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Abstract:    The use of timestamps is fundamental to the 
management of time varying information and arguably it may 
be even more important for the synchronization of the virtual 
machine (VM) log data sets. In the context of managing (VM)
logs for transactional database activity, the consistency of its
state can be evaluated by these timestamps. Temporal data 
models claim to be point based whereas other temporal models 
are interval based. Hence the premise for synchronization as a 
component of a time event has become critical to a distributed 
hybrid compute cloud. The contributions of this paper apply
the use of formal temporal mechanisms to appreciate the 
behaviour of our case study deployment. In our study we design 
a software application called a global virtual machine log 
auditor. We use the auditor to synchronize virtual server log 
events across a suite of non native VM environments in distinct 
time-zones. This work is useful in managing cloud data 
migration and synchronization across these time zones. Our 
implementation uses a snapshot equivalent approach to monitor 
the synchronized log events on these VMs. In this context the 
paper precisely defines the notions of point based and interval
based temporal data models as the application of the case 
scenario, thus providing a new and formal basis for 
characterizing such models within the cloud computing 
environment. This paper’s motivation is an adoption of earlier
work done [1, 4 15, 21].
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I.   Introduction

Temporal data models include timestamp attributes in their 
relation schemas and give special semantics to the values of 
these attributes in their query languages. Virtually all data 
models intended for practical use employ some form of 
intervals for their timestamp values. Unfortunately, It is 
generally impractical to record individually all the time 
points for a distributed virtual machine database. For the 
purposes of our ongoing work [1] we manage and archive
system event logs over periodic intervals as a function of the
timestamps.

Intervals may simply be employed for reasons of 
practicality, i.e. as syntactical shorthands for time points

[12]. Thus, referring to a data model as interval-based simply 
if it employs interval timestamps bears little real 
significance. It says little about the qualities of the data 
model. Rather for our synchronized VM log environment, 
the notion of point and interval based data model must be 
defined on a semantic level. The questions then what are  
the real defining properties of point and interval-based data 
models as a function of the synchronized temporal data
model for the VM environment. This paper provides an 
answer to this question.  

To get a real feel for the range of possible semantics of
time data models, it is instructive to consider a simple
example adopted from Bohlen et. al. [21]. We assume that 
the two tuple time-stamped relations r1 and r2, below are 
given and consider possible definitions of the temporal 
difference of these two relations, r1 –

T   r2. 

r1  :  
A TS 

a [1,10]

a [11,20]

a [21,30] 

r2  :   

A TS
a [5,15]

When we want to construct a difference operator between 
both relations, there are four possible definitions-: R1  

through to  R4.

R1  :    
A TS 
a [1,4]
a [16,30]
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R2  :  
A TS

a [1,10]

a [11,20]

a [21,30]

R3  :   

A TS

a [21,30]

   

R4  :  

A TS 
a [1,4]
a [16,20]
a [21,30]

The  first  result, R1, contains  the times  associated with 
value  a  in  r1  that  are  not associated with  value  a  in  r2.  
This  result  is  consistent  with  the  perception  that  
intervals are  abbreviations for  time  points,  and  nothing  
more. Thus, the first definition has a point based feel to it.  

The first result may also be characterized as being 
coalesced. In  coalescing, value  equivalent  tuples (tuples  
with identical non  temporal  attribute  values)  with  adjacent  
or  overlapping  intervals are  replaced  by  a  single tuple  
with  the  same  non temporal attribute  values and  an  
interval that  is  the  union  of  the  intervals of  the  original  
tuples. 

   In contrast, result R2 is far from being point based in 
nature.  This result contains all tuples in r1 not in r2. This 
definition of difference simply considers the intervals atomic
values. Thus, it  may be said to “respect”  the  actual 
intervals given  to  the  tallest  may  even  be  questioned if  
the  operator is  temporal  at  all  it  is  simply  the  standard  
set  theoretical  difference operator.  Result  R3  returns tuples  
from r1  with  intervals  that  do  not  overlap with  intervals 
of  tuples  in  r2.  The utility of a temporal difference operator
of this kind appears questionable.  

The  last  result  is  similar  to  the  first  one: it  also  
contains the  times  associated with value  a  in  r1  that  are  
not associated  with  value  a  in  r2 . Put precisely, R1 and  
R4  are  snapshot  equivalent [12] . The difference is that the
second tuple in R1  is “represented” by two tuples in R4. In 
other words R1 is the coalesced version of R4. The idea  
behind  this  definition is  to  be  point-based while  also  
trying  to  respect  the  intervals  associated with  the  tuples  
in  the  argument  relations.   

It is our contention that R1 and R4 are results of point-
based operations and that R2 and R4 are results of interval
based operations. The operation yielding result R3 is thus 
neither point based nor interval based.    

This paper represents a  first look  at  how  we  can use  
point-based  and  interval-based data models to formally 
represent timestamp associations for a synchronized  VM 
environment. We seek to make such evaluations by applying 

these definitions to the occurrence of the VM System log 
events. Other than for traditional temporal databases [21], to 
the knowledge of the authors, no papers have previously 
been devoted to address the issues here as a part of the cloud 
computing environment. In our virtual machine compute 
cloud the system logs are relational database tables and form
apart of the VM active database environment.    

As more enterprises seek to capitalize on the economies of 
scale and efficiencies of virtual machine compute clouds, 
there will undoubtedly be an increase in malicious activity as 
enterprising people recognize the greater opportunities for
the exploitation of the security risks inherent in trusting
virtual data centres to third party providers that one has no 
physical jurisdiction over. This security challenge overlaps 
with the fact that the forensics community also shares its
own concerns around auditing, searching, and providing 
traceable digital footprint analysis for victims of miscreant 
behaviour within this abstract domain. This is particularly 
true in that a VM object within a data centre may be subject 
to several eventualities through network distribution before
reaching its final user(s).   

On the premise of these eventualities, our work introduces 
the need to look at log event behaviour as an association of 
its timestamp information in order to enable effective 
auditing.

Snodgrass [12] advocates that “A temporal  query  
language should  have a canonical  model, in which  relations 
are  identical if and only if all  their  snapshots are  
identical”. Chomicki states that “It is important to see that 
the data model of TQuel is point-based, not interval-based. 
Intervals serve as a representational device.  The  truth  value 
of facts are associated with points, not intervals” [5]  and that 
a model  is  point-based if  the  facts  are  associated with  
single time points, and interval-based if they  are  associated 
with intervals (represented as pairs of points) [6, 18]. In this
paper we establish the correspondence between the point-
based and interval-based views as adopted from   traditional 
temporal database theory and the corresponding first order
temporal languages. This correspondence shows that all first 
order queries can be conveniently asked using point-based 
query language and then mechanically translated to an 
interval based query language. [17].  

The relevant literature reveals that different researchers
perceive the notions of point-based and interval-based data 
models quite differently as it relates to the creation of 
timestamp associations.  In particular, the notion of interval-
based data model remains to be given a formal definition for 
the synchronized time bound virtual machine.  

  In the next section we further motivate the topic and 
explore the problem space.  Section III introduces the notions 
of VM temporal data models and time domains, providing 
the basis for formally defining the notions of point-based and 
interval-based temporal data models in Section IV and V.
Section VI looks at an evaluative case study discussion, and 
Section VII provides the conclusion and future work.

II.   Motivation and Problem Space    
     

When asking queries on a temporal database, the results may 
vary depending on whether or not argument relations are 
coalesced. For example, this is the case for selections with 
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predicates that involve the arguments’ timestamps. To see 
this, consider two relations in Table 1. The relation at the top 
is uncoalesced whereas the one at the bottom is the 
corresponding coalesced relation. The column value TS 
denotes the timestamp values.  

Adopted from Bohlen et. al. [4, 21] we consider the 
uncoalesced Employment relation examples as an ideal set of 
baseline reference cases for understanding our own work on 
VM System Event Log relations. The Employment relation 
models job contracts in a company with temporary positions 
only.  The   query    Name, start (TS) Employment    returns the
start time of an interval.   If  the  exact same query  is  
evaluated  over  the  coalesced instance, only  two  tuples  
are  returned.  

The  example  illustrates that there exists queries than  can  
be  asked  over  the  uncoalesced instances,  but not over  the 
coalesced ones.  For example, the coalesced  instance  of   
the  Employment  relation  doesn’t  reveal  that  Lars signed  
two  contracts, let  alone  when  he  signed  the  second  one.   

On  the  other  hand,  it  is  impossible  to  come  up  with  
a  query that  can  be  answered  over  the  coalesced , but  
not  over  the  uncoalesced instance.  The  answer  for this  is  
simply  the fact  that  we  can  derive  the  coalesced  
relation  instance  from  an  uncoalesced  one.  e.g. using a  
regular  SQL  statement. [21].  

  
Employment  
Name  Position  TS  

Lars Programmer  92/01/01,94/12/31
Lars Programmer 95/01/01,96/12/31
Niels Accountant  92/01/01,96/12/31

Employment  
Name  Position  TS 
Lars  Programmer  92/01/01,96/12/31
Niels  Accountant  92/01/01, 96/12/31

Table 1.  Uncoalesced and Corresponding Coalesced 
Relation Instance [21]

These  considerations  indicate  that  a  model  that  is  able  
to  tell  coalesced  and  uncoalesced  relation  instances  apart
(and  in  this  sense is  interval-based) is  in  some  sense  
more  powerful  that  a  model that cannot  tell  them  apart,
i.e. a point-based model. In our  own work  of  synchronizing
the  relational  log  tables  for  a  virtual  machine this  is  a  
critical  concern.  In  the  next  subsection  we  explore  this  
difference  even  further. 

