Journal of Information Assurance and Security.
ISSN 1554-1010 Volume 6 (2011) pp. 389-397
© MIR Labs, www.mirlabs.net/jias/index.html

A Posterior1 Access and Usage Control Policy in
Healthcare Environment

Hanieh Azkia', Nora Cuppens-Boulahia', Frédéric Cuppens' and Gouenou Coatrieux?

T/Telecom Bretagne,
2, Rue de la Chataigneraie, 35576 Cesson Sévigné, France
firstname.lastname @telecom-bretagne.eu

2 IT/Telecom Bretagne
Technopole Brest-Iroise, CS 83818, 29238 Brest, France
firstname.lastname @telecom-bretagne.eu

Abstract: Traditional access control mechanisms prevent ille-
gal access by controlling access right before executing an ac-
tion; they belong to a class of a priori security solutions and,
from this point of view, they have some limitations, like inflexi-
bility in unanticipated circumstances. By contrast, a posteriori
mechanisms enforce policies not by preventing unauthorized ac-
cess, but rather by deterring it. Such access control needs evi-
dence to prove violations. Evidence is derived from log records,
which trace each user’s actions. Efficiency of violation detection
mostly depends on the compliance of log records with the access
and usage control policy.

In order to develop an efficient method for finding these viola-
tions, we propose restructuring log records according to a secu-
rity policy model. We illustrate our methodology by applying
it to the healthcare domain, taking care of the Integrating the
Healthcare Enterprise (IHE) framework, particularly its basic
security profile, ATNA (Audit Trail and Node Authentication).
This profile defines log records established on the analysis of
common health practice scenarios. We analyze and establish
how ATNA log records can be refined in order to be integrated
into an a posteriori access and usage control process, based on
an expressive and contextual security policy like the OrBAC
(Organization Based Access Control) policy.

Keywords: Access control model, IHE-ATNA, Audit.

1. Introduction

Controlling access to data is an important issue in informa-
tion security. It must be considered in various domains, such
as banking, healthcare, and so on while being applied to dif-
ferent systems client/server architectures within distributed
or centralized environments. In order to define access con-
trol rules, the system administrator has to specify which data
can be invoked, by which user and for which operation. By
this way, one can regulate data confidentiality and privacy, as
security services. Confidentiality and privacy are both impor-
tant issues especially in collaborative environment and dis-
tributed system where multiple users and systems access and
exchange data.

A lot of works have been devoted to security models, and
a number of policy models have been proposed to express

users’ privileges, e.g. DAC (Discretionary Access Control)
[1], MAC (Mandatory Access Control) [2], RBAC (Role
Based Access Control) [3] or OrBAC (Organization Based
Access Control) [4]. In these models, a user’s request is
checked immediately before granting or denying data ac-
cess and usage. Thus, such models refer to a priori protec-
tion mechanisms, an a priori point of view which has some
limits. Actually, deploying such traditional security models
is restricting in contexts where users act in unforeseen and
exceptional circumstances, such as emergency situations in
hospital. So this kind of access control is not flexible and
not appropriate in such environment. For example, it will
deny access to unauthorized hospital staff while they have to
handle a serious situation. At the same time, this approach
creates a delay to verify authorization of each user’s requests
before granting access. So in some contexts, like emergen-
cies, where time is vital, a priori access control is not always
appropriate.

To solve these problems, a posteriori access control ap-
proaches have been proposed [5],[6] (see section IV) where
policies are checked after granting access. This means that
the user must account for his or her actions at a later time by
providing proof that he or she was allowed to conduct these
actions. This security check process performed afterwards
appears more suitable in healthcare environments. For in-
stance, regarding medical emergency situations, access will
be given to each health professional who requests access. In
other words, health professionals can continue their work,
regardless of security policy rules. But if a posteriori access
control detects an unauthorized action without justification,
the perpetrator can be held accountable for such actions.

In order to deploy a posteriori access control, three compo-
nents are required: (1) Log process which records the history
of actions executed by the system’s actors. Logged actions,
referred to as logs, constitute evidence that can be used to
demonstrate either an actor was allowed to perform a partic-
ular action or not. (2) Log analysis (auditing), which is trig-
gered to identify abnormal actions through the verification of
logs, led by a set of security rules. (3) Accountability com-
ponent, which takes as input abnormal actions and detects

Dynamic Publishers, Inc., USA

390

either that the misbehavior was authorized, i.e. the actor was
allowed to carry out the action (depending on the context), or
not. In the latter case, a violation occurred and the actor can
be submitted to penalties. The effectiveness of this approach
lies on how to identify misbehavior and violations.

