure of
→R. If t →∗R t′ and t′ is irreducible, then t′ is called a R-

normal form of t. R is confluent iff for any terms t, t1 and t2
such that t →∗R t1 and t →∗R t2, there exists a term t′ such
that t1 →∗R t′ and t2 →∗R t′. R is terminating iff there is no
map α from N to terms such that α(i)→R α(i+ 1) for any
i ∈ N. R is convergent if it is confluent and terminating. In
that case, any term t has exactly one R-normal form which
is denoted by t↓R.

Definition 3 (Constrained data rewrite system). A con-
strained data rewrite system (CD-TRS) over a signature Σ is
a pair 〈R,A 〉, simply denoted byR, such that: A is a set of
regular sets of Σ data-terms,R is a set of triples called rules
denoted by f(~s)→ r ‖ ϕ where f is a defined symbol, si are
Σ constructor terms, r is a Σ data-term and ϕ is a conjunc-
tion of membership constraints of the form t ∈ A where t is
a Σ constructor term and A belongs to A.

To make specifications of CD-TRS easier to write, we al-
low use of a “default rule” for each defined symbol f of
the form f(, . . . ,) → r which means that if f(t1, . . . , tn)
matches no rule, then it rewrites to r2. Any CD-TRS R in-
duces the following relation →R over T (Σ): t →R t′ iff
it exists a rule l → r ‖ ϕ of R, a position ω and a ground
substitution σ such that σ(l) = t|ω , t′ = t [σ(r)]ω and σ(ϕ)
holds.

Definition 4 (CD-interpretation). A Σ-interpretation = is
called a CD-interpretation iff it exists a convergent CD-TRS
R such that NF (R) = T (ΣCons), and for any ground term
t of sort s 6= Bool, =(t) = t↓R and for any atom at, at↓R
is true if at holds in = and false otherwise. By an abuse of
language, we say thatR is a CD-interpretation.

A constrained equational problem over Σ is an expression
P of the form ∃~x : E,C where E is a conjunction of equa-
tions over T (Σ,X) and C a conjunction of membership con-
straints t ∈ A where t ∈ T (Σ,X) and A is a regular subset
of T (ΣCons). If C is empty, then P is an equational prob-
lem. We sometimes write P [~x] to denote that ~x = FVar(P).
A (constrained) equational problem P is Σ-safe iff for any
equality t = t′ in P , t (and t′) are of a Σ-safe sort.

III. Specification of models and policies

In this section, we show how to declare a security policy by
means of equational problems and a constrained data rewrit-
ing system. To allow the reuse of a security policy specifi-
cation, we naturally dissociate it into two parts. The most
generic part of a policy is called model. It consists of the
specification of the security requirements, in other words the
constraints on values of some security information which
must be satisfied to grant an action. For example, a model
based on security levels could impose that a user can read
a file if its security level is greater than the one of the file.
However, the model gives no information concerning the se-
curity levels in question. It is the subject of what we call
in this paper the configuration of the policy. The configura-
tion consists of the definition of the evaluation of functions

2Of course any linear CD-TRS with default rules is equivalent to a linear
CD-TRS without ones and conversely.

359Specification, Analysis and Transformation of Security Policies via Rewriting Techniques

and predicates used in the security model. For example, in a
model based on security levels, the configuration of a policy
consists in assigning the security levels to users and files. To
define the vocabulary describing the data (subjects, objects,
authorizations, . . .) required for the definition of security
policies (the domain of discourse), we introduce the notion
of security signature.

Definition 5 (Security signature). A security signature is
a many-sorted signature ΣΣΣ = (S ∪{Action},F∪FAction)
such that the only target sort of the symbols of FAction 6= ∅
is Action and such that no source sort contains Action. We
denote by Σ the signature (S ,F). Moreover, we require
that ΣCons = Σ (and then ΣDef = ∅).

The signature ΣΣΣ describes the security data which do not
depend on the policy we want to define. It specifies for ex-
ample the users and the files but it does not specify, for ex-
ample, the security roles of the users which are specific to the
implementation of role-based policies. Terms of sortAction
correspond to actions that can be performed in the system.
Terms generated by Σ are only data-terms, what means that
two elements of T (Σ) cannot represent the same element.

Example 1. Consider a system containing three users (e.g.
Alice, Bob and Charlie) and a countable set of files such
that each file is identified by a natural number. Assume that
actions which can be performed on the system are reading
and writing (a file by a user). Let S be the set of sorts
Subject, Object, Nat, F be the following set of symbols:

Alice,Bob, Charlie : � Subject
file : Nat � Object
zero : � Nat
succ : Nat � Nat

and FAction be composed by read and write of pro-
file Subject × Object � Action. Then ΣΣΣ =
(S ∪ {Action},F ∪ FAction) is a security signa-
ture specifying the data described above. For example,
read(Alice, file(succ(zero))) describes the action consist-
ing of the reading of the file identified by the number 1 by
Alice.

Security models specify mechanisms to be implemented
within the system in order to guarantee the desired security
properties (confidentiality, integrity, . . .). In our formalism, a
security model describes the structures which are specific to
it, the security rules associating authorizations to constraints
and the shape of “acceptable” configurations.

Definition 6 (Security model). A security model M over
a security signature ΣΣΣ = (S ∪ {Action},F ∪ FAction)
consists of:
• an extension of Σ denoted by ΣM = (S ∪ SM,F ∪

FM) such that:
(i) for any f : s1 × . . . × sn → s ∈ ΣCons M, s ∈

SM,
(ii) target sorts of defined symbols of ΣDef M are ΣM-

safe,
• a set of security rules ΓM of the form action 7→ P [~x]

where action is a linear term of T (ΣΣΣ,X)Action and

P is a ΣM-safe equational problem such as ~x =
Var(action). The term action is called the pattern of
the rule and P is called the constraint of the rule.
• a first order theory TM over ΣM in which any variables

is either of a ΣM-safe sort or occurs at most once in
each equality, and
• a finite set of profiles PM

A security model can require security information which
are specific to it. It is the aim of the signature ΣM. For ex-
ample, a model based on security levels must indicate that
some levels and an order over these levels are required. The
first condition on the signature indicates that we cannot de-
fine new constructor symbols whose target sort belongs to
the security signature (e.g. we cannot define new users or
new files). The second condition indicates that functions al-
ways take their values in a finite set. Security rules associate
with every possible action a security constraint which must
be satisfied so that the action is permitted. As explained pre-
viously, the semantics of the security information specific to
the policy is not known at the level of the definition of the
model but can be constrained by means of a theory. For ex-
ample the model can define a functional symbol inf which
must be interpreted by a partial order, in which case, TM

should include ∀x, y : inf(x, y) = true ∧ inf(y, z) =
true ⇒ inf(x, z) = true, ∀x, y : inf(x, y) = true ∧ x 6=
y ⇒ inf(y, z) = false, The model can also not in-
clude all the security information and specify which type of
information the policy can define. For example a model with
security levels can either fix the set of levels in the model,
or let the policy define its own levels. In the former case, if
security levels are represented by terms of sort Level, then
PM = {� Level}.

