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Abstract: Nowadays, response systems are used jointly with
preventive measures, to ensure an enhanced security level for a
given system. In particular, previous papers focus on balancing
the cost of the response with the impact of the attack. However,
even if an attack was detected, it may not be able to achieve
its objective. In this paper, we present a novel attack response
system, based on the assessment of the likelihood of success of
attack objectives. First, the ongoing potential attacks are iden-
tified, and their success likelihood are calculated dynamically.
The success likelihood depends mainly on the progress of the at-
tack and the state of the monitored system. Second, candidate
countermeasures are identified, and their effectiveness in reduc-
ing success likelihood are assessed. Finally, candidate counter-
measures are prioritized with respect to their effectiveness.
Keywords: response system, success likelihood, attack objective,
dynamic Markov model.

I. Introduction

Current information systems are steadily growing in size and
complexity. On the other hand, such systems are targeted by
higher numbers of vicious attack attempts. Moreover, these
attacks are growing in sophistication. In the past, an attack
consists in executing a simple action (e.g. sending a mal-
formed IP1 packet). Today, a single attack consists in execut-
ing multiple and organized actions/steps in order to achieve
an attack objective.
To counter these threats, intrusion response systems are often
used with preventive measures to provide a higher security
level of a monitored system. A response system launches the
appropriate countermeasure(s) in order to stop the detected
attack(s). In order to select the best countermeasure(s) a re-
sponse system needs an efficient diagnosis to identify ongo-
ing attacks. For the selection (and prioritization) procedure,
several criteria should be considered: (i) identification of po-
tential attack objectives, (ii) success likelihood assessment
of potential attack objectives, (iii) impact assessment of the
attack and the countermeasure. Ultimately, risk-awareness
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provides to the response system a comprehensive evaluation
of the monitored system’s state, in order to identify the most
effective countermeasure: success likelihood and the impact
of the attack, and the impact of the response, are all consid-
ered.
While existing response systems consider the cost (or im-
pact) of the detected attacks to prioritize and launch the
countermeasures, we adopt a different yet complementary
approach which considers the Success Likelihood SL of the
detected attacks. In this paper, we use the SL of ongoing at-
tacks to present a novel response system. For simplicity, we
consider in this paper that all the detected attacks have the
same impact on the monitored system, and that the response
system handles only known attacks. The SL is a relative log-
arithmic metric derived from the time needed to accomplish
the ongoing attack [1]: it indicates how close the attacker is
to achieve his objective(s). Using this metric, the proposed
response system evaluates the effectiveness of each counter-
measure in reducing the success likelihood for the detected
attacks. Finally, the model prioritizes candidate countermea-
sures with respect to their effectiveness. This can be useful
in the case: (i) when several responses which cannot be ac-
tivated simultaneously, or (ii) when responses have a cost or
side effects, or even (iii) when a single response is effec-
tive against several potential attacks. Therefore, the admin-
istrator has to select among several response the most ‘ur-
gent’ and effective one(s). A total defensive-centric view is
adopted: we do not aim to find the most likely intrusion ob-
jective sought by the attacker. In fact, “85% of breaches were
the result of opportunist attacker” [2].
This paper is organized as follows. Section II shows how ele-
mentary attack are modeled, and how attack graphs are con-
structed. Section III presents how the SL of each potential
attack is calculated. In Section IV, we propose a response
model based on a real-time assessment of the likelihood of
success for ongoing attacks, and the effectiveness of candi-
date countermeasures. In Section V, a VoIP use case of an
enterprise environment with numerical results are presented
to illustrate our proposal. Section VI discusses existing and
related work.