In this paper, we focus on the log analysis component. This
one contains three modules: (1) the “Security Policy” con-
tainer includes two types of policy rules: a priori and a
posteriori access and usage control rules; (2) the “Policy-
Oriented Log Processor” reconciles security policy with
logged actions, generated automatically by the system. This
transformation makes our violation detection process easier
and more efficient, and; (3) the “Decision Module” checks
whether those Policy-Oriented Logs are consistent with the
organizational security policy or not. By contrast with previ-
ously proposed frameworks, our approach is not intrusive, as
we use traces generated by the existing log module of the tar-
get system. This log module can be compliant with de facto
standard like SYSLOG [7, 8] or with standard related to a
specific domain like THE-ATNA [9]. Moreover, the security
policy used by the violation detection process is specified in
accordance with an access and usage control model to pro-
vide low-level policies abstraction and interpretation ease by
a human administrator.

In this study, we consider the IHE (Integrating the Health-
care Enterprise) framework [10] which is recommended for
the integration of medical information system. This standard
defines different profiles to which an information system can
be compliant or not. The IHE-Audit Trail and Node Authen-
tication (ATNA) is one of these integration profiles which
ensure tractability in medical environment. It provides pri-
vacy and security rules and mechanisms, such as an audit
trail. An audit trail allows monitoring activities related to
security, patient privacy, user authentication and access and
usage authorization in distributed applications. ATNA de-
fines one structure for the contents of the audit trail, and this
structure is used as log format in this work.

We also consider the OrBAC model to specify security poli-
cies. Our motivation to choose this model is that OrBAC is
an expressive security model that makes it possible to spec-
ify a large number of security requirements, sometimes com-
plex, which can be found in the medical domain. It uses na-
tive structural concepts (like “organization” and “context”)
and includes different security modalities (permission, pro-
hibition, obligation and dispensation). This makes it more
suitable to deal with new requirements in comparison with
other models. The central notion in OrBAC is Organization.
An organization can be seen as an entity that is responsible
for managing security policy (e.g. hospital, cancerology de-
partment, firewall). Another interesting notion in this model
is context. Contexts are used to define conditions to acti-
vate security rules (e.g. emergency, patient consent). They
also increase or reduce user privileges depending on various
events or states (e.g. temporal, spatial, provisional, etc.) and
thus the obtained security policy is more dynamic.

The remainder of this paper is organized as follows. Sec-
tion II defines and describes the audit profiles and the secu-
rity model used in our framework. Section III presents the
framework we suggest to enforce a posteriori access and us-
age control, in particular the transformation process of IHE-

Azkiaet al.

ATNA logs into a format compliant with an access and usage
analysis led by an OrBAC policy. Section IV recalls related
works. Finally, section V concludes the paper.

I1. Audit profile and security model

A. IHE-ATNA

IHE is an initiative of healthcare professionals and industry,
designed to stimulate the integration of information systems
in the healthcare domain. Its objective is to ensure that all
required patient information is both reliable and available to
healthcare professionals. IHE is defined for some domain
which has several profiles. These profiles describe the solu-
tion to a specific integration problem. To specify the tech-
nical details of the integration profile, IHE provides com-
mon technical frameworks. These frameworks identify a set
of functional components of the healthcare institution called
“IHE Actors”, and specifies actor interactions referred to as
”standards based transactions”.

IHE Actors or system roles are responsible for acting on in-
formation in the context of an IHE Profile. Each Profile as-
signs specific requirements to specific actors. The same actor
might be used in many profiles. IHE transaction is the inter-
actions between actors that transfer the required information
and belong to common working scenarios, i.e. when han-
dling medical information system and data in daily medical
practice. The IHE actors and transactions are abstractions of
the real world healthcare information system environment.
ATNA is one of the integration profiles that have been de-
fined for two domains, namely IT infrastructure and Radiol-
ogy. While ATNA in radiology section establishes radiology
specific audit trail messages and expresses the basic secu-
rity measures to protect patient confidentiality, privacy and
ensure traceability, in IT Infrastructure domain ATNA de-
scribes users and nodes authentication using certificates and
the PHI (Protected Health Information) related audit events
transmission to an audit record server. PHI is any informa-
tion about demographic data that relates to the individual’s
past, present or future physical or mental health or condition,
any part of a patient’s medical record or payment history.
Actually, according to recent legislation on privacy and per-
sonal data security, it is essential to trace all actions that ap-
ply to subjects’ personal data. We selected IHE ATNA as
one solution to ensure traceability and security of both com-
munications and data. It has some characteristics as below:
(1) User Authentication, which requires that each user must
log in before running an application in ATNA environment,
after authentication, user’s work can be traced over the net-
work. (2) Node Authentication, which verifies that only au-
thorized nodes, can have access to patient data; ATNA for
this process provides a type of authentication based on mu-
tual exchange of digital certificates. (3) Secure Communi-
cation, ATNA proposes that all nodes use encrypted tunnel
between nodes. And finally, (4) Audit Record Generation,
which keep track of all actions and communications that take
place within a secure ATNA environment, this part requires
an audit record server.

