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Abstract: Stepping-stone attacks are attackers who use a sequence 

of stepping-stone hosts to initiate attacks in order to hide their 

origins.  The goal of this paper is to find algorithms to correctly 

detect the attacks and have the ability to tolerate the clock skew 

or/and chaff while exhibiting low time complexity. We propose three 

novel algorithms for detecting correlation and similarity of two 

connections not only into and out of a single stepping stone host 

(adjacent streams), but also across multiple stepping-stone hosts.  To 

evaluate the accuracy and efficiency, we conduct extensive 

experiments. We also evaluate how chaff packets and clock skew 

may affect these methods. We present a comparison of the 

algorithms in terms of false rates of detection, and identify one of the 

approaches that can efficiently achieve good performance under a 

variety of circumstances.  

 
Keywords: stepping-stone attack, intrusion detection, network 

security, connection chain, chaff evasion technique, clock skew.  

 

I.  Introduction 

Cybercrime not only threatens the privacy of those who 

use the Internet, but also causes a serious data protection 

problem for the society. A popular technique of choice for 

cyber criminals to maintain anonymity nowadays is 

“stepping-stone attack” (see Figure 1 for an illustration), 

which uses a sequence of stepping-stone hosts to initiate 

attacks rather than directly linked from the intruder’s origin. A 

“stepping-stone host” is a previously compromised 

intermediary host that allows an intruder to login and route the 

traffic to the destination. By routing the attack through several 

intermediate stepping-stone hosts, it becomes practically 

impossible to trace the route back to the originating host. The 

intruder can thus remain their anonymity. The goal of a 

stepping-stone detection system is to detect such attacks and 

protect the victim host from the intrusion. 

A variety of techniques to detect stepping-stone attacks 

have been proposed previously [3],[4],[5]. Most of them 

studied the detection of a single stepping stone host by finding 

correlations of two consecutive connections in a connection 

chain (e.g. in Figure 1, determining if Host E is being used as 

a stepping-stone host by studying the correlation between 

connections 4 and 5). A generalization of the problem is to 

detect a stepping-stone chain across several hosts. Previous 

algorithms do not allow analyzing a correlation across 

multiple stepping-stone hosts (e.g. to determine whether 

Connections 2 and 5 are part of a connection chain).  Since it 

is not realistic to have every host’s information available, it 

may be required to detect the correlation between two traffic 

flows which are not necessarily consecutive in a 

stepping-stone connection chain. For example, if we suspect 

the attack originated from a particular host (by other means), 

we can try to correlate the connections on both ends to 

confirm such an attack. 

Correlating two streams of packets in the multi-hop 

stepping-stone pair is very similar to the problems in Pattern 

Recognition. In this paper, we propose three Dynamic 

Programming (DP) based pattern recognition schemes for 

finding the correlation of two consecutive connections of two 

adjacent or non-adjacent connections across intermediate 

host(s). We examine which schemes make better performance 

under different circumstances such as clock skew and chaff 

involvement. The preliminary results of this work were 

published in [17]. 

The rest of this paper is structured as follows. In the next 

section we discuss the background of stepping-stone 

detections and the motivation of this paper. Section 3 provides 

the problem definition and the notations used. We proposed 

our novel schemes which inspired from pattern recognition 

approaches in Section 4. The experiments that we designed to 

compare several new and previous detection methods and the 

performance of the schemes are presented in Section 5. 

Finally, the conclusion is made in Section 6. 

II. Background and Motivation 

To date, most of the approaches for detecting encrypted 

stepping-stone connections are timing-based. There were two 

types of stepping-stone detection approaches.  The first type 

was to distinguish the long stepping-stone connection chains 

from short, ones such as [1],[2].  Recently, Huang et al. [2] 

used an approximated round-trip time (RTT) to estimate the 

chain length with the intention of differentiating a long 

connection chain from a short one.  

In this paper, we used the second type of approach, which 

was to find the correlation of a pair of connection flows so as 

 
 

Figure 1. Example of Stepping-Stone Attack 
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to cut off the incoming flow from the suspicious host.  There 

were some well known approaches [3],[4],[5] that find the 

correlation using the timestamps of the incoming/outgoing 

packets to/from a stepping-stone host. Donoho et al. [6] 

investigated the restrictions on the ability of intruders to hide 

their traffic through timing perturbation and packet padding. 

Blum et al. [7] proposed the methods that considered both 

delay and chaff insertion (existed separately) by calculating 

the amount of packets needed to confidently detect stepping 

stone flows. Moreover, Kuo and Huang [8] introduced a 

one-to-one order-preserving mapping algorithm DMIM 

which was proven to have close to 100% accuracy between a 

pair of incoming and outgoing flows. Since the 1-1 mapping 

does not always hold due to the traffic issues (such as packet 

loss), DM2 algorithm in [9] was later designed to solve this 

problem.  