 

 

Journal of Information Assurance and Security.
ISSN 1554-1010 Volume 6 (2011) pp. 443–451
© MIR Labs, www.mirlabs.net/jias/index.html

wael.kanoun@alcatel-lucent.com

nora.cuppens@telecom-bretagne.eu

Dynamic Publishers, Inc., USA  



II. Attack Modeling

First, efficient response systems have to recognize first the
ongoing attack(s) in order to respond properly. Attack graphs
depicts the attack steps that were executed on the monitored
system, and may even show potential future steps. Thus, we
rely on attack graph generation techniques to monitor the at-
tack progress. Attack graphs techniques has been extensively
investigated, and several models were proposed in the last
decade. In particular, the semi-explicit approach (e.g. [3, 4])
relies on the description of the pre/post-conditions, which
represents the prerequisites and effects of the elementary at-
tack actions. This approach then finds causal relationships
between these elementary actions and connects them when
such a relationship exists. The correlation procedure then
consists in building a scenario that corresponds to an attack
graph. The semi-explicit approach is generic and flexible be-
cause only elementary steps are specified. In other words, ad-
ministrators are not required to specify every potential attack
scenario. Several attack languages may be used to specify
the elementary attacks (e.g. LAMBDA [5], JIGSAW [6] and
CAML [7]). Since we successfully used LAMBDA (LAn-
guage to Model a dataBase for Detection Attacks) with the
semi-explicit [4] correlation during previous work, it will be
retained in the remainder of this paper. However, the pro-
posed response system can be used with other attack graph
models.

A. LAMBDA Language

We present below a short description of LAMBDA used to
describe elementary attack steps. For a formal and complete
description, interested readers can refer to [5]:

• pre-condition: it describes the information system state
required so that the attacker performs the step. It con-
tains one or several logical predicates.

• post-condition: it describes the information system state
after the execution of the step. It contains one or several
logical predicates.

• sk: introduced in [8], it indicates the minimum level of
skill and/or internal knowledge required to execute the
step successfully. In this paper we consider that 0 <
sk < 1, and that step A is ‘easier’ than B if skA > skB .

• detection: it is used to map the LAMBDA attack model
to the appropriate alert signature(s).

For example (see Figure 1), the elementary attack
sip malformed packet on the machine H2 can be executed
successfully only if (i) the attacker A can access to H2, (ii)
H2 is on and vulnerable, (iii) the attacker knows that user is
registered as Sipext1. Moreover, the crash of the machine H2
is the consequence of this elementary attack.

B. Semi-Explicit Correlation

We say that two LAMBDA models A and B are corre-
lated if the postcondition of A matches the precondition
of B. Thus, it provides a precise diagnosis of the ongo-
ing intrusion scenario by constructing the attack graph [4];
and predicts potential future steps and attack objectives

[9]. An example is shown in Figure 1: If an attacker
launches a sip user discovery, he (or she) will discover (i)
that the victim registered, and (ii) that the victim is using
machine H2. Knowing that, the attacker may send mal-
formed crafted packets to crash the victim’s machine. Thus,
sip user discovery is correlated with sip malformed packet
by matching the two predicates is on(H2) and Knows(A,
useraccess(Siptext1, H1, udp, user)).

Figure. 1: Example of semi-explicit correlation

Using semi-explicit correlation, attack graphs are constructed
from generated alerts, using LAMBDA models. The alerts
generated by the Intrusion Detection Systems (IDS) are
first aggregated and regrouped into meta-alerts. For each
meta-alert, the associated elementary attack (specified with
LAMBDA language) is instantiated. Moreover, potential
future steps and candidate attack objectives are identified
with the semi-explicit correlation. Thus, the non-detection
of some attack steps will not cripple the response system.
Moreover, as soon as one of the following steps is detected,
the non-detection of a previous step will have no effect on
the response system’s effectiveness.
On the other hand, since attack graphs are constructed using
pre-specified LAMBDA models, our response system can
handle only known attacks. Zero-day attacks cannot be rep-
resented in the attack graphs for one of the following reasons:
(i) the ‘new’ attack signature is not yet associated to one of
the existing LAMBDA model, or (ii) the LAMBDA model
representing the ‘new’ attack is not yet specified. We view
zero-day attacks as an issue related to the detection process,
and not to the response process.