Here, our interest focuses on ATNA-Audit Record Genera-
tion, which provides the aforementioned evidence, i.e. the
audit trail, for the security analysis process. Generation of

A Posteriori Access and Usage Control Policy in Healthcare Environment

an audit trail relies on two main steps: 1) identifying events,
based on transactions and 2) recording the audit messages.
Each transaction performed by an actor could trigger spe-
cific events and thus cause creation of an audit record. These
records will be stored for purposes of analysis, in an audit
record server (referred to as an Audit Record Repository in
ATNA), where they can be monitored in order to allow de-
tection of abnormal and improper behavior.

ATNA specifies the use of Reliable Syslog [8] as the trans-
portation mechanism for logging audit record messages to
the central audit record server. It also makes it possible to use
BSD (Berkeley Software Distribution) Syslog [7] knowing
that it has several limitations. Thus, the audit record server
will support both audit Reliable and BSD mechanisms. An
audit record in ATNA is a record of actions performed by
users on protected health information. This action can be cre-
ation, deletion, modification, query or view. An audit record
is created by IHE actors when an IHE auditable event occurs.
Auditable events are attached either to a technical context, or
to patient data access. Most of these events have been iden-
tified considering the field of radiology.

IHE defines several audit record message formats and an IHE
actor can use one or more formats, all of them use XML en-
coding and are defined by XML schema. There are two main
types of format: 1) the IHE Audit Message Format, which is
a combination of several standards (e.g. DICOM [11], IHE
extensions) and which also extends the basic vocabulary pro-
vided by RFC-3881 [12] and 2) the IHE Provisional Audit
Message Format, which is a provisional XML schema of au-
dit record contents and is generated by the IHE radiology
actors. The provisional format is less flexible than the IHE
Audit Trail Format, which is the preferred format, but it is
suitable for reporting in radiology and other diagnostic and
treatment activities. It can also be converted into an equiv-
alent IHE Audit Trail Format to reduce the burden on audit
repositories.

B. OrBAC model

The purpose of a security model is to restrict an action on
some objects to authorized subjects only, by defining security
rules. OrBAC is one of these models. It is expressive enough
to handle different and complex security requirements like
those related to the healthcare domain. Specifically, this
model is context aware, meaning that it allows us to define
fine grained, dynamic and flexible security policies. More-
over, this model can potentially cooperate with other security
models to allow interoperability as well as to allow natively
some specific administration features like delegation. The
OrBAC model (and its refinements like O20 [13] for inter-
operability and AdorBAC [14] for administration) is the cho-
sen model for policy specification in our framework, since it
meets our requirements.

As said before, the concept of organization is central in Or-
BAC. Instead of defining security rules that directly apply
to subject, action and object, access control is defined at the
“Organizational” level. For this purpose, subject, action and
object are respectively abstracted into role, activity and view
in the appropriate organization. Each organization can then
define security rules that specify that some roles are permit-
ted, prohibited or obliged to carry out particular activities on

391

particular views. Security rules do not apply statically but
dynamically, as they may depend on contextual conditions.
For this purpose, the concept of context is explicitly intro-
duced. OrBAC defines four predicates:

e empower(org,s,r). in organization org subject s is em-
powered in role r.

e consider(org,a,a): in organization org action o imple-
ments the activity a.

e use(org,o0,v): in organization org object o is used in view
V.

e hold(org,s,a,0,c): in organization org, context c is true
between subject s, action « and object o.

Abstract security rules in OrBAC are modelled as a predicate
with the five aforementioned parameters:
security-policy-type(org, role, activity, view, context) where
security policy type belongs to {permission, prohibition,
obligation, dispensation}

For instance, the organizational security rule: permis-
sion(hospital CHU, Dr.Helia, consult, Alice_medical_record,
emergency) means that, in organization CHU, Dr. Helia is
permitted to consult Alice’s medical record in the context of
emergency.

Concrete permissions, prohibitions, obligations or dis-
pensations, that apply to triples (subject,action, object)
are modeled using the predicate concrete-security-policy-
type(subject,action, object) and logically derived from orga-
nizational security rules. The general derivation rule is de-
fined as follows:

security-policy-type(Org, R, A, V,C) A

empower(Org, Subject, R) A

consider(Org, Action, A) A

use(Org, Object, V') A

hold(Org, Subject, Action, Object, C)

— concrete-security-type(Subject, Action, Object)
where concrete-security-type belongs to {Is-permitted,
Is-prohibited, Is-obliged, Is-dispensated}.

Typically, the parameters of these concrete rules correspond
to a kind of information that we can find in a log records.
Other useful features are also defined in the OrBAC model,
such as separation constraints and hierarchy of roles, views,
activities and contexts (interested readers can refer to [4] for
more details).