Example 2. In this example we show how to specify the
RBAC model [23] in our framework in the context of a sys-
tem in which reading and writing files are the only actions.
We do not claim that this is the only way to formalize the
RBAC security model. Let us recall in simple terms the main
idea of RBAC. First, each user is assigned to a set of roles.
Next, access modes (read or write) on resources (files in our
case) are also assigned to roles. Finally, a user may per-
form an action on a resource if and only if it is assigned to
a role to which the corresponding access mode is assigned.
Let ΣΣΣ be the security signature defined in the previous ex-
ample. As previously said, security information include roles
and access modes. Then, ΣRBAC extends Σ with sorts Role
andMode. We consider that roles are not fixed at the level
of the model but access modes are. Thus, ΣRBAC contains the
constants R and W of target sort Mode which respectively
correspond to the reading and writing mode. Since the (fi-
nite) set of roles must be defined at the level of the policy,
then PRBAC = {� Role} (if we allowed an infinite set of
roles, we could define PRBAC with Nat � Role instead).
We use the function ura : Subject × Role � Bool to rep-
resent the assignment of roles to users (ura for user-role
assignment) and the function pra : Role ×Mode� Bool
to represent the assignment of access modes to roles (pra
for privilege-role assignment). Note that ura and pra are
defined symbols while R and W are constructors. Security

360 Bourdier

rules are simply defined by formally expressing that a user
s can read (resp. write) a file o when it has a role r (that
is ura(s, r) = true) to which the R mode (resp. W mode)
over o is assigned (that is pra(r, R, o) and pra(r,W, o) re-
spectively). Thus, ΓRBAC consists of the following rules:
read(s, o)

7→ ∃r : { ura(s, r) = true ; pra(r, R, o) = true }
write(s, o)

7→ ∃r : { ura(s, r) = true ; pra(r,W, o) = true }
In the following, we will denote RBAC the security model de-
fined by (ΣRBAC,∅,PRBAC,ΓRBAC).

One can notice that security models defined in this manner
do not induce a unique way to evaluate action authorizations.
For example, which semantics one must give to a model con-
taining two rules read(s, o) 7→ ϕ1 and read(s, o) 7→ ϕ2 ?
To define a unique semantics for a set of security rules, we
provide for models a strategy of interpretation.

Definition 7 (Interpretation strategy). An interpretation
strategy indicates the way in which action authorizations
must be evaluated depending on the security rules of the
model. In other terms, it associates with any action (data-
term of sort Action) an equational problem whose satisfac-
tion computation corresponds to the evaluation of the action
authorization. We define the following strategies:
• and, which permits an action iff all the constraints as-

sociated with a pattern matching the action are satis-
fied:

Γand
M : ac 7→

∧
a7→ϕ∈ΓM

σ(a)=ac

σ(ϕ)

• or: which permits an action iff at least one constraint
associated with a pattern matching the action is satis-
fied:

Γor
M : ac 7→

∨
a7→ϕ∈ΓM

σ(a)=ac

σ(ϕ)

• or elseν , which permits an action iff the constraint
associated with the first pattern matching the action is
satisfied and permits (if ν = >) or denies (if ν = ⊥)
actions which match no pattern:

Γor elseν

M : ac 7→

σ(ϕi) if σ(ai) = ac

and @σ′ : σ′(aj) = ac
for any j < i

ν otherwise

where ν ∈ {>,⊥} and where rules of ΓM are ordered.
Note that by definition, the default authorization (i.e. when
an action matches no pattern) for the and interpretation is
> while it is ⊥ for or.

We suppose in what follows that models are fitted with an
interpretation strategy which will be denoted as an exponent
of the model, except when all strategies coincide (i.e. when
any action matches exactly one pattern, which is the case in
the previous example because patterns do not overlap).

In order to completely define a security policy, one must in-
dicate the model on which it is based, the data which are

specific to it as well as the evaluation process of functions
and predicates described in the security model.

Definition 8 (Security policy). A security policy ℘ over a
security signature ΣΣΣ consists of:
• a security model (fitted with a strategy if needed) Mζ

over ΣΣΣ,
• a finite set of constructors κ whose profiles are s1 ×
. . . × sn � s ∈ PM. This set extends ΣM to another
signature denoted by ΣκM and
• a linear CD-rewriting system ρ over ΣκM called config-

uration.
A policy composed by Mζ , κ and ρ is denoted by 〈Mζ , ρκ 〉.

Example 3. Consider the model RBAC described in the
previous example. RBAC specified that any role-based pol-
icy should define its own roles. Let us define two roles r1 and
r2 (and then define κ with {r1, r2 : � Role}). Consider
that r1 is assigned toAlice andCharlie while r2 is assigned
toBob and Charlie. Finally, assume that r1 has the reading
privilege over files identified by an even number while r2 al-
lows accesses in writing mode to files identified by a number
which is a multiple of three. We obtain the following config-
uration:

ρ =

ura(Alice, r1) →ρ true
ura(Bob, r2) →ρ true

ura(Charlie, r1) →ρ true
ura(Charlie, r2) →ρ true
pra(r1, R, file(n)) →ρ true ‖ n ∈M2

pra(r2,W, file(n)) →ρ true ‖ n ∈M3

ura(, ,) →ρ false
pra(, ,) →ρ false

where M2 is the automaton recognizing natural number
which are a multiple of 2, i.e.:

〈ΣCons , {q1, q2}, {q2},→δ 〉 with

 zero →δ q2

succ(q2) →δ q1

succ(q1) →δ q2

andM3 is the automaton recognizing natural number which
are a multiple of 3, i.e. 〈ΣCons , {q1, q2, q3}, {q3},→δ′ 〉

with

zero →δ′ q3

succ(q3) →δ′ q1

succ(q2) →δ′ q3

succ(q1) →δ′ q2

.