III. Assessment of the Success Likelihood of
Ongoing Attacks

A node in the attack graph represents an elementary attack
that were executed and observed successfully, or a potential
step that can be executed in the future (i.e. not yet observed).
These nodes lead to the attack objectives, which constitute
the terminal nodes in the attack graph. For each evolution of
the attack or system state, a new attack graph is instantiated.
This can be due to a new observed attack step: a future step
in the previous graph turns to be executed in the new instan-
tiated graph if the appropriate alert(s) was raised. Addition-
ally, a new attack graph can be also instantiated if a predicate
state of a future step changes (e.g. from true to false or vice

 
  

  
444 Kanoun et al.



versa); which switches the concerned step state (executable
or unexecutable). Therefore, the model will be applied for
each instance of the attack graph. We can summarize the
procedure to the following phases (see [1] for more informa-
tion):

1. decompose the attack graph to several subgraphs (i.e.
one subgraph for each attack objective),

2. transform each subgraph into a dynamic Markov model
[10], and calculate the SL metric,

A. Decomposing the Attack Graph

First, the generated attack graph is decomposed into several
subgraphs; each subgraph is associated to an attack objec-
tive. For instance, an attack graph with n attack objectives
(i.e. terminal nodes) is decomposed into n subgraphs. In
result, each subgraph contains all the future (i.e. not yet ob-
served) nodes which lead to the associated attack objective,
and also contains the already observed steps adjacent to the
future steps. Figure 2 is an example of an attack graph with
three attack objectives, with its decomposition into three sub-
graphs.
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Figure. 2: Decomposition of an attack graph into subgraphs

B. Instantiating Markov Models and Assessing the SL

Each subgraph is transformed into a dynamic Markov Model
that considers the progress of the ongoing attack(s) and the
evolution of the monitored system state. The transition prob-
abilities and sojourn mean time for each step in the subgraph
are calculated. Thus, the transition matrix and exit rate ma-
trix are instantiated for the Markov model associated to the
subgraph. Interested readers may refer to [1] for more de-
tails. Markov Model was chosen because it adds to the at-
tack graphs a ‘temporal’ dimension, which is needed to cal-
culate the SL. This is exactly the same principle used in cryp-
tography: greater the time needed to decipher an encrypted
message, lower is the success likelihood to obtain the plain
message.
For each Markov model, the Mean Time to attack objectives
MTAO is calculated. Finally, for each candidate attack ob-
jective X , we calculate its success likelihood SLx. We use
the logarithmic formula proposed in [1], similar to the one

used to express the magnitude of a physical quantity (cur-
rent, voltage, power, etc.). The success likelihood depicts the
variations of the MTAO metric:

SLx = −20× log10

(
MTAOX −MTAOmin

MTAOX

)
(1)

The success likelihood SLX = f(MTAOX) of an attack
objective X increases rapidly if MTAOX decreases, and
SLX → 0 if MTAOX → ∞ . Thus, if the attacker is closer
to attack objective X , SLX grows exponentially. Ultimately,
if the attacker achieves the attack objective, we will have
SLX →∞.

IV. Response System Based on the Success
Likelihood Metric

This section presents a response model based on real-time as-
sessment of the SL for the ongoing attacks. The model takes
in consideration the real-time evolution of both the attack and
the information system. An evolution could be the result of
a new executed and detected attack step, or the modification
of a precondition of a future attack step in the scenario. First,
candidate countermeasures are identified. Second, each can-
didate countermeasure will be simulated, and SL values will
be re-calculated. Finally, the candidate countermeasures are
prioritized w.r.t. their SL mitigation effectiveness.

A. Identifying Candidate Countermeasures

The anti-correlation approach [11] allows to identify the can-
didate responses along with the scalability consideration: we
do not need to statically associate each countermeasure to
one or several attacks. First, all the responses are mod-
eled with LAMBDA. Then, the association is performed
dynamically using anti-correlation: A countermeasure C is
anti-correlated with an attack A if the postcondition of C
matches the precondition negation of A. The anti-correlation
approach is based upon finding the appropriate countermea-
sures that turn elementary future steps unexecutable, due to
precondition(s) modification. Therefore, the response system
can identify, from a predefined library, the countermeasures
which are capable of blocking an ongoing attack. An exam-
ple is shown in Figure 3: countermeasure drop sip traffic is
capable of blockong the attack sip user discovery by trans-
forming the precondition predicate network access(A,H2) to
false.