A.  Data   Modelling   

The  relative  expressiveness of  data  models  that  do  or  do  
not  differentiate between  coalesced  and  uncoalesced  
relation  instances  may  also  involve  data  modelling. It 
may be argued that if  the  database  schema  is  designed  
appropriately, it  is  possible  to  answer the  same  queries  
using  a  coalesced  model as  can  be  answered by  an  
uncoalesced model even within the VM log  database.   

For  example,  if  individual  contracts  are  important, 
which  is  not  likely, we can  record  their  unique  numbers 
in  the  Employment  relation, as  shown  in  Table 2.  

Name Position  ContrId TS  
Lars Programmer 1091 [92/01/01,94/12/31]
Lars Programmer 2154 [95/01/01,96/12/31]
Niels Accountant 1095 [92/01/01,96/12/31]

Table 2.  Alternative Modelling of Employment [21]

This  way,  it  may  be  possible  to  “compensate” for  the  
lack of  uncoalesced relations in  a  point-based  data  model.   
It  may  be  argued  that  it  is  quite  natural  that  certain  
queries  cannot  be  answered if  they  were not  anticipated  
when  the  database  was  designed -  this is  true  for  any  
database.   

Equally  introducing  additional  attributes  may  
sometimes  have  subtle  drawbacks not  experienced  if  the  
attributes  could  be  omitted  because  the  data  model 
allowed  uncoalesced relations. For  example, we might  
introduce dependencies (contract  numbers increase  over  
time) or  we  might  not  be  able  to  faithfully  represent  our  
mini-world (“new  follow up  contracts  with  the  same  
contract identifier ) .  

B.  Query Processing Optimization   

The  point  versus  interval  basis  of  a  query  language  also  
affects  query  processing and  query  optimization.   For  an  
interval-based  language, care  has  to  be  taken that  
processing  and  optimization strategies  respect  the  
interval-based  semantics, which  can  be  quite  complex.  
This severely restricts the possibilities to manipulate and 
transform intervals. In  contrast, specific  timestamps may  
be modified (as long  as  snapshot equivalence  is  preserved) 
in  a  point-based  language, allowing  the  database  system 
a  choice  of  timestamps among  several  alternatives. This  
indicates  that  an  interval-based language  leaves  less  
possibilities for  query  optimization and,  thus, efficient 
evaluation strategies.   

In  favour  of  an  interval-based  language, it  can  be  
said that  a point-based database system must  guarantee  that  
the result  of  queries  do  not  depend  on  a specific choice 
of  timestamp  values. This  guarantee  is  met  by  
performing  coalescing operations, which  can  be  expensive 
[4]. While it  is  possible  to  sometimes  eliminate coalescing 
during query optimization, there remains situations where  
coalescing  has  to  be  performed [13].   

III. VM Temporal Log Data Models and                
Time Domains    

For a Synchronized data  model as a VM  log compute  
cloud, we should not forget that  these  VMs  must  map  to  
a  physical  machine and  hence  to a physical  data  set of  
structures.  Against this background, we adopt (from [4, 5, 
21]) that our VM relational data model, be a relational data 
Model   = (D, A). This is a relational  composition  of  sets  
of  data  structures, D and  a  set  of  algebraic operations  
defined  on the  set  of  data  structures.  A VM temporal 
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relational data model is  a  relational  data  model that has 
temporal  relations as  the  underlying  data  type, and  whose 
operators are all  temporal.   

A VM log temporal relation includes a VM log temporal 
tuple attribute.  The exact denotation of this attribute is not 
important for this paper, but for simplicity we assume that it 
denotes the synchronized VM log tuple’s valid time i.e. 
when the information recorded by the remaining attributes of 
a tuple is true in the modelled reality.  Synchronized VM log 
tuples of  temporal relations may therefore be put  under  the  
form (x1 ………….xn || ts)  or  as  (x || ts)  when  the number 
of attributes is immaterial.  We term x1 ………….xn the non 
temporal (or explicit) attribute values, and ts is the tuple 
timestamp. A finite set of such relations may be referred to 
as the timestamp representation of a temporal database [2]. 

An  operator  is  temporal iff  it  generates  a  temporal  
relation  when  applied  to  temporal  relations. When  
designing  a  synchronized  VM  temporal  data  model, an  
important  and central  aspect  is  the  choice  of  appropriate  
timestamps of  database  facts. Time points and time 
intervals, defined below; provide the most common choices 
[2, 4, 15]

Definition 1: (VM Time point and VM Time interval 
Domains)
Let Tv be an infinite VM log tuple set.                 
1. Tp  =  (Tv ,  < )   is  a  VM  log time  point  domain  over

Tv    iff   <   defines the total order on  Tv.   Each element
of  Tv   corresponds to  a time point on  Tp    .  

2.  A  time  interval  I  of  Tp   is  any  connected subset  of
Tp  , i.e.   (p1   I     p2   I   p3   Tv    p1    p3  
p2)   p3   I 

3.  Ti  =  (  , C) is  the  VM time interval  domain over  Tp

  iff     is  the set  of  all  time  intervals  of  Tp . Both   Tp  

and  Ti  are time (or temporal) domains over   Tv.  

4.  A timestamp  over  Tp  is  either  a  time  point  or  a  
time interval of  Tp  .    
A  VM  temporal log  relation r  whose  tuples are  all  

timestamped with  either  time points  or  time  intervals of  a  
time point  domain  Tp  represents  a  temporal  relation over  
Tp  . When the timestamps are point-[intervals], r may be
referred to as point - [interval] timestamped (temporal) 
relation over Tp .

If   = ( D,A)  is  a  VM  temporal  log  data  model  such  
that  D  is  a set  of  VM temporal log  relations over  Tp  ,  
then  Tp  is  the  time  point  domain of  M. 

In  general, since time  intervals are  sets  of  VM log time 
points,  it  is  not  always  clear  in  what  sense  the  usage  
of  timestamps  differs  from  the  usage of  points.  To  
exemplify  this, assume  that  the  integers with  the   order  
is  our  VM temporal  log domain.  Then  it  seems more  
than  reasonable  to  claim  that the  relations r1 = {(a ||2), 
(a||3),(a||4) } and  r2 = {(a || [2,4])} have  the  same  
information contents, i.e. that (a) is  valid  at instants 2,3,4, 
and nothing  more. This assumption  is  nonetheless incorrect 
for r2 because intervals in addition to being points also  are  
uniquely  delimited by  start  and  end points, which  may or  
may  not  be  part  of  the  interval. Hence  we  would  
timestamp  a  log tuple such  as (a) with  intervals if  the  end 
points bear some meaning, and use time points as  
timestamps  if  the  notion of  end points  is meaningless.  

Predicates and operations for points and intervals are 
described in almost all definitions of temporal data models 
[13]. Some interval predicates and operators apply just to 
interval data models; their properties would make them 
meaningless in a point-based framework. For  example,  the  
operators  start and end that retrieve the  initial and  final  
instants of  an  interval could  not  be  defined  for  a  point-
based database.  

The point timestamp representation of a temporal database
is infeasible from the storage viewpoint for all but the 
simplest temporal relations, so intervals are used as an 
abbreviation for sets of points for practical reasons. For 
example, relation r1 above may be represented by r2. Whether  
an  interval  is  an  abbreviation  for  a  set of  points  or  not  
depends on  the  operators  of  the  data  model. Only if  the 
point contents of  the  output of  a  temporal operator  remain 
invariant for sets of argument  relations with  the  same point  
contents, it is possible to consider intervals  as  abbreviations 
for  sets  of  points.  We explore this notion of time point 
models below.  

IV. VM Point Based Data Models  

It would be easy to decide whether  or  not  a  data  model is  
point-based or  interval-based if this could always be 
determined by  inspecting the  data  type  of  timestamps 
used. However, syntactic criteria are available only for 
simple point timestamped relations. The major difficulty 
concerns relations involving intervals as timestamps. This  
section  defines  the  notion  of  a  VM  point based log  data  
model.  

   In a point-based  data  model, two  interval time-stamped 
relations that correspond to the  same point timestamped 
relation are  considered equivalent, in  the sense  that  they  
record  the  same  information. The notion of snapshot 
equivalence [7, 9, 21] formalizes this:   

Definition 2: (Snapshot Equivalence) 
Let  Tp  =  (Tv ,  < )   be  a  VM log  time point  domain.  
1.  The time slice operator p   for a VM log time point p
      Tv maps  an  interval timestamped  relation over Tp   to
    a non  temporal one , and  is  defined as 

  p (r) =  r1  iff  
        x (I ((x || I )  r  p I )  (x)  r1  )  

2.  Two VM interval timestamped relations over  Tp ,  r1  and 
     r2   are snapshot equivalent i.e.  r1 =p r2 , iff  

        p ( p T     p (r1 )  =   p (r2 ) ) 

The notion of  a VM  snapshot log equivalence  allows us  
to  characterize operators  that, when  applied  to  snapshot  
equivalent relations, also yields snapshot results [9]. 
Arguably one could contend that such  operators  are  faithful 
to the point based  nature  of  timestamps of  their  argument 
relations, and  we  use  them to  define  these  point-based 
data  models.   
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Definition 3: (Point-based Operator)  
Let  O  be  a  n-ary  operator on  interval  time stamped  
relations ,  and  r1  …………rn )  and (r1

1  ……….r n  
1 )   

Example 1 -   The temporal log intersection natural join
(t) is a binary operator. Two argument tuples with identical
explicit join attribute values contribute to the result if their   
timestamps overlap.  Timestamps  of  result  tuples are  the  
intersections  of  the  timestamps of  argument  tuples.  Thus 
if  r1  = { (a||[2,5]), (a||[7,11] ) } and  r2 =  { (a||[3,9])}  then  
r1 

t r2  = {(a||[3,5]), (a||[7,9] ) }. It  can  be  shown that this  
operator preserves  snapshot  equivalence, hence  it  is  point 
-based.   