In the following section, our approach demonstrates how
ATNA audit records can be reformulated or restructured
making use of OrBAC predicates. The objective is to distin-
guish and extract OrBAC elements from ATNA event scenar-
ios. Having a formal log structure based on a policy model
facilitates checking the restructured log with policy rules, as
well as improving the effectiveness of the analyzing process
that detects non-compliant behavior (improper creation, ac-
cess, modification and deletion of PHI).

III. Our proposal

The core idea of our approach is to structure the logs in order
to bring them close to the security policy’s relevant concepts,
without modifying either the way the logs are generated or

392

their format. In this way, the violation detection process
comes down to a mere verification. Thus, our a posteriori
access and usage control framework (APAUC) requires three
components: a log engine, an analyzing engine and an ac-
countability/sanction module (see Figure 1).

@yslog-Oriented A\
Format Log

Log Filter

ATNA-Oriented

Log Filter
Format Log

Security Policy Decision

Module

Violations

Policy-Oriented
Log Processor
Analysis Engine

S ———

Log Filtering Engine Accountabilities/Sanctions Module

Figure. 1: APAUC Framework

This framework depicts the four steps of the APAUC process.
The first step is conducted by the “Log Filtering Engine”.
The objective is first to obtain logs from various Information
Systems (e.g. hospital’s IS, analytical laboratory’s IS) which
collaborate, contain and exchange data that must be protected
(e.g. patient record). Each of these systems may use special
log format (syslog, ATNA, Common Logfile Format, etc.).
For this reason, log record formats are not always similar.
Moreover, they are independent of the security policies of
the associated IS. In fact, elements that must be generated in
the logs are configured by the administrator (e.g. time, date,
IP, etc.). They are generally based on the administrator’s ex-
pertise and on what appears useful to be logged for him.
Then, these logs are filtered to extract triples
(subject_i,action_i,object_i), their associated rele-
vant events, states and metadata (IP of the host used by
subject_i to perform action_i, timestamp of action_i,
backup of the system performed before subject_i performs
action_ on object_i if any, session number, and so on).
The result of the log filtering must ease the construction of
workflows or system’s history related to some subject_t,
action_i or object_i from some specified point to another.
The second step consists in rewriting the filtered logs ob-
tained during the first step in a format compatible with the
policy model implemented in the analysis engine. This
policy-aware reconciliation of log records facilitates viola-
tions detection. During this step, we perform an abstraction
process of the logged elementary entities, starting with the
triples (subject_i, action_i,object_i). The ultimate goal is
to meet the key security organizational concepts of the cho-
sen access and usage control model. For instance, if we
consider the case of the RBAC model with a given set of
metadata like a session number, a date and a logged action
of subject_i, the process will retrieve all the roles that have
been assigned to this subject in these circumstances. This is
handled by the Policy-Oriented Log Processor.

In the third step, we trigger a compliance verification process
of events, actions and transactions that occurred and that have

Azkiaet al.

been logged. For instance, for a logged action a_¢ performed
by a subject s_¢ during some session, the process verifies that
there exists an abstract security rule which authorizes some
role R_i to do some activity Ac_i where s_i was assigned to
R_i and a_i implements Ac_i. If it is not the case, APAUC
raises a violation alert.

Finally, in the fourth step, the Accountability/Sanction mod-
ule is used to qualify the raised violations, proving or dis-
carding them, based on particular contexts. Norms like
HIPAA (Health Insurance Portability and Accountability Act
of 1996, issued by the U.S. Department HHS) can be used
as input to assist this qualification task. If the violation
is proved, responsibilities and appropriate penalties, if any,
must be specified. When the violation has not been carried
out by a user, and so discarded while an external problem has
been raised (e.g. wrong medicine prescription), the security
policy and the protection mechanisms used to deploy it must
be checked (external attack, viruses, policy inconsistency).

A. Policy-Aware Restructuring of IHE-ATNA Logs

As our approach is applied to healthcare systems, we use
IHE-ATNA profile for logging format. The reformatting pro-
cedure maps the relevant structures and contents of these
standards to organizational security relevant concepts of the
selected security model, OrBAC in our case. Here, we use
The Radiology Audit Trail Option defended in [15] which
details the required audit event for each IHE Radiology trans-
action and IHE Radiology actors. This option deals largely
with the details of the Record Audit Event transaction in the
IHE ITI Technical Framework. This later is used by the all
IHE actors that support the Audit Trail and Node Authen-
tication Integration Profile to create an audit record and to
communicate with the Audit Record Repository actors.
Some trigger events defined in ATNA are not applicable to
Radiology actors and transactions while they are applicable
for the others. So we consider the common trigger events
in our study. Here, We choose IHE ITI technical frame-
work supplement 2004-2005 as reference. This framework
describes the "IHE Provisional Audit Message format”. It
contains two structural elements: ’auditable events” and “au-
dit record elements” which correspond to trigger events, and
audit record objects respectively. IHEYr4 is presented in this
version as a complete audit record payload (see figure 2).
IHEYr4 is a triple composed of the original host, the event
occurrence time and a fixed number of auditable event types
with related elements details. Some of these auditable events
are not related to an IHE transaction and describe technical
context (e.g Actor Start Stop) and the others are THE trans-
action related and describe patient information (e.g. Patient
Record Event).