B. Simulating the Activation of Countermeasures and Re-
calculating the SL

Candidate countermeasures are identified using the anti-
correlation approach to block future attack steps. As a result,
these countermeasures reduce the SL of one or several at-
tack objectives. Therefore, for a given instance of the attack
graph, each candidate countermeasure will be simulated, and
new values of the success likelihood for the attack objectives
will be calculated. Thus, the effectiveness of a given coun-
termeasure in reducing the SL of attack objectives can be as-
sessed, and compared to other countermeasures.
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Figure. 3: Example of semi-explicit correlation and anti-
correlation

When simulating of the activation of a given countermea-
sure CMV , the same procedure as described in Section III
is applied. The main difference is that the attack steps anti-
correlated with CMV are considered as blocked. In other
words, the time needed by the attacker to execute success-
fully these attack steps will be very high and almost infinite.
Consequently, a high mean sojourn time is assigned to the at-
tack steps blocked by countermeasure CMV . In other words,
a low value (e.g. 10−3 in this paper) will be assigned to the
Markovian parameter exit rate of these attack steps.
For the Kth instance of the attack graph, with the counter-
measure CMV activated, we denote the new value of the
success likelihood for the attack objective X by SLK,V,X .
Moreover, we denote by −→SLk=K,v=V the vector that con-
tains sorted (descending order) SL values of all the attack ob-
jectives, during the step k = K of the attack progress, while
the countermeasure CMv=V is activated:

−→
SLK,V = [SLK,V,1, SLK,V,2, SLK,V,3, · · · ] (2)

C. Prioritizing Candidate Countermeasures

The objective of this phase is the prioritization of candidate
countermeasures with respect to their mitigation effective-
ness of the SL of candidate attack objectives. During the Kth

attack step, and for each candidate countermeasure CMV the
success likelihood vector −→SLK,V that contains the SL of the
candidate attack objectives is calculated. During the Kth

step in the attack progress, we say that countermeasure CMV

has a higher priority than CMV ′ if−→SLK,V <
−→
SLK,V ′ ; where

the < operator is a lexicographic comparison.

Proposition 1 If −→SLK,V <
−→SLK,V ′ then CMV >priority

CMV ′ at Kth step of the ongoing attack.

CMV has a higher priority because it reduces more signifi-
cantly the SL of candidate attack objectives than CMV ′ . The
descending order of −→SLk=K,v=V ensures that the most ‘ur-
gent’ attack objectives are considered first, and their SL are
reduced. Therefore, candidate countermeasures are priori-
tized and sent to the administrator or to the response manage-
ment module. The prioritization can be also useful to deter-
mine which countermeasure should be launched first, when
several countermeasures cannot be activated simultaneously.

V. VoIP Use Case

The case study is a SIP2-based VoIP enterprise service. The
VoIP service (see Figure 4) is composed of a SIP server
on a dedicated network; which acts as a SIP registrar for
the HTTP Digest authentication, and as a SIP router/proxy
for call routing. OpenSER [12] is used as the SIP server,
while the authentication is delegated to a collocated RA-
DIUS server, based on FreeRADIUS [13]. There are three
SIP User Agents (UA) networks: the first for softphones (i.e.
X-Lite [14], S-JPhone‘[15] and Linphone [16]), and the sec-
ond for hardphones (i.e. Thomson, Linksys, Zyxel) which
was divided into wired and wireless networks. The intru-
sion detection infrastructure relies on Snort [17]. For the
Alert Collection and Correlation Engine module, we use the
CRIM prototype [18] that (i) aggregates the collected alerts
and (ii) generates a pre/post-condition graph adopting the
semi-explicit approach. Moreover, CRIM identifies candi-
date countermeasures using anti-correlation. Finally, a Mat-
lab [19] module calculates the SL of each attack objective in
the attack graph, and prioritizes the candidate countermea-
sures.