Example 2 -  The VM log  coalescing  operator (vlcoal) is  
a unary operator that  merges value equivalent logtuples (i.e. 
VM log-tuples with mutually  identical explicit  attribute  
values) if  the union  of  their  timestamps  is  an  interval.  
The merged log-tuple then has this union as its new 
timestamp. Thus,  if  r1  = { (a||[3,9]), (a||[4,13] ) } then vlcoal 
(r1 ) = (a||[4,13] ). Like  temporal  intersection natural  join, 
this operation is  point-based because  snapshot  equivalent  
arguments  yield snapshot  equivalent  results; for  snapshot 
equivalent  arguments,  the  result  will always be the  exact  
same, which  is a trivial  case of  snapshot equivalence.  With 
the definition above, we are in a position to define point-
based data models.  

Definition 4: (Point-based VM temporal log data model)     
A VM temporal data model   = (D, A) with time point 
domain Tp  is  point-based iff the following  conditions are  
met.   
1. D  is  entirely  composed of  either  point  or  interval
    time-stamped relations  over Tp  , and  
2. The operators of  A  are all  point -based.    

Lemma 1  A  VM  temporal  log  data  model M = (D,A)
is point-based  iff , for  every  operator O of  A. O(r1

…….r n  )  = p O(vlcoal(r1 ) ............ vlcoal(r n ) )  
    where r1 …….r n   are  log  relations  of  D  that  satisfy  the
    preconditions  of  O.   

The  lemma  illustrates  why  the  start  and  end  functions  
mentioned in  the  previous  section cannot  be  defined  in  a 
point-based model by  considering  individual intervals  in  
isolation. The presence of   the VM system event log tuple
(x||[a,b]) in  a point-based relation does not  mean that a is  
the first time point  associated with x, since  the  relation may 
contain other value - equivalent tuples that overlap with  this  
interval. As  a result, the  computation  of  the  above  
functions in a point-based data  model  requires that the  
argument relation first  be  coalesced. The definition of   start 
could then be expressed as follows:   

(x||I) r  (x|| I1)   vlcoal(r)  I  II   start ((x || I), r ) 
=  start(I1 )  

Finally,  in  a  VM Log point-based  data  model, it  holds  
true that  intervals are  nothing  but  abbreviations for sets of 
points. Hence, it is always possible to translate any interval 
time-stamped  relation r into a  corresponding point  time-
stamped relation rp  .  

The following relationship holds between the two 
relations.   

(x ||y)  rp   iff  I(y  I    (x || I ) in  r by y a tuple (x||y) 
for  exactly  each  time point  y  I .   

V.   Interval based VM Log data Models         
  

It is well known that point-based and non point-based 
models are orthogonal. For  example, suppose we assume an 
operator of an interval-based  VM  log  data  model  needs 
not be point-based, but  there  are  operators  of  such  
models that are point-based.  

To define the notion of an interval-based VM  log  data  
model, we distinguish between  the  algebraic  operators  that 
are timestamp Log preserving  and  those  that  are  
timestamp Log transforming. The former operators are 
unproblematic and easily qualify as interval-based. The latter 
operators must satisfy additional properties to qualify for the 
interval-based status.    

Specifically, when intervals are adopted  as  timestamps, 
there  will  normally  be  several  ways  of  time-stamping  
resultant  relations.  In  such  cases, the  argument  interval 
timestamps  should  be preserved  as  best  as  possible.  This  
is  to  suggest  that whenever  an  operation  requires  the  
modification  of  an  argument  interval  timestamp, the  
resulting  interval  should  be  the  one that  maximally  takes  
the  argument  interval into  consideration.  Alternatively,  
this  property could  be  stated as  the  largest possible  
fragments  of  the  argument  interval  timestamps  should  be 
preserved  in the result.  In the next subsection we formalize 
these notions.  

A.  VM log Interval   Based   Requirements   

The  first  step  is  to  define  the  notion  of  the minimum  
requirements  for  an  algebraic VM temporal  operator. 
Informally,  the  minimum  requirements define  the  set  of  
time points  that  the  timestamps  of  the  result  of  a  
temporal  operator  must  include. Explanations follow the 
formal definition.   

Definition 5: (Minimum Requirements) 
Let M = (D,A) be a VM  temporal log data model with a 
time point domain  Tp , where  D  is  the  set  of  interval  
time-stamped relations.  The  minimum  requirements  for  n-
ary  temporal  operator  is  a  formula of  the  form  (r1 

………rn    , x,A) where   

1. The log timestamp  A  associated  with  a  result  tuple
that  satisfies  the  requirements for  the  argument  
relations r1 ……… rn   D  is  a set of (not  necessarily 
connected)  set  of  time points of   Tp  and  

2.  (r1 ………rn    , x,A1)  (r1 ………rn    , x,A2 ))  A1

= A2   

Clearly,  must also include the preconditions for the 
specified operator. From the second condition of the  
definition,  it  follows  that,  for  each  sequence  of  explicit 
attribute  values  of  x  of  the  result,  there  is  one  and  only  
one  associated set  of  instances  of   A, since  the  minimum  
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requirements do not impose any partition on this set  of  
instances (i.e.  defines  a  partial ,  parameterized  function  
fr1  ……………..frn  such  that  fr1  ……………..frn (x)  =  
A). Thus  formula   specifies a  family  of  operators,  in  the  
sense  that  A may  be (usually) split  into  a  list  of  intervals  
in  several  distinct  ways. We use  A  to  emphasize  that  we  
are dealing with  generic sets of  instances, i.e., temporal  
elements , rather  than with  intervals  only.   

   The next step towards  defining interval-based  data  log  
models is to characterize the set of relevant  argument  tuples 
for each  particular result tuple, as defined  by  the  minimum 
requirements  for  an operator.  A set  of  argument  tuples S  
is  relevant  for a  particular  result tuple (x, A) iff  both x and  
A can be  entirely determined  from  S, but  not  from  any  
proper  subset.

  
Definition 6: (Relevant Argument   Tuples) 
Let   M = (D, A) be  a  VM  temporal  log  data  model  with 
a  time  point  domain  Tp    , where  D  is  the  set  of  interval  
time-stamped  relations. Let      denote  the  minimum  
requirements  for  n-ary  VM log temporal  operator  (r1 

………rn  )  be  temporal   relations  of  D,  A  be  a  set  of  
time points of   Tp , and  x  be  a  finite  sequence  of  
attribute  values.  S  is  a  set  of  relevant  argument  tuples 
w.r.t.   for the argument relations r1 ………rn and the  
result  tuple (x,A) i.e. , relevant (x,A,S, , r1 ………rn  ) iff  
( r1 ……rn  x,A )  r1

1   ………r1 
n   (r

1 
1   r1  ....... r1 

n

  rn    S =  Un
i=1   ri 

1    r1
1   ……r1 

n   x, A)   rll
1 

..........rll  n (( rll
1   rl

1    .... rll
n  r1 

n     Un
i=1  ri

ll  S ) 
  (rll

1  ..........r
ll  n  ,  x, A)).   

Note that S does not necessarily correspond to a relation, 
since r1 …….rn may not be union compatible. Also, it is
necessary to require that the result (x, A) satisfy the 
minimum requirements for both the original argument 
relations and their restricted forms because the one does not 
imply the other.  

Example 3 - Lets assume a temporal difference operator. 
Let  the  integers   with the <  order be the underlying time 
point domain , and  D denote the  minimum  requirements  
for  this  operator.  Assume  r1  =  {(a||[2,10])}   and  r2  =  
{(a||[1,4]), (a||[8,11]), (a||[12,17]) , (b||[2,6])}.   If  r1

ll   =  r1
l  

=  r1   ,  r
l

2   = {(a||[1,4]})and  r2
ll =  {(a||[1,4]}, (a||[8,11])} 

then   
     
   D  ( r1 , r2 , (a),, {5,6,7})  
  D  (r1

1 , r1
2 , (a),, {5,6,7,8,9,10}) 

  D  (rll
1, r

ll
2 , (a),, {5,6,7})  

The set  of  relevant argument  tuples  for  the  result  tuple 
is  Sii  =  r ii

1  r ii
2 .  No proper subset of   Sii satisfies the 

minimum requirements.    
  The next example illustrates the set of relevant argument 

tuples is not uniquely defined.    

Example  4 -  The  minimum  requirements  for a 
suggested VM Log temporal  difference  are  given  by the 
formula ,  union compatible (r1, r)    p(I1 ((x|| I1 )  r1 
p  I1  I2 ((x || I2 )  r2  p  I2 ))  p A)  

Assume  r1  =  {(a||[4,8]), (a||[1,6]), (a||[7,10]) } and  r2  =   
{(a||[1,3]), (a||[9,10])}. Then  A =  { 4,5,6,7,8}  satisfies  the  
minimum  requirements  for  temporal  difference for  the  
explicit  attribute (a)  and  the  input  relations  r1  and  r2  . 
Concerning  the  relevant  argument  tuples  of  r1  and  r2    
for (a),  there  are  two  sets  to  satisfy the  definition ,  S1  =  
{ (a||[4,8])}   { }  and  S2  =  {(a||[1,6]),  (a||[7,10]) 
(a||[1,3]) , (a||[9,10])  }. Note  that  r1  r2  does  not  qualify  
as  a  set  of  relevant  argument  tuples, since  there are  sub-
relations  of   r1    and  r2   whose  union  also  satisfies    

A final auxiliary concept concerns  the notion  of  
maximal interval partition which determines the  
decomposition  of   a  set  of  time  points  into  the least  
possible number  of  non overlapping  intervals.   