In each transaction scenario there are some relevant actors.
For each actor, we verify if it depends on some system’s
users. These actors pertain to one of the following categories:
1) User dependent, 2) User semi-dependent and 3) User inde-
pendent. The reason of defining these categories is to detect
and fix properly responsibilities within scenarios. We present
them below:

« Actors depending on users’ actions, like “Order placer”
and “Order filler”. These actors cannot act or interact
without human intervention. Transactions related to this

A Posteriori Access and Usage Control Policy in Healthcare Environment

ActorConfig [+]

ACTor STaStop &)

Auditloglised [+

—| BeginStoringnstance s E'r]

—| D OMInstancesDeleted E't]

DHcormieer

=

a

2

1
!HE
"2 N R

H

ar |3
i c
]

2

1

InstancesStored

HetworkEmtry [+]
OrderPecord [

PatiemtPRecord [+]

SecurityAlert]

2
g
[:]
2
3
z
S
[1]
4 g
a
oty

—|_ UserAvthenticated

Tinve Stanp

Figure. 2: IHEYr4 Audit Record

kind of actors must be validated by some system’s user.
For example, “Placer Order Management” transaction
which is used by the “Order Placer” to place a new or-
der or cancel an order with the “Order Filler”, must be
validated by an operator [16].

o Actors depending on the system users only at the be-
ginning or the end of each transaction. An example
of this category is “Acquisition Modality” actor. In
the “Modality Images Stored” transaction, the “Acquisi-
tion Modality” sends the acquired images to the “Image
Archive” automatically, but the start or shut down of the
“Acquisition Modality” is triggered by a user[16].

« Actors which have not any explicit dependency on the
system’s users for performing a transaction. However,
a user can intervene after the transaction execution, by
sending a retrieve request for instance. Example of this
category of actors is viewing a medical image on “Im-
age Display”. Images are sent from “Image Archive” to
“Image Display” automatically. It is used to view im-
age objects. But the user can also request and retrieve
images from an “Image Archive” via “Image Display”
[16].

Now, to restructure the audit records according to the policy
model security concepts. We first have to consider a deriva-
tion and abstraction procedure for each auditable event type.
Then, for each corresponding type of audit message, the pro-
cedure analyzes and extracts elements according to the Or-
BAC predicates (Organization, Role, Activities, Views and
Contexts). In our general algorithm, we assume the “Mes-

393

EAppﬁcationAction

ActorStartStop [E

RemoteNode [

Figure. 3: ActorStartStop

sage” as input data, the “Mapping function” as instruction
and OrBAC parameters as output data, where:

Message: is a triple <Auditable Event, Host, TimeStamp >
Map: is a mapping function between auditable event and its
security policy concepts extraction algorithm.

Let event be the Auditable Event of the given message
and Extract-algorithm be the corresponding concrete security
concepts extraction algorithm, then OrBAC elements are the
outputs of the General algorithm (depicted in a pseudocode
hereafter).

Algorithm 1 General algorithm

Require: Map<Auditable Event, Extract-algorithm>
input: message (auditable event, host, timeStamp)
event: Auditable Event <— message.getEvent()
algo: Extract-algorithm <— Map.get(event)
output : OrBAC elements = algo(message)

For instance, let us consider the ActorStartStop audit record
(see figure 3) which is the second event type in IHEYr4. The
trigger event of this audit event is not transaction based be-
cause ActorStartStop is an application activity. This record
is generated at the startup or shutdown of any application or
actor and it has three elements:

o ActorName: is an arbitrary name which need be unique
on the host. The combination of host and ActorName
may be used to identify specific hardware, software, or
usage.

« ApplicationAction: describes the running status of an
application or actor for the event ActorStartStop. And
its valid values are Start or Stop.

o User: identifies a user that performs activities which
generate audit records. The user identification is either
a username for LocalUser or, if a remote machine acts
as a user, it is the RemoteNode identification.

As we see, all the elements needed for extracting OrBAC
predicates explicitly appear in audit message. We can con-
sider the “System User” as the subject of the scenario, “Ap-
plicationAction” as the scenario’s action on the object “Ac-
torName”. Temporal and spatial contexts related to this audit
message can also be derived. Algorithm 2 below called algo-
ACTSS extracts the OrBAC elements from the log message
related to ActorStartStop event.