Figure. 4: VoIP testbed

In order to demonstrate our work, we implemented a set of
elementary attacks. Both SIP related attacks, based on flaws
in the protocol design [20] and flaws in software implemen-
tation, were identified and implemented in the VoIP testbed.
On the other hand, six attack objectives which violates the
operation and security policy were specified (e.g. SIP server
DDoS, user highjacking, injecting audio traffic, SPIT, etc.).
Moreover, candidate countermeasures were implemented us-
ing various shell script languages. Eight countermeasures are
available for the system (e.g. blocking the traffic between the
attacker and the server (or the user), changing the user’s cre-
dentials, encrypting the media traffic, etc.). The number of
LAMBDA models (i.e. elementary attack steps and objec-
tives) used in the attack graph is thirty one. A correlation en-
gine, using the semi-explicit approach, generates the attack
graph (see Figure 5). The attack graph can be divided into
two parts: during the first part, the attacker sends spam mail
with a malicious link to infect potential victims in the en-
terprise network: it is the remote-to-local part of the attack.
In the following scenario, three machines in the enterprise

2Session Initiation Protocol
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Figure. 5: Attack graph of the VoIP use case

network are infected with a bot. In the second part, the at-
tacker being ‘inside’, is now able to perform several types of
elementary actions to achieve one of the attack objectives.

Step 0 of the ongoing attack The attacker did not execute
any attack yet. Having six attack objectives, the attack graph
is decomposed into six subgraphs. Then, the SL for each at-
tack objective is calculated. Figure 6a shows the SL of the
attack objectives (H, I, J, K, L and M), considering the eight
candidate countermeasures. The SL of all the attack objec-
tives have relatively low values because the attacker did not
yet execute successfully any attack step. It is obvious that
CM1 has the highest priority because it is able to stop all
(future) candidate attacks. On the other hand, other candi-
date countermeasures can block some, but not all, candidate
attack objectives.

Step 1 of the ongoing attack The attacker gains a remote
shell and successfully infects three internal machines. Obliv-
iously, this affects the SL of all candidate attack objectives.
Figure 6b shows the SL of the attack objectives, considering
the eight candidate countermeasures at step 1. We notice that
the SL of all attack objectives increased. Since the machines
are now infected with bots, the countermeasure CM1 (kill re-
mote shells) is no more effective. As in Step 0, the highest
priority is for CM2 because it is capable of blocking four ob-

jectives with the highest SL. On the other hand, CM3, CM7

and CM8 can block two attack objectives. Finally CM4, CM5

and CM6 can block only one attack objective.

Step 2 of the ongoing attack The response system should
stop the ongoing attack as early as possible. However, the re-
sponse system might not activate a countermeasure for sev-
eral reasons: the first steps of the attack were not properly
detected (e.g. false positive, false negative, etc.), or the ad-
ministrator did not launch the appropriate countermeasures
because they cost too much, or because it is too late to launch
the candidate countermeasure (e.g. killing a remote shell af-
ter the bot infection of a machine does not stop the ongoing
attack). We consider in this step that the attacker proceeds
and launches an active user discovery attack with SIP entities
fingerprinting attack. We notice that the SL of all the attack
objectives increased (see Figure 6c). We can also note that
the SL of attack objective K rose dramatically; this can be
explained by the fact that the attacker has only one remain-
ing step (i.e. sending malformed packet) to cause a Phone
DoS. Therefore at this step, CM2 has the highest priority be-
cause it is capable of stopping attack objective K (and also
H, I and J), which has the highest SL (i.e. the most ‘urgent’).
CM6 has the second highest priority because it also can stop
attack objective K.

 447Adaptive Response System based on the Success Likelihood of Ongoing Attacks



null Cm1 Cm2 Cm3 Cm4 Cm5 Cm6 Cm7 Cm8
0

5

10

15

S
uc

ce
ss

 L
ik

el
ih

oo
d 

L

Countermeasure CmV activated

 

 
Intrusion Objective H
Intrusion Objective I
Intrusion Objective J
Intrusion Objective K
Intrusion Objective L
Intrusion Objective M

(a) step 0 of the ongoing attack

null Cm1 Cm2 Cm3 Cm5 Cm5 Cm6 Cm7 Cm8
0

5

10

15

S
uc

ce
ss

 L
ik

el
ih

oo
d 

L

Countermeasure CmV activated
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(c) step 2 of the ongoing attack
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Figure. 6: SL of the attack objectives, w.r.t. attack’s progress and activated countermeasure