Definition 7:  (Maximal Interval Partition)
Let A be a (doubly bounded) set of time points.  The 
maximal interval partition for A is a sequence of   intervals  
I1   ………. In   such that  
1.  I1    ……  In   =   A  
2.  Ii     Ij    =   with  ij  ,   1  i   n  ,  1  j   n   and  
3.  Any other interval partition Il 

1 ………. Il 
P for   a

  satisfying the  two  above conditions is  such  that   p  n. 
Using  the  concepts  developed  so  far,  we can  now  define 
the  notion  of  a  VM log interval  based  operator.  

Definition 8: (VM Log Interval based operator)
Let  M  =  (D, A)  be   a  VM temporal log data model with 
time point domain Tp   ,where D is a set  of  log  interval 
timestamped  relations.  Let     denote the minimum 
requirements for a n-ary log temporal operator. A temporal 
operator O  A  that  satisfies    is  log  interval  based iff 
for  any argument  temporal relations  r1  ………rn    D ,  the  
following  holds.  

1.  I ((x|| I )  O(r1 …….rn ) )    (r1 ……………..rn ) ) 
   (r1 ……………..rn , x , Uts (expl =x   O(r1 …….rn ) )))

2. If (a)   (r1 …….rn , x , A) ,  (b)  S  =  UP  i=1    Si , where 
relevant (x, A, Si ,  , r1 …….rn ), for  all  i, 1   i    p , (c)  
(y || I)  S ,  (d)  A   I   and  (e)  I1  ……. Im   correspond 
to  the  maximal interval  partition for  A  I,  then  (x||I1 ) 
…….. (x||Im )   O(r1 …….rn )  .   

The first condition of Definition 8 ensures  that for  each  
group  of  synchronized log tuples of  O(r1 …….rn )  whose  
explicit  attributes  values  are x,  the union of all timestamps 
of  such tuples is identical to the set of time points  identified 
by the minimum requirements for the same argument i.e. 
specified and resulting  timestamps must be extensionally 
identical  for x.  The second condition ensures the 
preservation of the relevant input intervals in the result, 
whenever possible, under the form of overlapping fragments 
as in one (1) above. 
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                                                                 -----------
--------------                       ------------    --------------
-------------           -------------                   -----------------     

relevant input intervals
                                                                                            

Output point set A            
(minimum requirements)

Output intervals (1)
(non overlapping  fragments)  
                                                                                  

Output intervals (2)  

Figure 3. Hypothetical Interval Based Operator [21]

The preservation of argument timestamp fragments in an
interval-based operator is illustrated in Figure 3. For the 
relevant argument intervals and the corresponding 
hypothetical set of output points A given in Figure 3, two 
sets of output intervals are given.   The  first  one  is  built  
on top of a minimal decomposition strategy, where each 
interval of  the  result must  be contained  in one of  the  
relevant input  intervals, but  no  output  intervals  may 
overlap , even when  there is  overlapping at  the input  level. 
The second solution is the only one that satisfies all 
conditions of Definition 8: for each relevant input interval, 
its intersection with A, represented under the form of 
(maximal) intervals, is included in  the output.  In particular 
note that definition 8 does not allow intervals to be chopped 
or merged.     

Definition 9: (Interval-based VM temporal log Data 
Model)
A temporal  log  data  model  M =  (D,A)   with  time  point  
domain  Tp    is  interval  based  iff  the  following  conditions  
are  met.   
1. D  is  entirely  composed  of  interval  time-stamped 
      relations over  Tp  , and
2. The  operators  of  A  are  all  interval  based.    

VI.    Discussion   

In  this  section we  discuss  the  properties of  the  point-
based and interval-based data models in the context of our 
case study  application within  the  University environment.   
We start by looking on the scope of our approach within the 
context of the case study. Then we look at mixed data 
models i.e. models that are neither point-based nor interval-
based, and finally we evaluate representative temporal data 
models.   

A.   Scope of Our Approach   

At the University of Technology (UTECH) we design a 
software application called a VM log auditor used to provide 
support to the system administration and access control of 
the virtual server environment. We attempt to achieve this by 
enabling the log auditor to synchronize the logs between the 
virtual machines (VM) and the physical hard disk on which 
these VMs are run. The log auditor maps the disk logs by 
transforming these logs to its Oracle 11g back end database. 
An ftp session is maintained between the production

environment VM logs resident and the Storage Area 
Network (SAN) disks and the log auditor’s database. The 
transformation mapping techniques are highlighted in 
separate work [19, 20].

Our current prototype uses ftp sessions at intervals over 
different points in time. We  use  these interval  markers at  
the  different  time  points as a snapshot  equivalent of  the 
dynamic environment on which to perform a typical log  
mining  task  of actual system  events native to these VMs. 
The VM environment of our choice is VMware essx3i. When 
a virtual machine is first powered on, it sets the virtual 
machine's time (in the basic input/output system BIOS of the 
VM) to that of the time from the running ESX host.
Assuming the virtual machine is part of a Windows domain;
Windows will also attempt to synchronize the virtual 
machines clock with the domain so long as its current time is 
within the drift policy of your domains NTP settings.

Therefore, we find it best practice to synchronize each 
ESX host with the system's domain controllers and that your 
domain controllers are synchronized with a peer that 
synchronizes with an outside source. This will ensure not 
only accurate time throughout your domain, but that the 
VM's clock does not skew from the domains time, between 
the time they boot-up and the time they get logged into the 
domain. Not withstanding ongoing work extends the scope 
of the case study context to evaluate other cloud domains 
like Citrix’s XenAppServers and Amazon’s Elastic Clouds
within different time zones.

In the above context, the scope of the definitions of point-
based and interval- based operators are temporal extensions 
of relational algebra operators. i.e. temporal variants of  , . 
\, x, and their derivatives. These are basic operators of a   
temporal algebra, and they have been investigated in almost 
all temporal data models. Our definitions can be used to 
evaluate and classify these operators and models. However 
the definitions are applicable to all possible temporal 
operators. For example we have illustrated the application of 
coalescing earlier in this paper.   

B.   Mixed Data Model   

With  point-based  and  interval-based  models being 
orthogonal we  get  four  classes  of  operators.  Specifically,  
coalescing  is  point-based  but  not  interval-based,  temporal 
selection  is  interval-based  but  not point-based, temporal  
intersection  join is  point-based  and  interval-based, and the  
regular  time  shift operator  is  neither point-based  nor  
interval-based.   

  From  definitions  4 and 9  it  follows   that  there  exists,  
for  the  VM  environment, temporal  data  models that  are  
neither  point  nor  interval-based.  In  practice, we  expect  
many  models  to  have point-based  and  interval-based 
operations, which  for  the  purposes  of  this  discussion  we  
will  describe  as  mixed  models. 

C.   An Evaluation of Temporal log data models   

In  this  section  we   introduce  a  few  popular  and  
traditional temporal data  models  and  incorporate  them as  
an  evaluation  of our  criteria for  the VM  environment.   
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Note  that  we  only  consider  proper  temporal  algebraic  
operators i.e. operators  that  take  temporal  relations as  
arguments  and  return  a  temporal  relation.   

SQL-92 [11]  extended  with  an  interval  data  type is  
based  on the  relational  algebra and  treats  intervals as  
atomic values without any  special temporal  semantics. This 
means that all operators are time fragment preserving.  
Therefore, SQL-92 is an interval-based data model.    It also 
follows that SQL-92 is not point based.

IXQSL [10] operators are timestamp preserving because 
they inherit the standard SQL-92 semantics.   In addition, 
IXSQL provides normalized and non-normalized operations  
in order  to  convert  between time  points and  intervals. 
These  special  operations are  point-based, but  not  interval-
based, snapshot equivalence is  preserved, but  interval  
fragments  are  not.  Thus IXSQL is a mixed data model.    

TSQL2 [13], unlike  the two  previous  models,  employs   
a  temporal  algebra  that  gives  a  special meaning  to 
timestamps. It  was  one  of  the  design  goals of  TSQL2  to  
make  the  format of  timestamps irrelevant.  This is achieved
by enforcing a canonical representation based on temporal 
elements. Thus, clearly TSQL2 is not interval-based.   On  
the other  hand, all operators preserve  snapshot  equivalence 
because  they are defined over the  canonical  representation  
of  a  database.  This makes TSQL2 a point-based data 
model.   

ATSQL [3] introduces sequenced and non-sequenced 
statements together with corresponding algebras. Non-
sequenced statements provide the power of regular SQL-92 
statements and are, like SQL-92 and IXSQL statements, 
interval-based. Sequenced statements are also interval-based. 
In addition, most sequenced statements are point-based. 
Coalescing is available to enforce a canonical representation
of snapshot equivalent relations. Thus, while clearly interval-
based in nature, ATSQL has also a non interval-based 
operation (i.e. coalescing), which makes it a mixed data 
model. Temporal Logic [5] is point-based; as the temporal 
domain consists of points.    