Recently, Kuo and Huang [16] proposed another algorithm 

named Optimal Subsequence with Merge (OSSM) with 

O(n
2
m

3
) time complexity where n

 
 and m are the number of 

packets in two monitoring traffic streams.  The main 

advantages of OSSM algorithm were: it avoided the possible 

clock skew on the host by mapping the intervals of two 

adjacent packets instead of the packets timestamps; and it 

allowed a limited amount of injected chaff packets. 

In order to use single-hop stepping-stone detection 

algorithms to trace the intruder, it will require all the 

intermediate hosts to collaborate with the investigator. That is 

not practical when these stepping-stone hosts belong to 

different organization and maybe reside in different countries.   

If we suspect an intrusion coming from a particular host, we 

can compare the streams on both ends of the chain to confirm 

if they belong to the same chain without knowing much about 

the intermediate hosts. . One of our goals is to design a method 

of detecting the correlation between two traffic flows across 

multiple stepping-stone (not necessarily adjacent) hosts.   

Clock skew is another issue that may cause inaccurate 

matching for which most of the single-hop detection 

algorithms did not have to take into consideration. On the 

Internet, clock skew is denoted as the difference in time 

shown by the system clocks at different hosts on the network.  

Although the Network Time Protocol (NTP) is widely used on 

the Internet for synchronizing the clocks of systems, not all 

Internet hosts synchronized the clock with it. Although OSSM 

algorithm [16] is able to deal with clock skew and some 

injected chaff, it has the drawback of high time complexity. 

Therefore, a second objective of this paper is to design an 

efficient algorithm that can avoid the clock skew issue.  

Most of the recent timing-based approaches make an 

assumption that the intruder is willing to accept a maximum 

tolerable delay Δ (since humans are not willing to work over 

interactive connections with very long latencies) and the delay 

of each packet must be in the range of [0, Δ). Thus an 

important issue in the past is to find a suitable value for the 

maximum tolerable delay is a given environment. Our last 

objective is to design a method without making such an 

assumption. 

III. Problem Definition 

This paper considers the problem of detecting multi-hop 

stepping-stone stream pairs under the following assumptions: 

1. Content of the packets are encrypted. 

2. Only two streams of packets are available and there 

is no need to know other streams between them. 

3. There may not be a one-to-one mapping between the 

two streams due to network issues, such as packet 

loss. 

4. The timestamps on the two streams may have a clock 

skew. 

5. Intruders may introduce chaff packets to evade 

detection. Thus one stream of the two under 

investigation may include some chaff packets and 

the other may not. 

In this work, each connection includes a list of packet 

timestamps. Our strategy is to assign a dissimilarity score for 

a pair of connections, and if the dissimilarity value is below a 

user predefined threshold, an alarm indicating a potential 

stepping-stone attack is triggered. The reason to use a 

dissimilarity score instead of a similarity score is inherited 

from the Dynamic Time Warping algorithms that our 

algorithm was derived from. In those algorithms, there is a 

cost associated with the difference of time sequences.  Here 

are some notations used in this paper: 

 R: A reference stream R = {r1, r2, r3, …, rn} of length n 
which contains the timestamps of the packets in 
increasing order. 

 T: A target stream T = {t1, t2, t3, …, tm} of length m 
which contains the timestamps of the packets in 
increasing order. 

 d(p,q): The distance between points rp and tq typically 
measured in Euclidean distance.  

 cost(p,q): The local cumulative difference between (up 
to) the aligned substreams {r1  …, ,rp} and {t1, …,  tq} 
in the two time series. 

 Dis(R,T): The dissimilarity score between stream R 
and stream T. The higher the score, the less 
similarity of two streams. 

To overcome the obstacles mentioned in last section, we 

aim to find some methods that can intelligently avoid the 

disturbances. The idea in this paper is inspired by some DP 

based pattern recognition techniques [14] which are variations 

of Dynamic Time Warping (DTW) [10],[11], with application 

areas such as handwriting matching [12], speech recognition 

[15] and incomplete time series to post-stroke rehabilitation 

[13], etc.  DTW technique not only measures optimal 

difference (dissimilarity) between two sequences but also 

solve the problem of time scaling (warps non-linearly by 

stretching or shrinking it) in time series. The basic idea is 

locally recovering the time axis in order to minimize the local 

cumulative difference between the aligned points in two time 

series R and T, and the possible alignments considered include 

all local compressions and shifts. DTW technique allowed 

one-to-many or many-to-one mapping, which tolerated an 

element on either stream to be mapped more than once. It is 

stated more formally in (1):  
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IV. Our Schemes 



 

It uses the local distance d(p,q)  (Euclidean distance is used 

here) plus the minimum of three given values cost(p,q-1), 

cost(p-1,q), cost(p-1,q-1) to calculate cost(p,q) iteratively 

where p = 1, …, n and q = 1, …, m.  Dissimilarity score of two 

time-series R and T is always saved in cost(n,m). The time 

complexity is O(nm), because all the matching possibilities 

need to be considered to ensure the optimal answer found.  