IV. Semantics and properties

In this section, we show that our framework allows to show
properties over policy specifications. Moreover, we show
that it provides an operational way to evaluate if an action is
permitted or denied (the semantics of policies). Finally, we
prove that we can perform “queries” over security policies.
So that a security policy is “admissible” and can be inter-
preted in a unique way, it is necessary that it satisfies certain
number of properties. For example, it must not be possible
that the evaluation of functions and predicates produces sev-
eral results. Furthermore, the policy configuration must be
“acceptable” for the model on which it is based at the risk
of giving to the security model a different meaning that its
author attributed to it, so altering the security property which
it has to guarantee.

361Specification, Analysis and Transformation of Security Policies via Rewriting Techniques

Definition 9 (Consistency). A security policy ℘ =
〈Mζ , ρκ 〉 is consistent if
• ρ is a CD-interpretation of ΣM ∪ {κ} and
• ρ |= TM.

Proposition 1. Consistency is decidable.

Proof. Let 〈Mζ , ρκ 〉 be a security policy. The first con-
dition (ρ is a CD-interpretation of ΣM ∪ {κ}) is equivalent
to the convergence of ρ and its sufficient completeness w.r.t.
each defined symbol f ∈ ΣDef κM. By definition, the rewrit-
ing system ρ is composed by rules whose right hand-side is
a data-term and whose constraint contains only irreducible
terms. Straightforwardly, such a system terminates. All head
symbols of left hand-side are defined symbols, thus any con-
structor term is irreducible. The sufficient completeness w.r.t.
a defined symbol f is ensured either by a default rule or by
checking that the set of all (constructor) ground instances of
the constrained left hand-side (which is regular) covers all
well-formed data-term whose head is f (which is a regular
set). Finally, ρ is confluent iff two rules whose left hand-sides
overlap have the same right-hand side (which is decidable).
Thus, the first condition of consistency can be verified by the
following procedure:
• for any rule r = f(~s) → rhs ‖ ϕ, we denote by
A(r) the tree automaton recognizing the set of data-
terms {σ(#(~s)) | σ(ϕ) holds}, which can always be
built since lhs is linear and ϕ contains only constructor
terms.
• for any rule r = f(~s) → rhs‖ϕ and r′ = f(~s′) →
rhs′‖ϕ′ of ρ, check that A(r) ∩ A(r′) 6= ∅ ⇒ rhs =
rhs′
• check that

⋃
r=f(~s)→r ‖ ϕA(r) = {#(~t) | ti ∈

T (ΣCons)si , f : s1 × . . .× sn → s}
Second, in a CD-interpretation, interpretations of predicates
and function symbols can be represented with regular sets.
We can evaluate any linear atom p(C[~x]) (and non linear
atoms whose variables occurring several times belong to a fi-
nite set) as the regular set recognizing data-terms tuples #(~t)
such that p(C[~t]) holds (f(~t) = u being seen as the atom
f(~t, u)). Operators over tree automata (projection, cylindri-
fication, context adding or deleting, union and intersection)
allow to evaluate any combination of such atoms. �

We will see that our framework provides an operational
way to compute authorizations. More precisely, we can com-
pute a (convergent) rewrite system →℘ from any consistent
security policy ℘ such that for any action ∈ T (ΣΣΣ)Action,
action ↓℘= permit if ℘ permits action and action ↓℘=
deny otherwise. First, let us give the definition of the se-
mantics of a consistent security policy.

Definition 10 (Semantics). Let be ℘ = 〈Mζ , ρκ 〉 a con-
sistent security policy. We call semantics of ℘ and we denote
by J℘ K the set of actions that ℘ permits, that is:

J℘ K =
{
ac ∈ T (ΣΣΣ)Action | ρ |= ΓζM(ac)

}
This induces the following equivalence relation: ℘ ≈ ℘′ iff
J℘ K = J℘′ K.

Example 4. Let ℘ be the policy defined in the previous ex-
ample. J℘ K contains:
• read(Alice, f(2k)),
• write(Bob, f(3k)),
• read(Charlie, f(2k)), write(Charlie, f(3k))

for any k ∈ N.

Proposition 2. For any consistent security policy ℘, the
set J℘ K is decidable, that is to say there exists a terminat-
ing algorithm deciding if an action belongs to J℘ K. More-
over, the set J℘ K is regular, that is there exists a tree au-
tomaton 〈Q,ΣΣΣ, F,→℘ 〉 with permit, deny ∈ Q and F =
{permit} such that action ∈ J℘ K iff action↓℘= permit
(and action↓℘= deny otherwise).

Proof. The construction of→℘ is based on the procedure of
CD-unification depicted in Figure 1. CD-unification consists
in computing the solutions of an equational problem w.r.t. a
CD-interpretation, that is by interpreting the equality symbol
as the equality induced by a CD-rewriting system. The pro-
posed algorithm is an extension of the standard narrowing-
based unification algorithm described in [16]. First, let us
prove that our transformation algorithm preserves the set of
solutions by analysing the rules introduced in our version:
• utilize 2 and empty: for any formula φ, it is obvious that
φ ∧ ∃x : x ∈ A is equivalent to φ if A is not empty and
that φ ∧ x ∈ A has no solution if A is empty.
• merge: straightforward.
• propagate: since membership constraints contain only

automata recognizing data-terms, the replacement of
variables by terms in a membership constraint must be
performed only for terms containing no defined symbol.
• deconstruct, search: given a tree automaton A =

(Q,Σ, F, δ), if f is a constructor symbol, then f(~s) ∈ A
is equivalent to

∨
q∈F

∨
f(q1,...,qn)→q∈δ

∧
si ∈ A[qi]

where A[qi] is the (reduced) automaton obtained from
A by replacing the set of final states with {qi}. If
f is a defined symbol, f(~s) must be “solved” by the
narrowing process. Thus, f(~s) ∈ A is replaced by
∃x : x = f(~s) ∧ x ∈ A. When x will be assigned
with a constructor term t, x ∈ A will be rewritten into
t ∈ A (propagate) and then the deconstruction rule will
be applied.