VII.   Conclusions and   Future   Work     

We  have motivated  the argument that  point-based  and  
interval-based  operators  are to be  applied  within  a  
synchronized  log  event  model  on  the  virtual  machine 
environment.  Point-based operators are defined using the 
notion of snapshot equivalence as outlined by Bohlen’s 
work. We did this as a basis of demonstrating how time
delineates an important characteristic for synchronizing the 
VM logging requirements for your system administrator 
environment. We provided this characterization within the 
context of a proof of concept case study. Further work 
explores new experiments to perform temporal log mining
for compute cloud forensic scenarios within our University
environment.  
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Abstract:    The use of timestamps is fundamental to the management of time varying information and arguably it may be even more important for the synchronization of the virtual machine (VM) log data sets. In the context of managing (VM) logs for transactional database activity, the consistency of its state can be evaluated by these timestamps. Temporal data models claim to be point based whereas other temporal models are interval based. Hence the premise for synchronization as a component of a time event has become critical to a distributed hybrid compute cloud. The contributions of this paper apply the use of formal temporal mechanisms to appreciate the behaviour of our case study deployment. In our study we design a software application called a global virtual machine log auditor. We use the auditor to synchronize virtual server log events across a suite of non native VM environments in distinct time-zones. This work is useful in managing cloud data migration and synchronization across these time zones. Our implementation uses a snapshot equivalent approach to monitor the synchronized log events on these VMs. In this context the paper precisely defines the notions of point based and interval based temporal data models as the application of the case scenario, thus providing a new and formal basis for characterizing such models within the cloud computing environment. This paper’s motivation is an adoption of earlier work done [1, 4 15, 21].  

Keywords: timestamps, interval logs, point, cloud, temporal

I.   Introduction


Temporal data models include timestamp attributes in their relation schemas and give special semantics to the values of these attributes in their query languages. Virtually all data models intended for practical use employ some form of intervals for their timestamp values. Unfortunately, It is generally impractical to record individually all the time points for a distributed virtual machine database. For the purposes of our ongoing work [1] we manage and archive system event logs over periodic intervals as a function of the timestamps.

Intervals may simply be employed for reasons of practicality, i.e. as syntactical shorthands for time points [12]. Thus, referring to a data model as interval-based simply if it employs interval timestamps bears little real significance. It says little about the qualities of the data model. Rather for our synchronized VM log environment, the notion of point and interval based data model must be defined on a semantic level. The questions then what are   the real defining properties of point and interval-based data models as a function of the synchronized temporal data model for the VM environment. This paper provides an answer to this question.  


To get a real feel for the range of possible semantics of time data models, it is instructive to consider a simple example adopted from Bohlen et. al. [21]. We assume that the two tuple time-stamped relations r1 and r2, below are given and consider possible definitions of the temporal difference of these two relations, r1 –T   r2. 


r1  :  

		A 

		TS 



		a 

		[1,10]



		a

		[11,20]



		a

		[21,30] 





r2  :   


		A

		TS



		a 

		[5,15]





When we want to construct a difference operator between both relations, there are four possible definitions-: R1   through to  R4. 

R1  :    

		A 

		TS 



		a 

		[1,4]



		a

		[16,30]





R2  :  

		A 

		TS



		a

		[1,10]



		a

		[11,20]



		a

		[21,30]





R3   :   


		A

		TS



		a

		[21,30]





R4  :  


		A

		TS 



		a

		[1,4]



		a

		[16,20]



		a

		[21,30]





The  first  result, R1, contains  the times  associated with value  a  in  r1  that  are  not associated with  value  a  in  r2.  This  result  is  consistent  with  the  perception  that  intervals are  abbreviations for  time  points,  and  nothing  more. Thus, the first definition has a point based feel to it.  


The first result may also be characterized as being coalesced. In  coalescing, value  equivalent  tuples (tuples  with identical non  temporal  attribute  values)  with  adjacent  or  overlapping  intervals are  replaced  by  a  single tuple  with  the  same  non temporal attribute  values and  an  interval that  is  the  union  of  the  intervals of  the  original  tuples. 


   In contrast, result R2 is far from being point based in nature.  This result contains all tuples in r1 not in r2. This definition of difference simply considers the intervals atomic values. Thus, it  may be said to “respect”  the  actual intervals given  to  the  tallest  may  even  be  questioned if  the  operator is  temporal  at  all  it  is  simply  the  standard  set  theoretical  difference operator.  Result  R3  returns tuples  from r1  with  intervals  that  do  not  overlap with  intervals of  tuples  in  r2.  The utility of a temporal difference operator of this kind appears questionable.  


The  last  result  is  similar  to  the  first  one: it  also  contains the  times  associated with  value  a  in  r1  that  are  not  associated  with  value  a  in  r2  .  Put precisely, R1  and  R4  are  snapshot  equivalent [12] . The difference is that the second tuple in R1  is “represented” by two tuples in R4. In other words R1 is the coalesced version of R4.  The idea  behind  this  definition is  to  be  point-based while  also  trying  to  respect  the  intervals  associated with  the  tuples  in  the  argument  relations.   

 It is our contention that R1 and R4 are results of point-based operations and that R2 and R4 are results of interval based operations. The operation yielding result R3 is thus neither point based nor interval based.    

This paper represents  a  first look  at  how  we  can use  point-based  and  interval-based data models to formally represent timestamp associations for a synchronized  VM environment. We seek to make such evaluations by applying these definitions to the occurrence of the VM System log events. Other than for traditional temporal databases [21], to the knowledge of the authors, no papers have previously been devoted to address the issues here as a part of the cloud computing environment. In our virtual machine compute cloud the system logs are relational database tables and form apart of the VM active database environment.     

As more enterprises seek to capitalize on the economies of scale and efficiencies of virtual machine compute clouds, there will undoubtedly be an increase in malicious activity as enterprising people recognize the greater opportunities for the exploitation of the security risks inherent in trusting virtual data centres to third party providers that one has no physical jurisdiction over. This security challenge overlaps with the fact that the forensics community also shares its own concerns around auditing, searching, and providing traceable digital footprint analysis for victims of miscreant behaviour within this abstract domain. This is particularly true in that a VM object within a data centre may be subject to several eventualities through network distribution before reaching its final user(s).   


On the premise of these eventualities, our work introduces the need to look at log event behaviour as an association of its timestamp information in order to enable effective auditing. 

Snodgrass [12] advocates that “A temporal  query  language should  have a canonical  model, in which  relations are  identical if and only if all  their  snapshots are  identical”. Chomicki states that “It is important to see that the data model of TQuel is point-based, not interval-based. Intervals serve as a representational device.  The  truth  value of facts are associated with points, not intervals” [5]  and that a model  is  point-based if  the  facts  are  associated with  single time points, and interval-based if  they  are  associated with intervals (represented as pairs of points) [6, 18]. In this paper we establish the correspondence between the point-based and interval-based views as adopted from   traditional temporal database theory and the corresponding first order temporal languages. This correspondence shows that all first order queries can be conveniently asked using point-based query language and then mechanically translated to an interval based query language. [17].  

The relevant literature reveals that different researchers perceive the notions of point-based and interval-based data models quite differently as it relates to the creation of timestamp associations.  In particular, the notion of interval-based data model remains to be given a formal definition for the synchronized time bound virtual machine.  


  In the next section we further motivate the topic and explore the problem space.  Section III introduces the notions of VM temporal data models and time domains, providing the basis for formally defining the notions of point-based and interval-based temporal data models in Section IV and V. Section VI looks at an evaluative case study discussion, and Section VII provides the conclusion and future work.


II.   Motivation and Problem Space    


When asking queries on a temporal database, the results may vary depending on whether or not argument relations are coalesced. For example, this is the case for selections with predicates that involve the arguments’ timestamps. To see this, consider two relations in Table 1. The relation at the top is uncoalesced whereas the one at the bottom is the corresponding coalesced relation. The column value TS denotes the timestamp values.  

 Adopted from Bohlen et. al. [4, 21] we consider the uncoalesced Employment relation examples as an ideal set of baseline reference cases for understanding our own work on VM System Event Log relations. The Employment relation models job contracts in a company with temporary positions only.  The   query  (  Name, start (TS) Employment    returns the start time of an interval.   If  the  exact same query  is  evaluated  over  the  coalesced instance, only  two  tuples  are  returned.  


The  example  illustrates that there exists queries than  can  be  asked  over  the  uncoalesced instances,  but not over  the coalesced ones.  For example, the coalesced  instance  of   the  Employment  relation  doesn’t  reveal  that  Lars signed  two  contracts, let  alone  when  he  signed  the  second  one.   


On  the  other  hand,  it  is  impossible  to  come  up  with  a  query that  can  be  answered  over  the  coalesced , but  not  over  the  uncoalesced instance.  The  answer  for this  is  simply  the  fact  that  we  can  derive  the  coalesced  relation  instance  from  an  uncoalesced  one.  e.g. using a  regular  SQL  statement. [21].  

Employment  

		 Name  

		Position  

		TS  



		Lars

		Programmer  

		92/01/01,94/12/31



		Lars

		Programmer

		95/01/01,96/12/31



		Niels

		Accountant  

		92/01/01,96/12/31





Employment  


		Name  

		Position  

		TS 



		Lars  

		Programmer  

		92/01/01,96/12/31



		Niels  

		Accountant  

		92/01/01, 96/12/31





Table 1.  Uncoalesced and Corresponding Coalesced Relation Instance [21]

These  considerations  indicate  that  a  model  that  is  able  to  tell  coalesced  and  uncoalesced  relation  instances  apart (and  in  this  sense is  interval-based) is  in  some  sense  more  powerful  that  a  model that cannot  tell  them  apart, i.e. a point-based model. In our  own work  of  synchronizing the  relational  log  tables  for  a  virtual  machine this  is  a  critical  concern.  In  the  next  subsection  we  explore  this  difference  even  further. 