OSSM algorithm [16], on the other hand, uses the merge 

function to skip the outliers on the target stream, and uses a 

constant penalty (ρ) function to skip the outliers on the 

reference stream. During the one-to-one mapping, OSSM 

allows an interval on the target stream to merge with its 

previous intervals, one at a time until the smallest difference 

(the difference between an interval on reference stream and its 

corresponding interval(s) on target stream) among the merged 

intervals was found.  The OSSM algorithm is defined in (2): 

 

                               

                                       

                         
                  

 

                

           
                                                                        

                                                                        
  

 

              

                                                 

                      

                  
                                                                 

                                       
  

                     

                                
 

According to the assumption that the clock skew between 

each host is unknown, it is very likely that either the reference 

or target connection has a shifted timeline. Unfortunately, 

DTW technique returns higher dissimilarity score as the clock 

skew increases and the attack pair may be misidentified as 

normal pair. So, we present our first scheme named DTW 

with Sliding Window (DTWW) as a solution. The idea 

(shown in Figure 2) is to take a subsequence of timestamps 

with a fixed time window w from the end of the downstream 

connection as the reference stream, and do a sliding window 

operation on the upstream.  

The sliding window starts from the beginning point and 

moves a packet at a time. Each window of the timestamps 

after a move is treated as the target stream. Then it uses (1) 

above to measure the dissimilarity score between each pair of 

the reference and target streams. The optimal (minimum) 

dissimilarity score of all pairs denotes the final dissimilarity 

for this connection pair. The time complexity is O(nm(l-w/n)), 

where l is the duration period.  In the case it is unclear which 

stream is the upper stream, we can test both cases and one will 

work much better than the other one.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Example of sliding windows using DTWW 

algorithm 

From our experience, the selection of the beginning point 

does affect the result.  This method is the improvement of [17]. 

According to [17], the sliding window starts from the 

beginning point and moves a fixed time interval at a time (1 

second has been used in [17]).  In the current version, we 

move the window to directly the next packets.  This 

improvement not only reduces the time required but also 

improves the accuracy of the algorithm.  Approximately 

3%~6% of improvement on the false negative rate can be 

achieved with the same clock skew. 

An example to demonstrate the effectiveness of this 

algorithm can be seen in Figure 3. The reference stream tests 

the clock skew from -10 seconds to +10 seconds with an 

increment of 1 second at a time. According to the figure, the 

optimal dissimilarity score is 0.002 second at zero shifting 

time (no clock skew).  For normal pairs of streams, the 

dissimilarity are generally much higher than those of the 

attack pairs.  Not only the dissimilarities of the normal pairs 

are within a range they also fluctuate.  On the other hand, the 

dissimilarity of the attack pairs has a distinct U-shape with a 

minimum in the middle.  Thus our algorithm is set to look for 

the minimum point in such a U-shape curve and select the 

dissimilarity at the minimum point as the actual value. 
 

 
Figure 3. Example of using DTWW for a normal pair and an 

attack pair with the clock skews from -10 to +10 seconds. 
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If we draw lines matching a packet in the reference stream 

to it’s corresponding packet in the target stream (see Figure 4 

for example), we will see that these lines have very similar 

slopes if the matching is a correct one. So our next algorithm 

will be trying to find all these “slope” as close to each other as 

possible. One of the ways to solve the clock skew issue is to 

use the “slope” or so-called delay between a reference packet 

and a target packet instead of using the packet timestamps or 

the interval between two consecutive packets.  It is measured 

by the local distance d(p, q) without using absolute value (a 

slope may be positive or negative).  Slope correlation then 

compares the difference of two slopes which will not be 

affected even though the time is shifted on one flow. Such a 

slope-based scheme is called Dynamic Time Warping with 

Slope (DTWS). This method has no restriction on which flow 

becomes reference stream and which becomes target stream.  