Second, let us prove the termination of the algorithm. We
define the size of a problem P = ∃x : E,C as the tuple
‖P‖ = 〈n1, . . . , n9 〉 ∈ N9 where:
• n1 is the cardinality of Solved(P) ∩ Var(C), where
Solved(P) is the set of variables such that E contains
an equality of the form x = t with t a constructor term,
• n2 is the number of defined symbols occurring in C
• n3 is the number of defined symbols occurring in E
• n4 is the number of constructor symbols occurring in C
• n5 is the number of bound variables
• n6 is the cardinality of Var(P) \ Solved(P)
• n7 is the number of constructor symbols occurring in E
• n8 is the number of equations in E
• n9 is the number of constraints in C

We do not study the size modification through rules Empty
and Fails since these rules are normalizing. The following
table indicates how the size of a problem evolves depending

362 Bourdier

Utilize 1 ∃x : E,C ρ E,C if x /∈ Var(E) ∪ Var(C)

Utilize 2 ∃x : E,C ∪ {x ∈ A} ρ E,C if x /∈ Var(E) ∪ Var(C)

and L(A) 6= ∅
Eliminate ∃x : E ∪ {x = t}, C ρ E,C if x /∈ Var(E) ∪ Var(C) ∪ Var(t)
Empty E,C ∪ {x ∈ A} ρ ⊥ if L(A) = ∅
Alias ∃z : E ∪ {x = z}, C ρ E{z 7→x}, C{z 7→x} if x ∈ X
Delete E ∪ {s = s}, C ρ E,C
Merge E,C ∪ {x ∈ A, x ∈ B} ρ E,C ∪ {x ∈ A ∩B}
Narrow E ∪ {s = t}, C ρ ∃~z : E ∪ {u = t} ∪ θ, C ∪ ϕ if θ = mgu(s|p, l), u = θ(s [r]p)

and l→ r ‖ ϕ is a renamed rule of ρ
and ~z = Var(θ) \ Var(s)

Deconstruct E,C ∪ {f(~s) ∈ A} ρ E,C ∪ {si ∈ Ai}i=1...n if A = 〈Q,ΣCons , F,→δ 〉
and f(~q)→δ qF with qF ∈ F
and Ai = 〈Q,ΣCons , {qi},→δ 〉

Search E,C ∪ {f(~s) ∈ A} ρ ∃x : E ∪ {x = f(~s)}, C ∪ {x ∈ A} if f defined symbol
Decompose E ∪ {f(~x) = f(~y)} ρ E ∪ {xi = yi}
Fails 1 E ∪ {f(~x) = g(~y)} ρ ⊥ if f 6= g

Fails 2 E ∪ {x = t} ρ ⊥ if x ∈ Var(t)
Propagate 1 E ∪ {x = t}, C ρ E{x 7→t} ∪ {x = t}, C if x ∈ Var(E)

Propagate 2 E ∪ {x = t}, C ρ E ∪ {x = t}, C{x7→t} if x ∈ Var(C) and t constructor

Figure. 1: CD-Unification: narrowing-based procedure for CD-semantic unification

on the other rules:

n1 n2 n3 n4 n5 n6 n7 n8 n9

Utilize 1 −
Utilize 2 −
Eliminate −

Alias −
Delete −
Merge −
Narrow − + + + + +

Deconstruct −
Search − + + + +

Decomposition − +
Propagate 1 − +
Propagate 2 − +

where + means “may increase”, − means “always strictly
decrease” and when no sign is indicated, it means that the
corresponding size is preserved. Since for any rule the sign
“+” is always preceded by a sign “−”, it means that for any
P , if P ρ P ′ then ‖P ′‖ <N9 ‖P‖. Since <N9 is well-
founded (assuming that 〈n1, . . . , n9 〉 <N9 〈n′1, . . . , n′9 〉 iff
there is a j such that ni = n′i for any i < j and nj < n′j), we
can conclude that ρ terminates. To formally prove this re-
sult, we must prove the table presented above. Most of values
of this table can be easily checked. Let us see the most dif-
ficult results, namely the value of n1 for the rule Propagate
1 and n3 for the rule Narrow. Applying the rule Propagate
1 replaces the “solved” variable x with a term t. One must
check that t contains no solved variable. First, t can not con-
tain x since this case is handled by a prior rule (Fails 2). Sec-
ondly, if t contains other solved variables, thus Propagate 1
is applicable and Propagate 1 have priority. Let us now study
the value of n3 for the narrowing rule. By definition, rules
of ρ are of the form f(c1, . . . , cn) → d with ci constructors
terms and d a data-term. Then, the narrowing process re-
place a subterm of s containing at least one defined symbol
(f) with a data-term. Thus, The number of defined symbols
occurring inE strictly decrease. Finally, let us prove that the
set of solutions of a safe equational problem is a regular set.
First, it is easy to check that normal forms of ρ are prob-

lems of the form ∃~z:{~yE = ~t}, {~zC ∈ ~A, ~yC ∈ ~B} where
~y = ~yE ∪ ~yC , ~z = ~zE ∪ ~zC and ~t are constructor terms such
that ~z ⊆ Var(~t) ⊆ ~y ∪ ~z. Two cases are possible:
• Var(~t) ∩ ~y = ∅. Thus, the set of solutions is clearly

regular.
• Var(~t) ∩ ~y 6= ∅. One must prove that if yi = C[yj]

occurs in E, then yi and yj are of a safe sort, i.e. can
be assigned only with a finite set of possible values. The
following cases are possible:
• the equality yi = yj belonged to the original prob-

lem. Thus, by definition, the sort of yi and yj is
safe.
• the original problem contained C[yi] = C ′[yj]

with C|ε or C ′|ε constructor. This case is not
possible since no safe sort contains constructors
which are not constants.
• the original problem contained C[yi] = C ′[yj]

withC|ε andC ′|ε defined. To obtain an equality of
the form yi = C ′′[yj], at least one step of narrow-
ing occurred. Then, C[yi] = C ′[yj] is rewritten to
t = C ′[yj]∧ . . . where t is a data-term. Thus, this
case is also impossible.

In conclusion, if two free variables of a safe problem oc-
curs in the same equality in its normal form, then these
variables are of a safe sort and then can be assigned to
a finite set of values. Then, even in this case, the set of
solutions is regular.