Step 3 of the ongoing attack The attacker performs a MAC
address discovery and ARP poisoning. After re-evaluation,
Figure 6d shows that the SL of attack objectives L and M in-
creased dramatically. At this step, CM8 (i.e. Encrypting RTP
Media Traffic) has the highest priority, because it is the only
candidate countermeasure capable of blocking these two at-
tack objectives (i.e. L and M).
For each evolution of the attach graph, the administrator or
the response system is supported with a prioritized list of
candidate countermeasures. This prioritization allows the ad-
ministrator or the response system to launch the most effec-
tive and ‘urgent’ countermeasures first, which is useful in
case of countermeasures that cannot be activated simultane-
ously.
Normally, the attack must be stopped as soon as possible
(e.g. kill the shells or disinfect victim machines during step
1). Since intrusion detection systems are not perfect, the
detection of one or several attack steps can be missed. For
instance step 1 may be executed undetected, and thus CM1

was not activated. Hence, since the machines were success-
fully infected, closing the remote shells becomes an obso-
lete countermeasure. That is why the response system will

re-prioritize the countermeasures at each time a new attack
step is detected. Moreover, a given countermeasure cannot
be executed due to system constraints and limitations (e.g.
the enforcement of the countermeasure fails, or the impact of
the countermeasure is too high, or another opposite counter-
measure is already active, etc.). Therefore, even if the attack
was detected, a quick response may not be feasible. How-
ever, the proposed response system can handle such cases
perfectly, by re-prioritizing at each time the candidate coun-
termeasures.

VI. Related Work

Recently, several intelligent intrusion response systems were
proposed. Toth and Kruegel [21] proposed a cost sensitive
approach that balances between intrusion damage and re-
sponse cost in order to choose a response with the least im-
pact. Lee et al. [22] also discuss the need to consider the
cost of intrusions damage, the cost of manual and automated
response to an intrusion, and the operation cost, which mea-
sures constraints on time and computing resources. Similar
approaches were also proposed in [23], [24] and [25]. A gen-
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eral framework for advanced response systems based on risk
analysis approach is defined in [26]; where likelihood of suc-
cess and impact are combined to calculate the risk of detected
attacks.
The generation of attack graphs generation has been an ac-
tive research field in the last decade. During the MIRADOR
project, Cuppens et al. presented in [4] the semi-explicit
approach to correlate elementary attacks described using
LAMBDA [5] . In [3], Ning et al. combined complementary
types of alert correlation methods: (i) those based on the sim-
ilarity between alert attributes; and (ii) those based on prereq-
uisites and consequences of attacks. The work is very close
to Cuppens and Miège’s work which was done independently
and in parallel. Similar models were presented in [6] and [7].
In [27], Sheyner et al. used a model of exploits (possible
attacks) in terms of their preconditions and postconditions
to construct possible sequences of attacks. By contrast, our
method constructs high-level attack scenarios from low-level
intrusion alerts, and reasons about attacks possibly missed by
the IDS. While the previous vulnerability analysis techniques
are focused on analyzing what attacks may happen to a given
system, our approach constructs what is happening to a given
information system according to the alerts reported by IDS.
[1] presents how to calculate the success likelihood of candi-
date attacks using generated attack graphs. Therefore, candi-
date attack objectives can be prioritized. However, [1] con-
siders that each countermeasure may affect a single attack
objective. Thus the prioritization of candidate attack objec-
tives was equivalent to the response prioritization which is
obviously not always true.
Madan et al. in [28] proposed a general framework to assess
the MMTSF (Mean Time to Security Failure) using a Markov
Modeling approach. The main drawback of this framework
is that it does not specify how to calculate transitions rates,
neither how to model atomic attack actions and relation be-
tween these actions. Moreover, this framework does not take
into consideration neither the dynamic nature of an ongoing
attack, nor the real-time state of the monitored system.
In [29], McQueen et al. proposed to calculate the Risk Re-
duction due to installing or modifying security measures (e.g.
updates, firewalls, etc.). The calculation is based on the exist-
ing vulnerabilities in the system. In this approach, an attack
graph is composed of nodes that represent the attack stages.
The edges are associated with time to compromise, which is
calculated in function of the number and types of vulnera-
bilities. This paper does not discuss intrusion response sys-
tems. Furthermore, since this paper presents an offline anal-
ysis model, it does not consider the real-time nature of the
monitored system.