Since it considers all the possibilities for the optimal matching, 

its time complexity is O(nm). DTWS algorithm is formally 

defined in (3): 

 

                              

              

                             

                                 

                             

  

                   

 

DTWS scheme uses the minimum of three given slope 

correlations to calculate cost(p,q) repeatedly where p = 1, …, 

n and q = 1, …, m.  An example of using this algorithm is 

described in Figure 4.  Based on the definition, cost(4, 5) is the 

minimum of cost(5, 4)+|d(r5, t4)-d(r5, t3)|, cost(4, 3)+|d(r5, 

t4)-d(r4, t3)| and cost(4, 4)+|d(r5, t4)-d(r4, t4)|.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Example of comparing the slope correlation using 

DTWS algorithm 

Both DTWW and DTWS schemes have a main limitation, 

which is particularly sensitive to outliers. In other words, they 

always match the reference stream to the whole target stream 

no matter whether the target stream had a longer length (due 

to network problem or chaff) than the reference stream. 

Optimal Slope Alignment (OSA) scheme is designed to solve 

such potential problems. The goal of such scheme is to find 

the subsequences R’ of R and T’ of T such that R’ best matches 

T’. Occasionally, an extra packet may appear on the reference 

stream which may cause serious misalignment of packets. 

Thus the unique feature of the next algorithm is that we allow 

some of the packets in the reference stream to be “skipped.”  

Note that we have to do this carefully because clearly if we 

skip all packets the cost can go down to zero. So we have to 

add some type of penalty for skipping a packet. 

Once more, OSA method compares the slope correlation, 

(3) 

 

ALGORITHM I. Optimal Slope Alignment (OSA) 

Algorithm OSA(R,T,n,m,ρ) 

//initialization 

for (q=0; q<m; q++)    

    cost(0,q) = 0;   

 

//calculate all possible costs 

for (p=1; p<n; p++){ 

    for (q=0; q<m; q++){ 

        for (k=0; k≤q; k++){ 

            currSlope = tq-rp; 

            prevSlope = tk-rp-1; 

            slopeDiff = |currSlope-prevSlope|;          

            //give a penalty if it’s many-to-one mappings 

            if(k==q)   slopeDiff= ρ*slopeDiff; 

            //update the cost, when there is a smaller one 

            if(cost(p,q)>cost(p-1,k)+slopeDiff) 

                cost(p,q) = cost(p-1,k)+slopeDiff; 

        } 

    } 

} 

//find optimal solution 

minCost= ; 

for (q=n-1;q<m;q++){  

    if(cost(n-1,q)<minCost)   minCost= cost(n-1,q); 

} 

DisScore=minCost;       

 

 Target 
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B. Dynamic Time Warping with Slope (DTWS) 

C. Optimal Slope Alignment (OSA) 



 

so the local distance d(p, q) allows either a positive or 

negative value.  It assumes that the reference stream is shorter 

than or equal to the target stream (allows to match partial 

target stream) and both reference and target streams may 

contain outliers. OSA scheme has the ability to skip outliers 

during the matching process, restricting that no points on the 

reference stream can be mapped more than once. It skips the 

outliers (chaff injected by intruders on a purpose to evade the 

detection) from the target stream without penalty, and 

introduces the penalty ρ for skipping on the reference stream 

(extra packets due to network issue). The optimal structure of 

OSA is formally defined in (4): 

 

                              

         

  

                                                                                                          

      
 

 
                                             

                                      
   

                                

 

The penalty ρ is a user defined parameter between 0 and 1 

if k equals q. Figure 5 illustrates an example of using such a 

slope correlation. This algorithm uses the minimum of all 

possible slope correlations to calculate cost(p, q) repeatedly 

where p = 1, …, n and q = 1, …, m. Based on the definition, 

cost(5, 4) is the minimum of cost(4, 4)+ρ×|d(r5, t4)-d(r4, t4)|, 

cost(4, 3)+|d(r5, t4)-d(r4, t3)|, cost(4, 2)+|d(r5, t4)-d(r4, t2)| and 

cost(4, 1)+|d(r5, t4)-d(r4, t1)|. 

The details of the algorithm are given in Algorithm I.  For 

initialization, OSA scheme sets the distance between the first 

point in R and every point in T to 0 and infinity for all other 

possible matching.  In the main loop, p goes over each point in 

R stream and q goes over each point in T stream while k goes 

over points in T stream up to the q
th

 point, respectively. Each 

node for OSA scheme is updated only when there is a smaller 

dissimilarity score from a connected node in the previous row, 

and guarantee to return the cost of the optimal (shortest) path 

leading to every node.  In other words, the minimum value in 

the last row is the optimal score between two compared 

streams.  Thus the complexity of OSA algorithm is O(nm
2
).  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Example of comparing the slope correlation using 

OSA algorithm 

V  Comparison of the Schemes 

The goal of the comparison is to inspect the accuracy and 

the performance of the various schemes. DTW and OSSM 

schemes are used to compare with our schemes. Whether an 

attack alarm is raised or not is based on the thresholds 

supplied by the respective schemes.  Since the standards of 

how to calculate the dissimilarity scores are different for each 

scheme, the dissimilarly scores are not comparable across all 

of them.  Hence, we use the false positive rate (FPR) and false 

negative rate (FNR) as the metrics to compare all the schemes. 