Given a convergent CD-rewriting system, we denote by ρ

the rewriting relation induced by applying the rules of the
figure 1 in the order in which they appear and under the in-
nermost strategy (note that only rules Narrow and Decon-
struct can create divergences in the reduction tree). If ρ is
the configuration of a security policy and P = ∃~x:E,C is a
constrained equational problem in normal form w.r.t. ρ

where ~y = FVar(P), then it is necessary of the shape
∃~z:{~yE = ~t}, {~zC ∈ ~A, ~yC ∈ ~B} with ~y = ~yE ∪ ~yC ,
~z = ~zE ∪ ~zC and ~t are constructor terms of the security
signature such that ~z ⊆ Var(~t) ⊆ ~y ∪ ~z. The set of solu-

363Specification, Analysis and Transformation of Security Policies via Rewriting Techniques

tions of this problem can be represented by a tree automa-
ton denoted by Sol(P) which recognizes data-terms of the
form #(t1, . . . , tn) such that {yj 7→ tj}j=1...n is a solu-
tion. For any constrained equational problem P , we de-
note by P

ρ
the set of normal forms of P w.r.t. ρ. Thus,

we define Solρ(P) =
⋃
P ′∈P

ρ

Sol(P ′). We extend the

definition of Solρ to disjunctions of problems as follows:
Solρ({P1 ∨ . . . ∨ Pn}) =

⋃n
i=1 Solρ(Pi). The CD-Narrow

procedure is terminating, correct and complete for safe equa-
tional problems in that sense where any ground substitution
σ = {yj 7→ tj} is a solution of a safe equational problem
P w.r.t. a CD-rewriting system ρ (with ~y = FVar(P)), i.e.
ρ |= σ(P) iff #(~t) ∈ Solρ(P).
To build→℘, we need, together with the CD-unification pro-
cedure, to compute the function ΓζM introduced in the pre-
vious section. We refine the definition 7 by regrouping data-
terms associated with the same security constraint (up to a
change of variables). Thus, we redefine ΓζM as follows:
• if ζ is and or or, for any I ⊆ [1, n] such that
RecI 6= ∅, ΓζM associates withRecI either

∧
i∈I P̃i[~x]

if ζ = and or
∨
i∈I P̃i[~x] if ζ = or and asso-

ciates either > if ζ = and or ⊥ if ζ = and with
T (ΣΣΣ)Action \⋃ni=1Rec(actioni).
• if ζ is or elseν , ΓζM associates P̃i[~x] withRecfsti and
ν with T (ΣΣΣ)Action \⋃ni=1Rec(actioni).

knowing that:
• ΓM = {actioni 7→ ti}1=1...n

• RecI =
⋂
i∈I Rec(actioni)∩

⋃
i∈[1,n]\I Rec(actioni)

• Recfsti = Rec(actioni) ∩
⋂
j<iRec(actionj)

• P̃i[~x] is ∃~y : ~x = ~t ∧ Pi[~y], actioni = f(~t), f ∈
FAction, ~y = Var(~t), ~x are fresh variables (they are
the new variables of the problem).

ΓζM must be understood as follows: given an action (a data-
term of sortAction) ac = f(~t) and the regular set L such as
L ∈ Dom(ΓζM) and ac ∈ L (which exists and is unique be-
cause the domain of ΓζM constitutes a partition of the whole
set of data-terms of sort Action), then ac is permitted iff ~t is
a solution of ΓζM(L). Thus, the automaton recognizing J℘ K
is
⋃
L∈Dom(ΓζM)

(
L ∩ Solfρ (ΓζM(L))

)
where f = L|ε and

Solfρ (P) recognizes {f(~t) |#(~t) ∈ Solρ(P)}. �

As a consequence of proposition 2, we obtain the capacity
of “querying” the policy. Query analysis provides a way to
ask questions of the form “Is there at least one user which
can access the file f” or “Can any user read or write at least
a file ?”. In the literature, this is sometimes referred to as
“what-if analysis” or as “administrator queries”. In [18], it is
shown how to solve queries defined as terms of sort Action
containing variables. In this paper, we consider a larger class
of queries.

Definition 11 (Query). Given a policy ℘ over ΣΣΣ, a query
over ℘ is a first order formula built with the only predicate
↓℘ and constructor terms of ΣΣΣ.

Example 5. Consider the policy ℘ defined in the pre-
vious example. The following formula is a query over
℘: Q(n) 4=∀s : (read(s, file(n)) ↓℘ permit) ⇒

(write(s, file(succ(n))) ↓℘ deny). The solution of this
query is the set of valuations of n such that Q(n) holds.

Proposition 3. Given a security policy ℘, the set of solu-
tions of any query over ℘ is decidable. Moreover, it is a
regular set.

Proof. This follows directly from the fact that ↓℘ is the
transition relation of a tree automaton. The solution of a
query is obtained by using tree automata operators (boolean
operators, adding and deleting contexts and projection). �

V. Policy transformation

To allow the maintainability of a security policy, to simplify
its management, to make less complex its understanding or
to increase the degree of granularity of authorizations, we
can be led up to change the model in which the policy is ex-
pressed. The translation of a policy from a model towards
another one is a very difficult and dangerous task. This pro-
cess is error-prone and thus can introduce security faults. We
propose in this section an automatic method for performing
this transformation. This process could also be called “auto-
configuration” of a policy. The proposed method is based
on a recent algorithm of construction of logical models de-
scribed by n-regular tree automata [21].
Formally, our goal is the following: Given ℘1 = 〈Mζ1

1 , ρ
κ1
1 〉

a security policy over ΣΣΣ together with a security model Mζ2
2

and a signature extension κ2, we want to compute a config-
uration ρ2 such that 〈Mζ1

1 , ρ
κ1
1 〉 ≈ 〈Mζ2

2 , ρ
κ2
2 〉. We note

this problem under the form of an equation: 〈Mζ2
2 , X

κ2 〉 ≈
〈Mζ1

1 , ρ
κ1
1 〉 where X is the variable of the equation.