A.  Data   Modelling   

The  relative  expressiveness of  data  models  that  do  or  do  not  differentiate between  coalesced  and  uncoalesced  relation  instances  may  also  involve  data  modelling. It may be argued that if  the  database  schema  is  designed  appropriately, it  is  possible  to  answer  the  same  queries  using  a  coalesced  model as  can  be  answered by  an  uncoalesced model even within the VM log  database.   


 For  example,  if  individual  contracts  are  important, which  is  not  likely, we can  record  their  unique  numbers in  the  Employment  relation, as  shown  in  Table 2.  


		Name

		Position  

		ContrId 

		TS  



		Lars

		Programmer

		1091 

		[92/01/01,94/12/31]



		Lars

		Programmer

		2154

		[95/01/01,96/12/31]



		Niels

		Accountant

		1095

		[92/01/01,96/12/31]





Table 2.  Alternative Modelling of Employment [21]

This  way,  it  may  be  possible  to  “compensate” for  the  lack of  uncoalesced relations in  a  point-based  data  model.   It  may  be  argued  that  it  is  quite  natural  that  certain  queries  cannot  be  answered if  they  were not  anticipated  when  the  database  was  designed -  this is  true  for  any  database.   


Equally  introducing  additional  attributes  may  sometimes  have  subtle  drawbacks not  experienced  if  the  attributes  could  be  omitted  because  the  data  model allowed  uncoalesced relations. For  example, we might  introduce dependencies (contract  numbers increase  over  time) or  we  might  not  be  able  to  faithfully  represent  our  mini-world (“new  follow up  contracts  with  the  same  contract identifier ) .  

B.  Query Processing Optimization   


The  point  versus  interval  basis  of  a  query  language  also  affects  query  processing and  query  optimization.   For  an  interval-based  language, care  has  to  be  taken that  processing  and  optimization strategies  respect  the  interval-based  semantics, which  can  be  quite  complex.  This severely restricts the possibilities to manipulate and transform intervals. In  contrast, specific  timestamps may  be modified (as long  as  snapshot equivalence  is  preserved) in  a  point-based  language, allowing  the  database  system a  choice  of  timestamps among  several  alternatives. This  indicates  that  an  interval-based  language  leaves  less  possibilities for  query  optimization and,  thus, efficient evaluation strategies.   

 In  favour  of  an  interval-based  language, it  can  be  said that  a point-based database system must  guarantee  that  the result  of  queries  do  not  depend  on  a specific choice of  timestamp  values.  This  guarantee  is  met  by  performing  coalescing operations, which  can  be  expensive [4]. While it  is  possible  to  sometimes  eliminate coalescing during query optimization, there remains situations where  coalescing  has  to  be  performed [13].   


III. VM Temporal Log Data Models and                Time Domains    


For a Synchronized data  model as a VM  log compute  cloud, we should not forget that  these  VMs  must  map  to  a  physical  machine and  hence  to a physical  data  set of  structures.  Against this background, we adopt (from [4, 5, 21]) that our VM relational data model, be a relational data Model  ( = (D, A). This is a relational  composition  of  sets  of  data  structures, D and  a  set  of  algebraic operations  defined  on  the  set  of  data  structures.  A VM temporal relational data model is  a  relational  data  model that has temporal  relations as  the  underlying  data  type, and  whose operators are all  temporal.   


A VM log temporal relation includes a VM log temporal tuple attribute.  The exact denotation of this attribute is not important for this paper, but for simplicity we assume that it denotes the synchronized VM log tuple’s valid time i.e. when the information recorded by the remaining attributes of a tuple is true in the modelled reality.  Synchronized VM log tuples of  temporal relations may therefore be put  under  the  form (x1 ………….xn  || ts)  or  as  (x || ts)  when  the number of attributes is immaterial.  We term x1 ………….xn the non temporal (or explicit) attribute values, and ts is the tuple timestamp. A finite set of such relations may be referred to as the timestamp representation of a temporal database [2]. 


An  operator  is  temporal iff  it  generates  a  temporal  relation  when  applied  to  temporal  relations. When  designing  a  synchronized  VM  temporal  data  model, an  important  and central  aspect  is  the  choice  of  appropriate  timestamps of  database  facts. Time points and time intervals, defined below; provide the most common choices [2, 4, 15]

Definition 1: 

(VM Time point and VM Time interval Domains)

Let Tv be an infinite VM log tuple set.                   


1. Tp   =  (Tv  ,  < )   is  a  VM  log time  point  domain  over

Tv    iff   <   defines the total order on  Tv.   Each element

of  Tv    corresponds to  a time point on  Tp    .  


2.  A  time  interval  I  of  Tp   is  any  connected subset  of

 Tp  , i.e.   (p1  ( I  (   p2   ( I  ( p3  ( Tv    (  p1  (  p3   (

  p2) (  p3   ( I 

3.  Ti   =  ( ( , C) is  the  VM time interval  domain over   Tp

   iff   (   is  the set  of  all  time  intervals  of  Tp . Both   Tp  

 and  Ti   are time (or temporal) domains over   Tv.  

4.  A timestamp  over  Tp   is  either  a  time  point  or  a  

time interval of  Tp  .    


A  VM  temporal log  relation  r  whose  tuples are  all  timestamped with  either  time points  or  time  intervals of  a  time point  domain  Tp  represents  a  temporal  relation over  Tp  . When the timestamps are point-[intervals], r may be referred to as point - [interval] timestamped (temporal) relation over Tp .

If  ( = ( D,A)  is  a  VM  temporal  log  data  model  such  that  D  is  a set  of  VM temporal log  relations over  Tp  ,  then  Tp   is  the  time  point  domain of  M. 

 In  general, since time  intervals are  sets  of  VM log time points,  it  is  not  always  clear  in  what  sense  the  usage  of  timestamps  differs  from  the  usage of  points.  To  exemplify  this, assume  that  the  integers with  the  ( order  is  our  VM temporal  log domain.  Then  it  seems more  than  reasonable  to  claim  that the  relations r1  = {(a ||2), (a||3),(a||4) } and  r2  = {(a || [2,4])} have  the  same  information contents, i.e. that (a) is  valid  at instants 2,3,4, and nothing  more. This assumption  is  nonetheless incorrect for r2 because intervals in addition to being points also  are  uniquely  delimited by  start  and  end points, which  may or  may  not  be  part  of  the  interval. Hence  we  would  timestamp  a  log tuple such  as (a) with  intervals if  the  end points bear some meaning, and use time points as  timestamps  if  the  notion of  end points  is meaningless.  

Predicates and operations for points and intervals are described in almost all definitions of temporal data models [13]. Some interval predicates and operators apply just to interval data models; their properties would make them meaningless in a point-based framework. For  example,  the  operators  start and end that retrieve the  initial and  final  instants of  an  interval could  not  be  defined  for  a  point-based database.  


The point timestamp representation of a temporal database is infeasible from the storage viewpoint for all but the simplest temporal relations, so intervals are used as an abbreviation for sets of points for practical reasons. For example, relation r1 above may be represented by r2. Whether  an  interval  is  an  abbreviation  for  a  set of  points  or  not  depends on  the  operators  of  the  data  model. Only if  the point contents of  the  output of  a  temporal operator  remain invariant for sets of argument  relations with  the  same point  contents, it is possible to consider intervals  as  abbreviations for  sets  of  points.  We explore this notion of time point models below.   


IV.
VM Point Based Data Models  

It would be easy to decide whether  or  not  a  data  model is  point-based or  interval-based if this could always be determined by  inspecting the  data  type  of  timestamps used. However, syntactic criteria are available only for simple point timestamped relations. The major difficulty concerns relations involving intervals as timestamps. This  section  defines  the  notion  of  a  VM  point based log  data  model.  


   In a point-based  data  model, two  interval time-stamped relations that correspond to the  same point timestamped relation are  considered equivalent, in  the sense  that  they  record  the  same  information. The notion of snapshot equivalence [7, 9, 21] formalizes this:   


Definition 2:

 (Snapshot Equivalence) 

Let  Tp   =  (Tv ,  < )   be  a  VM log  time point  domain.  


1.  The time slice operator (p   for a VM log time point p 

     ( Tv  maps  an  interval timestamped  relation over  Tp    to

     a non  temporal one , and  is  defined as 


  (p  (r) =  r1   iff  

        (x ((I ((x || I ) ( r ( p (I ) ( (x) ( r1  )  


2.  Two VM interval timestamped relations over   Tp ,  r1   and 

      r2   are snapshot equivalent i.e.  r1  =p  r2 , iff  


        (p ( p (T (    (p  (r1 )  =   (p  (r2 ) ) 


The notion of  a VM  snapshot log equivalence  allows us  to  characterize operators  that, when  applied  to  snapshot  equivalent relations, also yields snapshot results [9]. Arguably one could contend that such  operators  are  faithful to the point based  nature  of  timestamps of  their  argument relations, and  we  use  them to  define  these  point-based data  models.   