In order to test the effectiveness of the correlation 

algorithms between two traffic flows (adjacent or not), we 

collect the traffic flows into and out of every host along this 

chain. Thus we first set up a stepping-stone connection chain 

with 7 intermediate stepping-stone hosts. This is done by 

using secured connection SSH to link different remote servers 

one followed another under various UNIX operating systems. 

An illustration of the connection chain setup is depicted in 

Figure 6 below.   

(4) 

 
Figure 5. An example of the setup for the stepping-stone traffic flow collection 
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For the experiments, we have created several long distance 

flows. We have prepared three hosts far away from our 

campus  (Host 1 in Wisconsin, USA, Host 2 in Shanghai, 

China, and Host 3 in Chicago, USA), and all others severs are 

on our campus network in Texas, USA. The chain is linked 

with a local host and a long distance host alternatively so that 

we can capture packets on all streams in the chain.  For 

instance, one of the chains is linked in the order as follows: 

local → Wisconsin → local → Shanghai → local → Chicago 

→ local. This setup allows us to analyze chains of different 

lengths with the same packet contents and timing information. 

All the flows are captured from live network connections. 

This alternating setup allows us to collect data of various 

lengths.  

To generate traffics, we have three users (acted as three 

attackers) from three separate local hosts linked to the same 

stepping-stone chain and then connected to the corresponding 

victim’s machine in different locations. The collection has 

been repeated 10 times on different dates, and the order of the 

three long distance hosts is different each time, even though 

the length of the chain remains the same. The users typed at 

their own pace and were only approximately synchronized at 

the beginning of the test. 

The collected data contains 30 (3 users times 10 

collections) chains with 7 traffic flows (each from 0 hop to 6 

hops). Of all combinations on each hop, there are 30 streams 

(attacker i to victim i) which serve as stepping-stone attack 

connections and the rest of 60 (attacker i to victim j where i ≠ j) 

streams are acting as normal connections. The hop denotes the 

distance between the hosts or the number of intermediate 

hosts between the streams. For example, 0 Hop represents the 

comparison across a single stepping-stone host (Host A), 

which compares connection Cu,0 with connection Cu,1, where u 

=1, 2, 3; and 1 Hop denotes the comparison across two 

stepping-stone hosts (Host A and B which compares 

connection Cu,0 with connection Cu,2, where u = 1, 2, 3).  Of 

each stream, we took 60 seconds as the duration time for 

packet collection.  For we set DTWW scheme’s window w to 

20 seconds and the starting point of each sliding window is 

increased at 1 second each time during the experiments. 

Essentially, we try to classify stepping-stones flows into 

two groups in which one is the target named “attack” if there 

is strong correlation between streams and the other one is 

“normal”. We conduct the study in a way that none of the 

investigators knows the locations or number of the 

stepping-stone hosts when the data are analyzed. We 

considered the following four scenarios on our stepping stone 

problem: 

Scenario 1: Neither clock skew nor chaff exists, 

Scenario 2:  Only clock skew exists, 

Scenario 3:  Only chaff exists, and 

Scenario 4:  Clock skew and chaff exists simultaneously.  

To validate our algorithms, we have to computer the 

accuracy of the classification. In all the correlation 

algorithms, we classify a pair of streams as attack if the 

dissimilarity is low (i.e., they are similar). Thus one issue that 

we have to deal with is to determine the threshold that 

separate attack from normal. Since each scheme computes the 

dissimilarity in their own way, they need to assign their own 

unique threshold. The threshold certainly depends on the 

network traffic and the testing environment such as operating 

systems etc. It is not practical to produce a number that can be 

used everywhere. Hence, we use the false rates,  false positive 

rate and false negative rate, of the schemes to measure their 

performance. The false positive rate (FPR) represents the 

proportion of absent events that yield positive test outcomes, 

i.e., the ratio of normal connections falsely identify as the 

stepping-stone attack connections.  On the other hand, the 

false negative rate (FNR) represents the proportion of present 

events that yield negative test outcomes, i.e., the ratio of 

stepping-stone attack connections misidentify as the normal 

connections. 