Example 6. Let us now consider another security model
LBAC based on a security lattice. The idea consists in
assigning to each subject and each file a security level
and to order levels as a lattice. Thus, ΣLBAC extends
Σ with the sort Level and three functional symbols :
fS : Subject � Level, to represent the assignment
of levels to subjects, fO : Object � Level, to rep-
resent the assignment of levels to objects (files) and
inf : Level × Level � Bool to represent an order over
levels. Since we want inf to describe a lattice, we add the
following axioms in TLBAC:

∀x : inf(x, x) = true
∀x, y : inf(x, y) = true ∧ inf(y, z) = true

⇒ inf(x, z) = true
∀x, y : inf(x, y) = true ∧ x 6= y ⇒ inf(y, x) = false
∃xmax, xmin,∀x, inf(x, xmax) = true

∧ inf(xmin, x = true)
The LBAC model we consider applies the well-known princi-
ples of “no read up” and “no write down”, which consists
in defining ΓLBAC by the following two rules:

read(s, o) 7→ { inf(fO(o), fS(s)) = true }
write(s, o) 7→ { inf(fS(s), fO(o)) = true }

Finally, the model give no information about the levels, then
PLBAC = {� Level}. “Transforming the policy ℘ =
〈 RBAC, ρκ 〉 toward the model LBAC” consists in finding
a CD-rewrite system which interprets the symbols inf, fO

364 Bourdier

⊥

B M2,3

C = M6

A M3,2

⊤

M2,3

fS(Alice) → A
fS(Bob) → B

fS(Charlie) → C
fO(file(n)) → C ‖ n ∈M6

fO(file(n)) → M3,2 ‖ n ∈M3 \M2

...
inf(⊥, B) → true

Figure. 2: Illustration of the Example 6

and fS so that together with the model LBAC we obtain ex-
actly the same set of authorizations as 〈 RBAC, ρκ 〉. In other
terms, it consists in assigning security levels to subjects and
objects (fO et fS) and to order these levels (inf). A solution,
if κ contains eight constants of sort Level, is depicted in the
Figure 2. where A (resp. B, resp. C) is the level of Alice
(resp. Bob, resp. Charlie), arrows between levels denote
the order over them (inf) and Mn is the level assigned to
files identified by a number which is (resp. is not) a multiple
of n if n is not (resp. is) overlined.

To build the target policy, we generate a set of con-
straints describing that the target policy must have the same
semantics as the source policy. Pointing out that a sub-
set of A-interpretation is isomorphic with the set of CD-
interpretations, we propose to take advantage of a recent
work on automated building of A-models (in a logical sense)
[21]. A precise definition of A-interpretations (and then A-
models) will be given later but roughly speaking, it consists
of interpretations in which predicates are interpreted as n-
regular relations. To be as clear as possible, we split the
description of our algorithm into two main steps. The first
concerns the generation of constraints and the second con-
cerns the construction of the target configuration from these
constraints.

Constraints generation We must describe that the seman-
tics of the source policy is equivalent to the semantics of the
target one. Since semantics of security policies are regular,
we need a way to express regular sets as first order axioms.
More precisely, given a tree automaton A = 〈Q,Σ, F, δ 〉,
we denote by Ax(A)[x] the first order formula such that for
any ground term t, Ax(A)[t] is a theorem if t ∈ A and is
contradictory otherwise. In the same way, we denote by
Ax(A)−h[~x] the formula such that for any tuple of ground
terms ~t, Ax(A)[~t] is a theorem if h(~t) ∈ A and is contradic-
tory otherwise. Let us give a formal definition of these for-
mulae (note that we consider that all automata are complete,
minimalized and deterministic). Ax(A)[x] is the following
formula:

∨
qF∈F

qF (x) ∧
∧
q/∈F
¬q(x)

∧
∧

f(q1,...,qn)→δq

(
∀~y :

n∧
i=1

qi(yi)⇒ q(f(~y))

)

and Ax−h(A)[~x] is the conjunction of the two following for-
mulae: ∨

h(q1,...,qn)→qF∈F

(
n∧
i=1

qi(xi)

)
∧
 ∨
h(q1,...,qn)→q/∈F

¬
(

n∧
i=1

qi(xi)

)

and
∧

f(q1,...,qn)→δq/∈F

(
∀~y :

n∧
i=1

qi(yi)⇒ q(f(~y)

)

Let us now consider a consistent security policy 〈Mζ1
1 , ρ

κ1
1 〉

over ΣΣΣ, together with a security model Mζ2
2 over ΣΣΣ and an

extension κ2 of ΣM2 . For any (L1 × L2) ∈ Dom(Γζ1M1
) ×

Dom(Γζ2M2
), such that L1∩L2 6= ∅ and act = L1|ε = L2|ε,

we denote by Cons(L1,L2) the following formula:

∀~x : Ax−act(L1 ∩ L2)[~x]
⇒
(
Ax−#

(Solρ1(Γζ1M1
(L1))

)
[~x]⇔ Γζ2M2

(L2)[~x]
)

Finally, we denote by Cons
(
〈Mζ2

2 , X
κ2 〉 ≈ 〈Mζ1

1 , ρ
κ1
1 〉
)

the formula:

TM2 ∧
∧

(L1,L2)∈Dom(Γ
ζ1
M1

)×Dom(Γ
ζ2
M2

)

Cons(L1,L2)

This formula is a theory whose logical models are exactly in-
terpretations inducing with M2 the same set of authorizations
as the source policy. This formula can have models which are
not CD-interpretations. That is why it must be transformed
in order to build only CD-interpretations (that is to say policy
configurations).

Construction of a CD-model As previously said, the con-
struction of the target policy is based on an algorithm build-
ing A-models presented in [21]. Let us define what are A-
interpretations (and then A-models).

Definition 12 (A-interpretation [21]). An interpretation=
of a signature Σ w.r.t. D is called an A-interpretation w.r.t.
Σ′ iffD = T (Σ′)∪{Λ} and for every n-ary predicate symbol
q ∈ Σ, there exists an n-regular tree automaton accepting
exactly the set of tuples ~t such that =(q(~t)) holds.

365Specification, Analysis and Transformation of Security Policies via Rewriting Techniques

A-interpretations are interpretations in which predicates
and function symbols (seen as particular predicates) are in-
terpreted as n-regular relations. In [21], Peltier proposes a
method which, given a first order formula ϕ over a signature
Σ′ and a signature Σ, defines two applications denoted by
∆Σ and ∗ such that: = is a A-model of ϕ of domain T (Σ) iff
= = I∗ where I is a finite (logical) model of ∆Σ(ϕ). Thus,
building A-models comes down to building finite models.
However, the set of A-interpretations does not correspond
to the set of CD-interpretations. Nevertheless, we can show
that a subset of A-interpretations is isomorphic to the set of
CD-interpretations and that any first order formula can be
transformed so that all its A-models are isomorphic to CD-
models. This is formally stated in the following proposition.

Proposition 4. Let ϕ be a first order formula. There exist
two maps Θ and ? such that = is a CD-model of ϕ iff = = I?
and I is an A-model of Θ(ϕ).