Definition 3: 

(Point-based Operator)  

Let  O  be  a  n-ary  operator on  interval  time stamped  relations ,  and  r1  …………rn )  and (r1 1   ……….r n   1 )   


Example 1 -   The temporal log intersection natural join ((t) is a binary operator. Two argument tuples with identical explicit join attribute values contribute to the result if their   timestamps overlap.  Timestamps  of  result  tuples are  the  intersections  of  the  timestamps of  argument  tuples.  Thus if  r1  = { (a||[2,5]), (a||[7,11] ) } and  r2  =  { (a||[3,9])}  then  r1  (t   r2  = {(a||[3,5]), (a||[7,9] ) }.  It  can  be  shown that this  operator preserves  snapshot  equivalence, hence  it  is  point -based.   

Example 2 -  The VM log  coalescing  operator (vlcoal) is  a unary operator that  merges value equivalent logtuples (i.e. VM log-tuples with mutually  identical explicit  attribute  values) if  the union  of  their  timestamps  is  an  interval.  The merged log-tuple then has this union as its new timestamp. Thus,  if  r1  = { (a||[3,9]), (a||[4,13] ) } then vlcoal (r1 ) = (a||[4,13] ). Like  temporal  intersection natural  join, this operation is  point-based because  snapshot  equivalent  arguments  yield snapshot  equivalent  results; for  snapshot equivalent  arguments,  the  result  will always be the  exact  same, which  is a trivial  case of  snapshot equivalence.  With the definition above, we are in a position to define point-based data models.  


Definition 4:  (Point-based VM temporal log data model)     

A VM temporal data model  ( = (D, A) with time point domain Tp  is  point-based iff the following  conditions are  met.   


1. D  is  entirely  composed of  either  point  or  interval


    time-stamped relations  over   Tp  , and  

2. The operators of  A  are  all  point -based.    


Lemma 1  A  VM  temporal  log  data  model M = (D,A)

is point-based  iff , for  every  operator O of  A. 

O(r1

…….r n  )  = p  O(vlcoal(r1 ) ............ vlcoal(r n ) )  


    where r1 …….r n   are  log  relations  of  D  that  satisfy  the

    preconditions  of  O.   

The  lemma  illustrates  why  the  start  and  end  functions  mentioned in  the  previous  section cannot  be  defined  in  a point-based model by  considering  individual intervals  in  isolation. The presence of   the VM system event log tuple 

(x||[a,b]) in  a point-based relation does not  mean that a is  the first time point  associated with x, since  the  relation may contain other value - equivalent tuples that overlap with  this  interval. As  a result, the  computation  of  the  above  functions in a point-based data  model  requires that the  argument relation first  be  coalesced. The definition of   start could then be expressed as follows:   


(x||I)( r ( (x|| I1)  ( vlcoal(r) ( I ( II   ( start ((x || I), r ) =  start(I1 )  


Finally,  in  a  VM Log point-based  data  model, it  holds  true that  intervals are  nothing  but  abbreviations for sets of points. Hence, it is always possible to translate any interval time-stamped  relation r into a  corresponding point  time-stamped relation rp  .  


The following relationship holds between the two relations.   


(x ||y) ( rp    iff  (I(y ( I  (  (x || I ) in  r by y a tuple (x||y) for  exactly  each  time point  y ( I .   


V.   Interval based VM Log data Models          

It is well known that point-based and non point-based models are orthogonal. For  example, suppose we assume an operator of an interval-based  VM  log  data  model  needs not be point-based, but  there  are  operators  of  such  models that are point-based.  


To define the notion of an interval-based VM  log  data  model, we distinguish between  the  algebraic  operators  that are timestamp Log preserving  and  those  that  are  timestamp Log transforming. The former operators are unproblematic and easily qualify as interval-based. The latter operators must satisfy additional properties to qualify for the interval-based status.    


Specifically, when intervals are adopted  as  timestamps, there  will  normally  be  several  ways  of  time-stamping  resultant  relations.  In  such  cases, the  argument  interval timestamps  should  be preserved  as  best  as  possible.  This  is  to  suggest  that whenever  an  operation  requires  the  modification  of  an  argument  interval  timestamp, the  resulting  interval  should  be  the  one that  maximally  takes  the  argument  interval into  consideration.  Alternatively,  this  property could  be  stated as  the  largest possible  fragments  of  the  argument  interval  timestamps  should  be preserved  in the result.  In the next subsection we formalize these notions.  

A.  VM log Interval   Based   Requirements   


The  first  step  is  to  define  the  notion  of  the minimum  requirements  for  an  algebraic VM temporal  operator. Informally,  the  minimum  requirements define  the  set  of  time points  that  the  timestamps  of  the  result  of  a  temporal  operator  must  include. Explanations follow the formal definition.   


Definition 5:

 (Minimum Requirements) 


Let M = (D,A) be a VM  temporal log data model with a time point domain  Tp , where  D  is  the  set  of  interval  time-stamped relations.  The  minimum  requirements  for  n-ary  temporal  operator  is  a  formula of  the  form ( (r1 ………rn    , x,A) where   


1. The log timestamp  A  associated  with  a  result  tuple

that  satisfies  the  requirements for  the  argument  relations r1 ……… rn   ( D  is  a set of (not  necessarily connected)  set  of  time points of   Tp   and  

2. ( (r1 ………rn    , x,A1)( ( (r1 ………rn    , x,A2 ))(  A1  = A2   

Clearly, ( must also include the preconditions for the specified operator. From the second condition of the  definition,  it  follows  that,  for  each  sequence  of  explicit attribute  values  of  x  of  the  result,  there  is  one  and  only  one  associated set  of  instances  of   A, since  the  minimum  requirements do not impose any partition on this set  of  instances (i.e. ( defines  a  partial ,  parameterized  function  fr1  ……………..frn  such  that  fr1  ……………..frn  (x)  =  A). Thus  formula  ( specifies a  family  of  operators,  in  the  sense  that  A may  be (usually) split  into  a  list  of  intervals  in  several  distinct  ways. We use  A  to  emphasize  that  we  are dealing with  generic sets of  instances, i.e., temporal  elements , rather  than with  intervals  only.   


   The next step towards  defining interval-based  data  log  models is to characterize the set of relevant  argument  tuples for each  particular result tuple, as defined  by  the  minimum  requirements ( for  an operator.  A set  of  argument  tuples S  is  relevant  for a  particular  result tuple (x, A) iff  both x and  A can be  entirely determined  from  S, but  not  from  any  proper  subset.

Definition 6: 

(Relevant Argument   Tuples) 

Let   M = (D, A) be  a  VM  temporal  log  data  model  with a  time  point  domain  Tp    , where  D  is  the  set  of  interval  time-stamped  relations. Let   (   denote  the  minimum  requirements  for  n-ary  VM log temporal  operator  (r1 ………rn  )  be  temporal   relations  of  D,  A  be  a  set  of  time points of   Tp  , and  x  be  a  finite  sequence  of  attribute  values.  S  is  a  set  of  relevant  argument  tuples w.r.t.  (  for the argument relations r1 ………rn  and the  result  tuple (x,A) i.e. , relevant (x,A,S, (, r1 ………rn   ) iff  


(( r1 ……rn  x,A ) (  (r1 1   ………r1 n   (r1  1  ( r1  ( ....... r1 n  (  rn  (  S =  Un i=1    ri 1   ( ( r1 1   ……r1 n    x, A)  ( (rll 1 ..........rll  n   (( rll 1  ( rl 1   ( ....  rll n  ( r1 n   (  Un i=1   ri ll   ( S ) ( (( (rll 1  ..........rll  n   ,  x, A)).   

Note that S does not necessarily correspond to a relation, since r1 …….rn may not be union compatible. Also, it is necessary to require that the result (x, A) satisfy the minimum requirements for both the original argument relations and their restricted forms because the one does not imply the other.  

Example 3 - Lets assume a temporal difference operator. Let  the  integers   with the <  order be the underlying time point domain , and   (D  denote the  minimum  requirements  for  this  operator.  Assume  r1  =  {(a||[2,10])}   and  r2  =  {(a||[1,4]), (a||[8,11]), (a||[12,17]) , (b||[2,6])}.   If  r1 ll    =  r1 l  =  r1   ,  rl 2   = {(a||[1,4]})and  r2 ll  =  {(a||[1,4]}, (a||[8,11])} then   


   (D  ( r1 , r2 , (a),, {5,6,7})  


  (D  (r1 1 , r1 2 , (a),, {5,6,7,8,9,10}) 


  (D  (rll 1, rll 2 , (a),, {5,6,7})  

The set  of  relevant argument  tuples  for  the  result  tuple is  Sii   =  r ii1  (  r ii2 .  No proper subset of   Sii   satisfies the minimum requirements.    


  The next example illustrates the set of relevant argument tuples is not uniquely defined.    

 Example  4 -  The  minimum  requirements  for a suggested VM Log  temporal  difference  are  given  by the formula (,  union compatible (r1, r)  (  (p((I1 ((x|| I1 ) ( r1  ( p ( I1  ( (I2 ((x || I2 ) ( r2  ( p ( I2  )) ( p (A)  


Assume  r1   =  {(a||[4,8]), (a||[1,6]), (a||[7,10]) } and  r2   =   {(a||[1,3]), (a||[9,10])}. Then  A =  { 4,5,6,7,8}  satisfies  the  minimum  requirements  for  temporal  difference for  the  explicit  attribute (a)  and  the  input  relations  r1   and  r2  . Concerning  the  relevant  argument  tuples  of  r1   and  r2    for (a),  there  are  two  sets  to  satisfy the  definition ,  S1  =  { (a||[4,8])}  ( { }  and  S2   =  {(a||[1,6]),  (a||[7,10]) ( (a||[1,3]) , (a||[9,10])  }. Note  that  r1  ( r2    does  not  qualify  as  a  set  of  relevant  argument  tuples, since  there are  sub-relations  of   r1    and  r2     whose  union  also  satisfies  (  


A final auxiliary concept concerns  the notion  of  maximal interval partition which determines the  decomposition  of   a  set  of  time  points  into  the least  possible number  of  non overlapping  intervals.   