Thus we shall describe our algorithm on selecting these 

thresholds. Our algorithm is based on machine learning where 

part of the data are used to train the system to derive a 

threshold and other data are used to test the effectiveness of 

the threshold. Each threshold is obtained via Leave-one-out 

cross validation.  We split the original data into two sets. One 

sample is used as training data and all other data is used as the 

testing data. We use training data to generate the threshold 

and assign the similarity scores for the testing data.  This 

operation is repeated n times (n is the number of samples).  At 

each time, the training set cannot be redundantly assigned and 

a similarity score is generated. If the dissimilarity scores of 

both normal and attack are overlapped, the threshold is set to 

the 90 percentile (targeting 10% false positive rate) of the 

combined scores across the cross validation. Otherwise, if 

there is a gap between the dissimilarity scores of both classes, 

the threshold is set to the top 20 percentile of the gap. Note 

that the gap was the minimum of the normal dissimilarity 

scores minus the maximum of the attack dissimilarity scores. 

As we explained in the previous section, skipping (not 

matching) some packets from reference stream R and target 

stream T is necessary, because both streams may contain some 

dummy packets.  However, skipping too many packets of 

sequence R reduces the distance cost between two streams and 

causes the false positive rate to increase. On the other hand, 

skipping not enough packets of sequence R increases a chance 

of accidental matches (tolerate some extra packets due to 

network issue) and causes the true positive rate to drop. To 

prevent this from happening and to find the best possible 

correspondence of subsequence R’ of R and T’ of T, a suitable 

penalty ρ for skipping packets is has to be determined.  

We study the differences of dissimilarity score between 

various numbers of penalties (in 0.2 second increments) 

without making any assumptions of the underlying statistical 

distribution.  The result is summarized in Figure 7 above.  

Each attack box-plot contains 30 samples and each normal 

box-plot contains 60 samples.  The data used in this 

experiment was with consecutive connections.  Note the 

bottom and top of the box are always the 25th and 75th 

percentile (the lower and upper quartiles), the band near the 

middle of the box is the 50th percentile (the median), and the 

ends of the box represent the minimum and maximum of all 

the data.  Based on the figure, we can see setting penalty to 

approximately 0.8 can give us the maximum range between 

the separation of attack pairs and normal pairs.  However, we 

need a more systematic way to find the optimal penalty. 
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B. Experiment Design 

C. Dissimilarity Threshold and False Rate 

D. Penalty Selection of OSA Scheme 
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Figure 7.  Box-Plot with various penalties. a) represents 

the results of stepping-stone attack connections; b) shows the 

results of  normal connections. 

 

The optimal penalty may vary because of the different 

network traffic environment.  In order to define the optimal 

penalty for different data set, we extract five points with even 

interval (incremented by 0.2) between the possible range 0 

and 1 and develop a distribution model for these points (2
nd

 

order, polynomial trend-line is suggested and used here).  

Then the trend-line can be used to compute the peak over 

penalty (extreme value).  The result of finding such peak is 

displayed in Figure 9. We also investigate the difference of 

using points from the median (y = -42.63x
2 
+ 69.72x - 4.685), 

25
th

 (y = -37.50x
2 

+ 61.68x - 3.792) and 75
th

 (y = -31.75x
2 
+ 

51.83x - 3.077) percentiles and find the results of the peak 

over penalty are consistent (0.818, 0.822 and 0.816).  A user 

may use either the median, 25
th

 or 75
th 

percentiles
 
to find the 

optimal penalty of own set of data.  We use 0.819 (the average 

of all three values) as the penalty throughout this paper. 

 

 
 

Figure 9. Trend-lines of median, 25th and 75th percentile 

based on the results from Figure 7 - Normal. 
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Figure 8.  Dissimilarity Scores of each hop for algorithm DTWW, DTWS, OSA, DTW and OSSM 
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We firstly investigate the schemes’ performance without 

involving any clock skew or chaff. Based on the results 

provided in Figure 6, we learned that the normal connection 

pairs stay constant with different hops, while the attack 

connection pairs slightly increase the dissimilarity score with 

the increasing number of hops between two connections. 

Hence, we conclude that when the distance of two 

connections is long (long stepping-stone connection chain), 

the accuracy of the detection may suffer.   

To tolerate the clock skew in the detection, algorithm 

OSSM has used the “interval” along two adjacent packets to 

construct the detection. Our schemes use slope (delay) 

between a reference packet and a target packet to find the 

correlation.  In this section, we investigate the impact of the 

clock skew on the discussed schemes.  We use the same data 

as described previously and then inject a fixed length time 

delay for every packet in the target stream.   

 

We present the performance results of having 3 seconds 

clock skew are illustrated in Table I. There are 100% FNR for 

DTW scheme and 17%~27% FNR for DTWW scheme. It 

indicates that using the sliding window operation does 

improve the performance of DTW scheme. However, because 

of the many-to-many operation and timestamp correlation, 

DTW and DTWW may falsely map a packet to several others 

and result in a high dissimilarity score. Although OSSM also 

uses the interval correlation, it supports one-to-one mapping 

operations.  Therefore, it returns 0% false rate. Both DTWS 

and OSA schemes have 0% false rate, because they use slope 

correlation which does not change the difference when clock 

skew is present. Hence, using the slope correlation can resolve 

te clock skew issue well. 
 