VII. Conclusion

In this paper, a novel response system based on a real-time
assessment of the success likelihood for the ongoing attacks,
is presented. This model takes in consideration the state of
the attack progress and the monitored system state. The SL
metric calculated dynamically can be relevant for the admin-
istrators, and helps them to prioritize and handle the ongoing
attacks. Our model can also offer valuable input for intel-
ligent and automated response systems, which may be risk-
aware or cost-sensitive. Moreover, our model can help to pri-

oritize and launch countermeasures that cannot be activated
simultaneously. Finally, the proposed model was success-
fully validated in a VoIP use case using complex attack sce-
narios that violate operation and security policies. However,
the prioritization considered only the SL of the potential at-
tack objectives. Therefore, we see that our model have to be
combined with cost-sensitive models to take in consideration
the impact of the attacks and the reactions. In other words,
the response system has to consider the risks (i.e. the suc-
cess likelihood and the impact) of ongoing attacks and the
impact of candidate countermeasures. In the future, the ef-
fectiveness of our model to select the best countermeasure(s)
will be explored by combining the Likelihood and the Impact
(thus assessing the real-time risk) of a given attack. We will
explore also the use of Hidden Markov Models in the SL as-
sessment model, to take into consideration the uncertainty of
the attack progress and the monitored system state.
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[4] F. Cuppens and A. Miège, “Alert correlation in a co-
operative intrusion detection framework,” Security and
Privacy, IEEE Symposium on, vol. 0, p. 202, 2002.

[5] F. Cuppens and R. Ortalo, “Lambda: A language to
model a database for detection of attacks,” in Third In-
ternational Workshop on Recent Advances in Intrusion
Detection (RAID’00), Toulouse, France, 2000.

[6] S. J. Templeton and K. Levitt, “A requires/provides
model for computer attacks,” in NSPW ’00: Proceed-
ings of the 2000 workshop on New security paradigms.
New York, NY, USA: ACM, 2000, pp. 31–38.

[7] S. Cheung, U. Lindqvist, and M. W. Fong, “Model-
ing multistep cyber attacks for scenario recognition,”
DARPA Information Survivability Conference and Ex-
position,, vol. 1, p. 284, 2003.

[8] W. Kanoun, N. Cuppens-Boulahia, F. Cuppens, and
J. Araujo, “Automated reaction based on risk analysis
and attackers skills in intrusion detection systems,” in
Third International Conference on Risks and Security
of Internet and Systems, 2008 (CRiSIS ’08), Oct. 2008.

[9] F. Cuppens, F. Autrel, and A. M. et S. Benferhat, “Rec-
ognizing malicious intention in an intrusion detection

 449Adaptive Response System based on the Success Likelihood of Ongoing Attacks



process,” in Second International Conference on Hy-
brid Intelligent Systems, Santiago, December 2002.

[10] W. Feller, An Introduction to Probability Theory and Its
Applications, 3rd ed. Wiley, January 1968, vol. 1.

[11] F. Cuppens, F. Autrel, Y. Bouzida, J. Garcia, S. Gom-
bault, and T. Sans, Anti-correlation as a criterion to se-
lect appropriate counter-measures in an intrusion de-
tection framework, January 2006, vol. 61, no. 1-2, ch.
Annals of Telecommunications.

[12] “The official website of OpenSER: http://www.
opensips.org/.”

[13] “The official website of FreeRADIUS: http:
//freeradius.org/.”

[14] “The official website of X-Lite: http://www.
counterpath.net/X-Lite-Download.html.”

[15] “The official website of SJphone: http://www.sjlabs.
com/sjp.html.”

[16] “The official website Lindphone: http://www.linphone.
org/.”

[17] “The official website of snort: www.snort.org.”

[18] F. Autrel and F. Cuppens, CRIM : un module de
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