Definition 7:  (Maximal Interval Partition) 

Let A be a (doubly bounded) set of time points.  The maximal interval partition for A is a sequence of   intervals  I1   ………. In    such that  

1.  I1  (  …… ( In    =   A  


2.  Ii   (   Ij     =  (  with  i(j  ,   1 ( i  ( n  ,  1 ( j  ( n   and  


3.  Any other interval partition Il  1 ………. Il  P for   a


  satisfying the  two  above conditions is  such  that   p ( n. 

Using  the  concepts  developed  so  far,  we can  now  define the  notion  of  a  VM log interval  based  operator.  

Definition 8: (VM Log Interval based operator) 

Let  M  =  (D, A)  be   a  VM temporal log data model with time point domain Tp    ,where D is a set  of  log  interval timestamped  relations.  Let  (   denote the minimum requirements for a n-ary log temporal operator. A temporal operator O ( A  that  satisfies  (  is  log  interval  based iff for  any argument  temporal relations  r1  ………rn   ( D ,  the  following  holds.  

1.  (I ((x|| I ) ( O(r1 …….rn  ) ) (  ( (r1 ……………..rn  ) ) (   ( (r1 ……………..rn   , x , U(ts ((expl =x    O(r1 …….rn  ) )))


2. If (a)  ( (r1 …….rn  , x , A) ,  (b)  S  =  UP  i=1     Si  , where relevant (x, A, Si  , ( ,  r1 …….rn   ), for  all  i, 1 (  i   (  p , (c)  (y || I) ( S ,  (d)  A (  I ((  and  (e)  I1  ……. Im    correspond to  the  maximal interval  partition for  A ( I,  then  (x||I1 ) …….. (x||Im )  ( O(r1 …….rn  )  .   

The first condition of Definition 8 ensures  that for  each  group  of  synchronized log tuples of  O(r1 …….rn )  whose  explicit  attributes  values  are x,  the union of all timestamps of  such tuples is identical to the set of time points  identified by the minimum requirements for the same argument i.e. specified and resulting  timestamps must be extensionally identical  for x.  The second condition ensures the preservation of the relevant input intervals in the result, whenever possible, under the form of overlapping fragments as in one (1) above. 

                                                                 -----------


--------------                       ------------    --------------


-------------           -------------                   -----------------     relevant input intervals 


                                                                                            Output point set A 



           (minimum requirements)

Output intervals (1)


 (non overlapping  fragments)  


                                                                                    Output intervals (2)  


Figure 3. Hypothetical Interval Based Operator [21]

The preservation of argument timestamp fragments in an interval-based operator is illustrated in Figure 3. For the relevant argument intervals and the corresponding hypothetical set of output points A given in Figure 3, two sets of output intervals are given.   The  first  one  is  built  on top of a minimal decomposition strategy, where each interval of  the  result must  be contained  in one of  the  relevant input  intervals, but  no  output  intervals  may overlap , even when  there is  overlapping at  the input  level. The second solution is the only one that satisfies all conditions of Definition 8: for each relevant input interval, its intersection with A, represented under the form of (maximal) intervals, is included in  the output.  In particular note that definition 8 does not allow intervals to be chopped or merged.        


Definition 9: (Interval-based VM temporal log Data Model) 

A temporal  log  data  model  M =  (D,A)   with  time  point  domain  Tp    is  interval  based  iff  the  following  conditions  are  met.   


1. D  is  entirely  composed  of  interval  time-stamped 

      relations over  Tp  , and


2. The  operators  of  A  are  all  interval  based.    


VI.    Discussion   

In  this  section we  discuss  the  properties of  the  point- based and interval-based data models in the context of our case study  application within  the  University environment.   We start by looking on the scope of our approach within the context of the case study. Then we look at mixed data models i.e. models that are neither point-based nor interval-based, and finally we evaluate representative temporal data models.   


A.   Scope of Our Approach   


At the University of Technology (UTECH) we design a software application called a VM log auditor used to provide support to the system administration and access control of the virtual server environment. We attempt to achieve this by enabling the log auditor to synchronize the logs between the virtual machines (VM) and the physical hard disk on which these VMs are run. The log auditor maps the disk logs by transforming these logs to its Oracle 11g back end database. An ftp session is maintained between the production environment VM logs resident and the Storage Area Network (SAN) disks and the log auditor’s database. The transformation mapping techniques are highlighted in separate work [19, 20]. 

Our current prototype uses ftp sessions at intervals over different points in time. We  use  these interval  markers at  the  different  time  points  as a snapshot  equivalent of  the dynamic environment on which to perform a typical log  mining  task  of actual  system  events native to these VMs. The VM environment of our choice is VMware essx3i. When a virtual machine is first powered on, it sets the virtual machine's time (in the basic input/output system BIOS of the VM) to that of the time from the running ESX host.  Assuming the virtual machine is part of a Windows domain; Windows will also attempt to synchronize the virtual machines clock with the domain so long as its current time is within the drift policy of your domains NTP settings.  

Therefore, we find it best practice to synchronize each ESX host with the system's domain controllers and that your domain controllers are synchronized with a peer that synchronizes with an outside source.  This will ensure not only accurate time throughout your domain, but that the VM's clock does not skew from the domains time, between the time they boot-up and the time they get logged into the domain.  Not withstanding ongoing work extends the scope of the case study context to evaluate other cloud domains like Citrix’s XenAppServers and Amazon’s Elastic Clouds within different time zones.

In the above context, the scope of the definitions of point-based and interval- based operators are temporal extensions of relational algebra operators. i.e. temporal variants of  (, (. \, x, and their derivatives. These are basic operators of a   temporal algebra, and they have been investigated in almost all temporal data models. Our definitions can be used to evaluate and classify these operators and models. However the definitions are applicable to all possible temporal operators. For example we have illustrated the application of coalescing earlier in this paper.   


B.   Mixed Data Model   


With  point-based  and  interval-based  models being orthogonal we  get  four  classes  of  operators.  Specifically,  coalescing  is  point-based  but  not  interval-based,  temporal selection  is  interval-based  but  not point-based, temporal  intersection  join is  point-based  and  interval-based, and the  regular  time  shift operator  is  neither point-based  nor  interval-based.   


  From  definitions  4 and 9  it  follows   that  there  exists,  for  the  VM  environment, temporal  data  models that  are  neither  point  nor  interval-based.  In  practice, we  expect  many  models  to  have point-based  and  interval-based operations, which  for  the  purposes  of  this  discussion  we  will  describe  as  mixed  models. 


C.   An Evaluation of Temporal log data models   


In  this  section  we   introduce  a  few  popular  and  traditional temporal data  models  and  incorporate  them as  an  evaluation  of our  criteria for  the VM  environment.   Note  that  we  only  consider  proper  temporal  algebraic  operators i.e. operators  that  take  temporal  relations as  arguments  and  return  a  temporal  relation.   


SQL-92 [11]  extended  with  an  interval  data  type is  based  on the  relational  algebra and  treats  intervals as  atomic values  without any  special temporal  semantics. This means that all operators are time fragment preserving.  Therefore, SQL-92 is an interval-based data model.    It also follows that SQL-92 is not point based.

IXQSL [10] operators are timestamp preserving because they inherit the standard SQL-92 semantics.   In addition, IXSQL provides normalized and non-normalized operations  in order  to  convert  between time  points and  intervals. These  special  operations are  point-based, but  not  interval-based, snapshot equivalence is  preserved, but  interval  fragments  are  not.  Thus IXSQL is a mixed data model.    


TSQL2 [13], unlike  the two  previous  models,  employs   a  temporal  algebra  that  gives  a  special meaning  to timestamps. It  was  one  of  the  design  goals of  TSQL2  to  make  the  format of  timestamps irrelevant.  This is achieved by enforcing a canonical representation based on temporal elements. Thus, clearly TSQL2 is not interval-based.   On  the other  hand, all operators preserve  snapshot  equivalence because  they are defined over the  canonical  representation  of  a  database.  This makes TSQL2 a point-based data model.   


ATSQL [3] introduces sequenced and non-sequenced statements together with corresponding algebras. Non-sequenced statements provide the power of regular SQL-92 statements and are, like SQL-92 and IXSQL statements, interval-based. Sequenced statements are also interval-based. In addition, most sequenced statements are point-based. Coalescing is available to enforce a canonical representation of snapshot equivalent relations. Thus, while clearly interval-based in nature, ATSQL has also a non interval-based operation (i.e. coalescing), which makes it a mixed data model. Temporal Logic [5] is point-based; as the temporal domain consists of points.    


VII.    Conclusions and   Future   Work     


We  have motivated  the argument that  point-based  and  interval-based  operators  are to be  applied  within  a  synchronized  log  event  model  on  the  virtual  machine  environment.  Point-based operators are defined using the notion of snapshot equivalence as outlined by Bohlen’s work. We did this as a basis of demonstrating how time delineates an important characteristic for synchronizing the VM logging requirements for your system administrator environment. We provided this characterization within the context of a proof of concept case study. Further work explores new experiments to perform temporal log mining for compute cloud forensic scenarios within our University environment.  
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