Table II.  False Rates for DTW, OSSM, DTWW, DTWS and 

OSA algorithms. Data contains clock skew of 3 seconds. 
 

H 

O 

P 

ALGORITHMS 

  DTW OSSM DTWW DTWS OSA 

Corr. Time Interval Time Slope Slope 

0 
FPR 0% 0% 0% 0% 0% 

FNR 93% 0% 17% 0% 0% 

1 
FPR 0% 0% 0% 0% 0% 

FNR 100% 0% 25% 0% 0% 

2 
FPR 0% 0% 0% 0% 0% 

FNR 100% 0% 17% 0% 0% 

3 
FPR 0% 0% 0% 0% 0% 

FNR 100% 0% 25% 0% 0% 

4 
FPR 0% 0% 0% 0% 0% 

FNR 93% 0% 27% 0% 0% 

5 
FPR 0% 0% 0% 0% 0% 

FNR 100% 0% 21% 0% 0% 

6 
FPR 0% 0% 0% 0% 0% 

FNR 100% 0% 21% 0% 0% 

It is very likely that intruders may inject chaff packets 

into the traffic and remove them later to decrease the 

possibility of being detected. Thus, we examine the tolerance 

of our schemes in the presence of chaff.  We evaluate the 

performance of the algorithms when the chaff packets are 

involved by using the same data. The chaff packets obeying 

the Poisson distribution are inserted into the target stream at a 

chaff rate (CR). As a restriction, the chaff packets can only be 

added on just one side of streams and the stream injected with 

chaff packets will be treated as the target stream.  We assume 

adding chaff packets to either incoming streams or outgoing 

streams would not affect the overall results as long as only one 

side of streams is involved. The chaff rate is the number of 

chaff packets divided by the number of original packets on 

that particular injected stream. We assume that the chaff 

packets can only be added on just one side of streams. 

The performance results are shown in Table II below. 

Unfortunately, DTW, DTWW and DTWS schemes are not 

able to tolerate the chaff packets even with a low 50% chaff 

rate (more than 80% false rate).  OSSM is able to tolerate up 

to 150% chaff rate with a maximal of 4% FPR and 17% FNR.  

 

Table I. False Rates with various chaff rate for the five algorithms. 
 

H 

O 

P 

 ALGORITHM 

DTWS OSSM DTWW DTWS OSA 

CR% 0 50 0 50 100 150 0 50 0 50 100 0 50 100 150 200 250 300 

0 
FPR 

FNR 

0% 

0% 

0% 

100% 

0% 

0% 

3% 

0% 

0% 

0% 

3% 

0% 

0% 

0% 

0% 

93% 

0% 

0% 

0% 

83% 

0% 

93% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

3% 

0% 

8% 

0% 

1 
FPR 

FNR 

0% 

0% 

0% 

100% 

0% 

0% 

3% 

0% 

0% 

0% 

3% 

0% 

0% 

0% 

0% 

93% 

0% 

0% 

0% 

83% 

0% 

93% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

3% 

0% 

7% 

0% 

2 
FPR 

FNR 

0% 

0% 

0% 

100% 

0% 

0% 

3% 

0% 

0% 

0% 

3% 

0% 

0% 

0% 

0% 

93% 

0% 

0% 

0% 

83% 

0% 

93% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

3% 

0% 

7% 

0% 

3 
FPR 

FNR 

0% 

0% 

0% 

100% 

0% 

0% 

3% 

0% 

0% 

0% 

3% 

0% 

0% 

0% 

0% 

93% 

0% 

0% 

0% 

90% 

0% 

93% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

2% 

0% 

7% 

0% 

4 
FPR 

FNR 

0% 

0% 

0% 

100% 

0% 

0% 

3% 

13% 

0% 

13% 

3% 

7% 

0% 

0% 

0% 

92% 

0% 

0% 

0% 

90% 

0% 

93% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

1% 

0% 

6% 

0% 

5 
FPR 

FNR 

0% 

0% 

0% 

100% 

0% 

0% 

4% 

25% 

0% 

17% 

4% 

17% 

0% 

0% 

0% 

92% 

0% 

0% 

0% 

93% 

0% 

91% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

0% 

1% 

0% 

6% 

0% 

6 
FPR 

FNR 

0% 

0% 

0% 

100% 

0% 

0% 

4% 

25% 

0% 

17% 

4% 

17% 

0% 

0% 

0% 

92% 

0% 

0% 

0% 

93% 

0% 

91% 

0% 

0% 

0% 

1% 

0% 

0% 

0% 

0% 

0% 

0% 

1% 

0% 

7% 

0% 
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E. Performance without Clock Skew and/or Chaff 