394

Algorithm 2 algo-ACTSS

Require: message (ActorStartStop, host, timestamp)
Subject <— value of ActorStartStop.User
Action < value of ActorStartStop.ApplicationAction
Object < value of ActorStartStop.ActorName
Context < type of ActorStartStop.User(Local,Remote)
& value of timestamp
return (subject,action,object,context)

R]

= ObjectAction

DICOMInstancesUsed E]J-@EF
T

Figure. 4: DICOMInstancesUsed

As another example, let us consider the DICOMInstance-
sUsed event (see figure 4) which is the 6th event type in
IHEYr4. This audit record is generated whenever locally
stored information are created, modified, or accessed. This
audit record contains eight elements which some of them are
optional in audit message.

o ObjectAction: describes the action performed on an
imaging object. The valid values are Create, Modify,
Access and Delete.

e Accession Number: a string which presents a DICOM
accession number.

o SUID (Study Unique IDentifier): is a single identifica-
tion number which identifies a whole examination, in
time and place. The used objects are always identified
by its SUID.

« Patient: a text that describes a patient.

o User: identifies a user who performs activities that gen-
erate audit records.

o CUID (Class Unique IDentifier): identifies the type of
service for which the image is intended.

o Number of instance: it should be unique inside the spe-
cific series (identified by the Series Instance UID).

« MPPSUID (Modality Performed Procedure Step
Unique IDentifier): it is used for sending all study
information such as acquisition information, patient
details and image information, to the radiology server
upon completion of the examination.

Azkiaet al.

In this event, contrarily to the ActorStartStop event, ex-
tracting the OrBAC elements is not straightforward. It
contains “ObjectAction” which corresponds to the action
value,“Patient” which corresponds to object values. But to
extract the subject value, the actor name must be fixed. That
is because for each auditable event there is one corresponding
trigger event, but each trigger event might be used in differ-
ent transactions (as it is the case in the radiology workflow
for instance)[17]. In this case, one way to help the subject
value extraction process is to use the sequence number of
the transaction which is mapped to the related actor. So, we
consider a stack of transaction/actor value pairs for the con-
cerned trigger event and use it as an input for the algorithm
extracting the actor name. This algorithm is defined as be-
low:

Algorithm 3 GetActorName
Require: Map< Auditable Event, Trigger Event>
input: auditable event
let t be a trigger event corresponding to auditable event on
the given map
let St be a stack of transaction/actor pairs of t, then
X <=St.pop
output: X.actorname

According to the General algorithm and GetActorName
function, the DICOMInstancesUsed OrBAC elements ex-
traction algorithm, called algo-DIIUsed, is defined as below:

Algorithm 4 algo-DIIUsed

Require: message(DICOMInstancesUsed, host, timestamp)
Subject <— getactorname(auditable event)
Action <« value of DICOMInstancesUsed.ObjectAction
Object < value of DICOMInstancesUsed.Patient
Context <—
typeOfDICOMInstancesUsed.User(Local,Remote)
& value of timestamp
return (subject,action,object,context)

Afterwards, once the extraction and mapping procedure is
achieved, we trigger the abstraction process using, in that
case, the logged administration actions, principally: role
assignment, activity assignment and view assignment ac-
tions. Actually, the matter is to retrieve empower(org,s,r),
consider(org,a,a) and use(org,0,v) seen in section II-B. By
doing so, we obtain an abstract version of the logs where, in-
stead of a record log specifying, for instance, “Helia modifies
PHO10 on Wednesday 30th august 2009 ”, we retrieve its ab-
straction version which specify; a doctor (his role) performs
an updating (the activity implemented by the modifying ac-
tion) of prescription (the view object PHO10 belongs to) and
the doctor was on call when performing the updating (which
is the active context when the doctor performs the updating
activity). The analysis process then has to check essentially,
but not only, if there exists such a permission.

B. Analysis Process Activation

The analysis process to detect violations may be activated by
a temporal or a non temporal event. If the activating event

A Posteriori Access and Usage Control Policy in Healthcare Environment

is temporal, analysis is triggered every day, week, month,
etc. The security administrator fixes such periodicity. In this
case, the scope of investigation is wide and the analysis must
consider all the logged events and actions since the last audit.
This is closer to an analysis and risk assessment than an a
posteriori access and usage control as we have in mind; the
philosophy is different, though we can reach the objective.
Examples of non-temporal events include: complaint, medi-
cal error, medicine poisoning, deletion of a patient’s record,
and so on. In this case, the analysis investigates only the
logs related to a specific subject, action or object concerned
by the activating event. As the healthcare staff is composed
of trusted subjects, the analysis is really performed either to
give evidence that 1) the concerned subject has not violated
the policy; or 2) he or she did violate the policy but there are
reasons making this violation null and void, so he or she is
accountable for his action but he or she is not sanctionable; or
3) he or she did violate the policy but there are no mitigating
circumstances and in this case he or she is both accountable
and sanctionable.