Proof. Let us give the main ideas behind the construction of
Θ and ?. It is based on the fact that any CD-interpretation
is in bijection with an interpretation interpreting predicates
and functions as regular sets of particular terms. Indeed,
one can simulate n-ary functions and predicates with unary
ones by adding a particular function symbol #. More pre-
cisely, any n-ary predicate p : ~s � Bool is encoded by
a predicate p# such that =(p#) recognizes the term #(~t)
iff =? |= p(~t). In the same way, any functional symbol
f : s1 × . . . × sn � s 6= Bool, is replaced by f# so
that =(f#) recognizes tuples #(~t, u) iff f(~t) = u holds in
=?. The building of =? from = is based on the fact that
any regular set E is equivalent to a finite set of constrained
linear patterns CP in the sense where t ∈ E iff there is
l ‖ ∧i xi ∈ Ai (where ~x = Var(l)) inCP such that t = σ(l)
and σ(xi) ∈ Ai for all i (several sets satisfying this defi-
nition exist but there is only one which factorizes common
contexts as much as possible). More precisely, Θ is built
as follows (we suppose that all formula are polite, that is
two occurrences of the same bound variable is bound by the
same quantifier and free and bound variables do not share
any variable name). For any first order formula ϕ, we de-
fine Θ(ϕ) as the conjunction

∧
f∈ΣAf ∧A#∧ϕ � where the

reduction relation� is defined by the following system:

p(~t) = true � ∃x : p(x) ∧#(~t, x)
p(~t) = false � ∃x : ¬p(x) ∧#(~t, x)
at[t]ω � ∀x : t = x⇒ at[x]ω t /∈ X
t = t′ � ∃x : t = x ∧ t′ = x t, t′ /∈ X
f(~s) = x � ∀y : #(~s, x, y)⇒ f(y) if x ∈ X

with A#
4
=∀~x, ∃y : (#(~x, y)) and for any f : ~s� s′,

Af 4=

∀~x, y1, y2, z1, z2 :

f(z1)
∧f(z2)
∧#(~x, y1, z1)
∧#(~x, y2, z2)

⇒ y1 ≡ y2

∀~x :

 ∧
iAx(si)[xi]

⇔ ∃y,∀z :
(Ax(s′)[y] ∧#(~x, y, z)
⇒ f(z)

)
Next, let us explain how to translate tree automata into con-
strained pattern. Given an automaton A = 〈Q,Σ, F,→δ

〉 and q ∈ Q, we denote by B the relation {q B
q′ | ∃f(. . . , q′, . . .) →δ q}. We denote by B+ the tran-
sitive closure of B. A safe unfolding step of A is a pair
q � f(q1, . . . , qn) such that f(q1, . . . , qn) →δ q and for
any i, qi 6B+ q. A state q is unsafe iff there exist no safe
unfolding of A starting from q. We denote by �+ the re-
lation over Q × T (Σ ∪Q) such that q �+ C[~q1, . . . , ~qm]
iff q � f(q′1, . . . , q

′
m),∀i : q′i �

+ Ci[~qi], C[~q] =
f(C1[~q1], . . . , Cm[~qm]). An unfolding q �+ C[q1, . . . , qn]
is safe iff it is composed by only safe unfolding steps and it
is maximal iff for any i, qi is an unsafe state. We denote
by q

�

the set of safe and maximal unfolding starting from q.
For any q ∈ Q, the set q

�

is finite and the algorithm com-
puting this set is straightforward (it is directly induced by
the definition of�+). Finally, we denote by CPattern(A)
the set {C[~x]‖

∧
i xi∈Ai | ∃qF ∈ F,C[~q] ∈ qF

�

,∀i : Ai =
〈Q,Σ, {qi},→δ 〉}. Note that in t‖x∈A∧ϕ, x ∈ A is omitted
if A recognizes T (Σ)s where s is the sort of x.
Finally, let us explain how ? is built. Let = be an A-
interpretation whose relations are unary and contains only
terms of the form #(~t). ρ = =? is built as follows: for any
p : ~s� Bool, =(p) is the tree automaton recognizing the set
of data-terms #(~t) such that p(~t) must hold in ρ.
• for #(~t)‖ϕ ∈ CPattern(=(p)), add p(~t) → true ‖ ϕ

in ρ.
• add the default rule p(, . . . ,)→ false in ρ

For any f : s1 × . . . × sn � s 6= Bool, =(f) recognizes
tuples #(~t, u) such that f(~t) = u must hold in ρ.
• for each u ∈ Πn+1(=(f)) (Πk is the projection over

the kst component), necessarily in a limited num-
ber, we denote by =(f)−1(u) the regular set of terms
{~t | #(~t, u) ∈ =(f)} and then, for any #(~t)‖ϕ ∈
CPattern(=(f)−1(u)), we add f(~t)→ u ‖ ϕ in ρ.

�

Summary of the algorithm Our algorithm can be summa-
rized by the Figure V.
Although there exist theories for which the existence of a fi-
nite model is undecidable, we have the two main following
results. First, if a finite model of ϑ is found, then we can com-
pute a security policy expressed in the target security model
equivalent to the source policy. Secondly, if one proves that
ϑ has no finite model, then we can conclude that there exists
no policy expressed in the target security model equivalent to
the source policy.

VI. Conclusion

The works presented in this paper come within the scope
of designing a formal framework for specifying, analysing
and maintaining security policies. We have argued that the
specification of security policies in two steps with equational
problems and rewriting systems is particularly attractive in
allowing the reuse of specifications. Moreover, we claimed
that such an approach is suitable to handle the problem of
translating a policy to a given security model. We estab-
lished in this paper several results and algorithms taking ad-
vantage on research advances in the rewriting and first order
logical fields. We currently work on the implementation of
our framework and on delineating the class of policies for
which the transformation process is decidable (that is such

366 Bourdier

℘1 ≈ ℘2

Constraints
generation Mζ2

2 , κ2ϕ

ψ

ϑ

∆ΣCons
κ2
M2

∪{#}

Θ

Finite Model builder
MACE, SEM, FINDER . . .