F. Performance with Clock Skew Issue G. Performance with Chaff Involvement 

On the positive side, all three of our schemes can find the 
gap of the dissimilarity score between attack and normal up to 
6 hops. Figure 9 shows the worst case scenario, since each 
attack point in the figure represents the maximum dissimilarity 
score out of all 30 comparisons and each normal point 
represents the minimum dissimilarity score out of all 60 
samples. All schemes return 0% false positive rate and 0% 
false negative rate among all the comparisons of up to 7 
stepping-stone hosts (0 to 6 hops), while the attackers do not 
insert any chaff packets into the traffic flow. 



 

OSA scheme is able to tolerate up to 300% chaff rate with the 

maximal of 8% FPR and 0% FNR.   This is because OSA was 

designed to skip chaff packets without penalty.   

The previous experiments use only one threshold to 

compare. By varying the thresholds, we obtain different 

tradeoffs between false positive and false negative rates.  We 

further investigate the performances of those schemes using 

The Receiver Operating Characteristic (ROC) curve.  This 

curve could display the relative trade-offs between the true 

positive rate (benefits) and false positive rate (costs) for the 

schemes. Please note that true positive rate TPR = 1- false 

negative rate FNR. We know that the curves close to the upper 

left corner represent the better performance since the upper 

left corner represents 100% sensitivity (no false negatives) 

and 100% specificity (no false positives).   

In this paper, we hypothesize that correlation detection 

between two traffic connections may exist across multiple 

hosts even with the presence of time skew and chaff packets. 

To validate it, we design three dynamic programming 

algorithms, inspired from pattern recognition techniques. 

These approaches rely on either repeatedly doing the 

comparison with a sliding windows, the interval correlation or 

the slope correlation. The connections analyzed in this work 

can be adjacent (as a special case) or across multiple hosts. 

The paper also aims to find ways to reduce the effect of clock 

skew and chaff issues while keeping relatively low time 

complexity. 

Our experiments show interesting results under four 

different scenarios. If no clock skew or chaff packet exists, all 

three of our schemes gives 0% false rate in all of the tests up to 

a length of 7 stepping-stone hosts. When the clock skew is 

involved, DTWS and OSA schemes still remain 0% false rate 

by using slope correlation.  Although DTWW scheme using 

sliding window operation shows a 27% FNR in our 

experiment, it does improve the performance of DTW scheme. 

We believe that this sliding window scheme is still valuable to 

be used in combinations with other pattern recognition 

schemes in order to deal with the clock skew issue. When the 

chaff packets are  present, OSA scheme turns out to uniformly 

dominate other schemes. The similar result is concluded by 

looking at the ROC curve when involving both clock skew 

and chaff. In addition, Our novel scheme - OSA is a faster 

algorithm with a lower time complexity O(nm
2
), compared 

with the time complexity O(n
2
m

3
)  for OSSM scheme.  

Because OSA finds the slope correlations of two flows, not 

only clock skew and chaff packets are ignored but also the 

parameter of maximum tolerable delay can be omitted. Hence, 

 
 

Figure 10. ROC curves for OSSM, OSA and DTWS schemes 
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VI. Conclusion 

H. Performance Involved Both Clock Skew and Chaff  

Figure 10 displays the ROC curves for DTW, OSSM, 
DTWS, OSA and OSSM. The results are taken from the 
average of all the hops (0 to 6 Hops) with a 0% to 200% chaff 
rate (50% CR increments) injected into the target streams. In 
addition, there are 3 seconds of clock skew. OSA scheme 
(0.96% FPR corresponds to 99.98% TPR) seems to uniformly 
dominate DTW, DTWW and DTWS schemes and it is 
somewhat better than OSSM scheme. Considering the 
problem’s complexity, the result for OSA scheme is exciting. 



 

OSA scheme can detect stepping-stone attacks with low time 

complexity, even in complex circumstances such as clock 

skew and chaff included. 

These detection algorithms are useful in several situations. 

A large portion of intruders are actually insiders according to 

many studies. In such cases, the algorithm can be used to 

compare connections entering and exiting a local area 

network. The algorithm can also be used to confirm attacks 

from a host that we suspect (through other means).  For 

example, if we suspect Host A is hacking into Host V, we can 

compare the suspected incoming stream to Host V and the 

outgoing packet streams of Host A. Our algorithm such as 

OSA can be used to confirm or reject such suspicion with 

reasonable accuracy. There is no need of collecting any 

packets on the intermediate hosts.  
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