IV. Related Work

For a long time, and it is still mostly the case, computer sys-
tems used logs to restore databases and file systems to con-
sistent states after crashes. They also used them for secu-
rity purposes, and the auditing of these logs has been used
to enforce security since 1980. Providing a policy language
whereby an auditor may prove that an obligation has been
fulfilled by analyzing a log of actions has been proposed by
Corin et al [5] and Cederquist et al[6]. In these works, a pol-
icy language semantics, a logging mechanism and an audit
procedure were defined. In [5], the authors went beyond sug-
gesting a global framework, essentially developing the core
notions of data and agent accountability. In [6], policy lan-
guage was extended to allow using variables and quantifiers.
This makes it possible to define a fundamental rule that gives
the ability to refine policies. Using the same principle, Ced-
erquist et al[18] presented a distributed framework that uses
an a posteriori auditing approach. For auditing, they intro-
duce three functions, namely observability, conclusions and
proof obligations. They also provide implementation of the
proof checker and a proof finder in the Twelf logical frame-
work. The former allowing the auditor to check the justi-
fication given by agents while the latter allowing agents to
justify an action they have performed to answer the auditor’s
request. Dekker et al [19] implemented a posteriori access
control in the healthcare domain. They outlined the full ar-
chitecture needed for audit-based access control of electronic
healthcare record systems and discussed the advantages and
limitations of this approach. Etalle et al [20] presented an
approach, similar to that of Cederquist et al for a posteri-
ori compliance based control. They combine logic and trust
management language. This approach is less specific with
regard to the expressive power of the policy rules, but it is
more precise with regard to how the policies appear in the
system, namely as sticky policies attached to the data items.
Intrusion detection that focuses on anomalous behavior has
also driven research in auditing and logging. More often it is
mistaken for a posteriori access and usage control. Though
the general objective is the same, the difference is essentially

395

due to the following: 1) the environment where the later is
deployed is trustworthy and generally reliable, and 2) the ob-
jective of the former is to stop attacks whereas the objective
of the latter is rather to gather evidence and avoid sanctions.
Our work is not intrusion detection-oriented, as our objective
is not to stop ongoing attacks; we consider trustworthy envi-
ronments where a posteriori control makes sense and where
the notion of attack is almost asemantic. Contrary to the
aforementioned works, 1) our main concern is to rely on a
security policy model, flexible and expressive enough to al-
low us to manage different security requirements, like those
encountered in the healthcare domain; 2) this model is also
human-interpreted, so the detected violations and evidence
are readable; and 3) our approach is not intrusive, in that it
does not introduce any constraints regarding subjects con-
cerned by the a posteriori control, so they do not have to log
evidence themselves, and we do not impose any log format.

V. Conclusion

In this paper, we present a framework and processes to en-
force and manage a posteriori access and usage control.
Contrary to previous work that mainly focuses on security
language, our security control process is based on a contex-
tual security model having an appropriate level of abstrac-
tion. Thus, evidence of violation or not is human-interpreted.
This is an important point, as performing a posteriori secu-
rity control in a trustworthy environment targets essentially
the organizational system, which will hopefully have a posi-
tive impact on the information system regarding security en-
forcement. The significance of this paper lies in its ability to
converge logging data and policy structural concepts. This
eases the detection violation process. We were careful not
to introduce any constraints due to logs’ format as on the
manner they are generated in order to satisfy the principle
of compliancy attached to the a posteriori access and usage
control philosophy. The deployment of our solution is on-
going in the information system of the CHU of BREST, a
French university hospital in Brittany.

Acknowledgments

This work presented in this paper is supported by a grant
from The Britany Region, France, and by funding from
SELKIS project.

References

[1] Department of Defense Trusted Computer System Eval-
uation Criteria, CSC-STD-011-83, Fort Meade, MD Au-
gust 1983.

[2] D.Bell and L. LaPadula. Secure Computer System: Uni-
fied Exposition and Multics Interpretation, MITRE, Bed-
ford, Mass, 1975.

[3] D. Ferraiolo and R. Kuhn. Role-Based Access Con-
trols, 15th NIST-NCSC National Computer Security
Conf, Baltimore, MD, 1992.

396

[4] F. Cuppens and N. Cuppens-Boulahia. Modeling contex-
tual security policies, In International Journal of Infor-
mation Security, 7(4): 285-305, 2008.

[5]1 R. Corin, S. Etalle, J. den Hartog, G. Lenzini and
I. Staicu. A logic for auditing accountability in decen-
tralized systems, Vol 173, Springer, pp. 187-202, Berlin
2004.

[6] J.G. Cederquist, R. Corin, M.A.C. Dekker, S. Etalle,
J. den Hartog. An audit logic for accountability, IEEE
Computer Society, pp. 34-43, 2005.

[7]1 C. Lonvick. The bsd syslog protocol, RFC 3164, August
2001.