Finite model
of ϑ

∗

⋆

A-model
of ψ

CD-model
of ϕ

(= policy configuration)

Figure. 3: Summary of the algorithm

that our algorithm answers either no if no translation exists
or provides a target policy). In future work, we intend to
consider more elaborated specifications for security models.
More precisely, we wish to consider the use of a rewriting
system which rewrites an action to an equational problem.
This should lead to several new problems, like the consis-
tency of a model (instead of the consistency of a policy).
More generally, we want to investigate separately specific
properties to models, specific ones to configurations and to
obtain in a modular way properties over policies. Still in a
context of reuse, we plan to consider the problem of security
policies composition.

VII. Acknowledgments

We are grateful to Horatiu Cirstea and Hélène Kirchner for
helpful feedback on this work and very fruitful discussions.
We also thank Pierre-Etienne Moreau and Martin Quinson
for having read and commented on an earlier draft. This
work has been made possible through grants from the Re-
gion Lorraine and the french National Institute for Research
in Computer Science and Control (INRIA).

References

[1] F. Baader and T. Nipkow. Term rewriting and all that.
Cambridge University Press, 1998.

[2] S. Barker. The next 700 access control models or a uni-
fying meta-model? In ACM Symposium on Access con-
trol models and technologies, pages 187–196. ACM,
2009.

[3] S. Barker, C. Bertolissi, and M. Fernández. Action con-
trol by term rewriting. Electronic Notes in Theoretical
Computer Science, 234:19–36. Elsevier Science B.V.,
2009.

[4] S. Barker and M. Fernández. Term rewriting for ac-
cess control. In Data and applications security XX, vol-
ume 4127 of Lecture Notes in Computer Science, pages
179–193. Springer-Verlag, 2006.

[5] S. Barker and M. Fernàndez. Action-status access con-
trol as term rewriting. In International Workshop on
Security and Rewriting Techniques, 2007.

[6] S. Barker and P. Stuckey. Flexible access control pol-
icy specification with constraint logic programming.
ACM Transactions on Information and System Security,
6(4):501–546. ACM, 2003.

[7] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A
logical framework for reasoning about access control
models. ACM Transactions on Information and System
Security, 6(1):71–127. ACM, 2003.

[8] C. Bertolissi and M. Fernández. A rewriting framework
for the composition of access control policies. In Inter-
national ACM SIGPLAN conference on Principles and
Practice of Declarative Programming, pages 217–225.
ACM, 2008.

[9] C. Bertolissi, M. Fernández, and S. Barker. Dynamic
event-based access control as term rewriting. In Data
and Applications Security XXI, volume 4602 of Lecture
Notes in Computer Science, pages 195–210. Springer-
Verlag, 2007.

[10] H. Cirstea, P.-E. Moreau, and A. de Oliveira. Rewrite
based specification of access control policies. Elec-
tronic Notes in Theoretical Computer Science, 234:37–
54. Elsevier Science B.V., 2009.

[11] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree au-
tomata techniques and applications. Available on:
http://gforge.inria.fr/projects/tata/, 2008.

[12] A. de Oliveira, E. Wang, C. Kirchner, and H. Kirchner.
Weaving rewrite-based access control policies. In ACM
Workshop on Formal methods in security engineering,
pages 71–80. ACM, 2007.

[13] D. Dougherty, C. Kirchner, H. Kirchner, and
A. de Oliveira. Modular Access Control via Strategic
Rewriting. volume 4734 of Lecture Notes in Computer
Science, pages 578–593. Springer-Verlag, 2007.

367Specification, Analysis and Transformation of Security Policies via Rewriting Techniques

[14] R. Echahed and F. Prost. Security policy in a declarative
style. In International ACM SIGPLAN conference on
Principles and Practice of Declarative Programming,
pages 153–163. ACM, 2005.

[15] L. Habib, M. Jaume, and C. Morisset. Formal defini-
tion and comparison of access control models. Journal
of Information Assurance and Security, 4(4):372–381.
Dynamic Publishers Inc., USA, 2009.

[16] J.-P. Jouannaud and C. Kirchner. Solving equations in
abstract algebras: a rule-based survey of unification. In
Computational Logic: Essays in Honor of Alan Robin-
son, chapter 8, pages 257–321. The MIT-Press, 1991.

[17] A. Kalam, R. Baida, P. Balbiani, S. Benferhat,
F. Cuppens, Y. Deswarte, A. Miege, C. Saurel, and
G. Trouessin. Organization based access control. IEEE
International Workshop on Policies for Distributed Sys-
tems and Networks, pages 120–131. IEEE Computer
Society, 2003.

[18] C. Kirchner, H. Kirchner, and A. de Oliveira. Analy-
sis of rewrite-based access control policies. Electronic
Notes in Theoretical Computer Science, 234:55–75. El-
sevier Science B.V., 2009.

[19] L. LaPadula and D. Bell. Secure Computer Systems:
A Mathematical Model. Journal of Computer Security,
4:239–263. IOS Press, 1996.

[20] P.-A. Masson, M.-L. Potet, J. Julliand, R. Tissot, G. De-
bois, B. Legeard, B. Chetali, F. Bouquet, E. Jaffuel,
L. Van Aertrick, J. Andronick, and A. Haddad. An
access control model based testing approach for smart
card applications: Results of the POSE project. Journal
of Information Assurance and Security, 5(1):335–351.
Dynamic Publishers Inc., USA, 2010.

[21] N. Peltier. Constructing infinite models represented by
tree automata. Annals of Mathematics and Artificial
Intelligence, 56(1):65–85. Springer Science + Business
Media B.V, 2009.

[22] R. Sandhu. Lattice-based access control models. Com-
puter, 26(11):9–19. IEEE Computer Society, 1993.

[23] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.
Role-based access control models. Computer,
29(2):38–47. IEEE Computer Society, 1996.

[24] R. Sandhu and P. Samarati. Access control: Princi-
ples and practice. IEEE Communications Magazine,
32(9):40–48. IEEE Communications Society, 1994.

[25] N. Souayeh, A. Bouhoula, and F. Jacquemard. Auto-
matic Validation of Firewall Configurations using SMT
Solvers. Journal of Information Assurance and Se-
curity, 5(1):561–568. Dynamic Publishers Inc., USA,
2010.

Author Biography

Tony Bourdier received his master’s degree in applied
Mathematics from the University Henri Poincaré and his
engineer’s degree in Computer Science from the École
Supérieure d’Informatique et Applications de Lorraine in
2007. He currently works as a PhD candidate on specifi-
cation and verification of security policies with formal meth-
ods at the french National Institute for Research in Computer
Science and Control (INRIA).

368 Bourdier