[8] D. New and M. Rose. Reliable delivery for syslog, RFC
3195, November 2001.

[9] Integrating the Healthcare Enterprise, IHE IT Infrastruc-
ture Technical Framework Supplement 2004-2005 Audit
Trail and Node Authentication Profile (ATNA), August
2004.

[10] Integrating the Healthcare Enterprise, IHE IT Infras-
tructure Technical Framework Volume I (ITI TF-1) In-
tegration Profiles, August 2009.

[11] DICOM Standards Committee, Working Group 14,
Digital Imaging and Communications in Medicine (DI-
COM) Supplement 95: Audit Trail Messages, Virginia
USA, June 2004.

[12] G. Marshall. Security Audit and Access Accountability
Message XML, RFC 3881, September 2004.

[13] F. Cuppens, N. Cuppens-Boulahia, C. Coma. O20: Vir-
tual Private Organizations to Manage Security Policy
Interoperability, ICISS, pp. 101-115, 17-21 December
2006.

[14] F. Cuppens, A. Miege. Administration model for
Or-BAC, Computer Systems Science and Engineering
(CSSE04), 19(3), May 2004.

[15] Integrating the Healthcare Enterprise, IHE Radiology
Technical Framework Volume I (RAD TF-1) Integration
Profiles, June 2008.

[16] Integrating the Healthcare Enterprise, IHE Radiology
Technical Framework Volume II (RAD TF-2) Integration
Profiles, June 2008.

[17] Integrating the Healthcare Enterprise, IHE Radiology
Technical Framework Volume III (RAD TF-3) Integra-
tion Profiles, June 2008.

[18] J.G. Cederquist, R. Corin, M.A.C. Dekker, S. Etalle,
J. den Hartog. The audit logic-Policy Compliance in
Distributed Systems, Technical Report TR-CTIT-06-33,
2006.

[19] M.A.C Dekker and S. Etalle. Audit-based access con-
trol for electronic health records, Electronic Notes in
Theoretical Computer Science, 168:221-236, 2007.

Azkiaet al.

[20] S. Etalle, and W. H. Winsborough. A posteriori compli-
ance control, Proceedings of the 12th ACM symposium
on Access control models and technologies, pp. 11-20,
New York, USA, 2007.

[21] TL. Tsai, ML. Pan and DM. Liou. Implementation of an
IHE ATNA-Based Electronic Health Record System, In-
stitute of Biomedical Informatics, National Yang-Ming
University.

Author Biographies

Hanieh Azkia is currently Phd student in information system
security at TELECOM Bretagne LUSSI department since
November 2009. She received an engineering degree in soft-
ware engineering and master degrees in information system
security. Her research domain is the access control a pos-
teriori. She prepares her thesis under supervision of Prof.
Frédéric Cuppens and Prof. Nora Cuppens.

Nora Cuppens-Boulahia is a teacher/researcher at the
TELECOM Bretagne LUSSI department. She holds an engi-
neering degree in computer science and a PhD from SupAero
and an HDR from University Rennes 1. Her research inter-
est includes formalization of security properties and policies,
cryptographic protocol analysis, formal validation of secu-
rity properties and thread and reaction risk assessment. She
has published more than 60 technical papers in refereed jour-
nals and conference proceedings. She has been member of
several international program committees in information se-
curity system domain and the Programme Committee Chair
of Setop 2008, Setop2009, SAR-SSI 2008, CRiSIS 2010 and
the co-general chair of ESORICS 2009. She is the French
representative of IFIP TC11 “Information Security” and she
is co-responsible of the information system security axis of
SEE.

Frédéric Cuppens is a full professor at the Telecom Bre-
tagne LUSSI department. He holds an engineering degree in
computer science, a PhD and an HDR. He has been work-
ing for more 20 years on various topics of computer secu-
rity including definition of formal models of security poli-
cies, access control to network and information systems, in-
trusion detection, reaction and counter-measures, and for-
mal techniques to refine security policies and prove security
properties. He has published more than 150 technical pa-
pers in refereed journals and conference proceedings. He
served on several conference program committees and was
the Programme Committee Chair of ESORICS 2000, IFIP
SEC 2004, of SARSSI 2006 and general chair of ESORICS
2009.

Gouenou Coatrieux received the PhD degree in signal
processing and telecommunication from the University of
Rennes I, Rennes, France, in collaboration with the Ecole
Nationale Suprieure des Tlcommunications, Paris, France, in
2002. His PhD focused on watermarking in medical imag-
ing. He is currently an Associate Professor in the Infor-
mation and Image Processing Department, Institut TELE-
COMTELECOM Bretagne, Brest, France, and his research is

A Posteriori Access and Usage Control Policy in Healthcare Environment

conducted in the LaTIM Laboratory, INSERM U650, Brest.
His primary research interests concern medical information
system security, watermarking, electronic patient records,
and healthcare knowledge management.

397

