

Detecting Multi-Hop Stepping-Stone Pairs with

Chaff and Clock Skew

University of Houston, Department of Computer Science

Houston, Texas 77204, United States

{ykuo, shuang}@cs.uh.edu

Abstract: Stepping-stone attacks are attackers who use a sequence

of stepping-stone hosts to initiate attacks in order to hide their

origins. The goal of this paper is to find algorithms to correctly

detect the attacks and have the ability to tolerate the clock skew

or/and chaff while exhibiting low time complexity. We propose three

novel algorithms for detecting correlation and similarity of two

connections not only into and out of a single stepping stone host

(adjacent streams), but also across multiple stepping-stone hosts. To

evaluate the accuracy and efficiency, we conduct extensive

experiments. We also evaluate how chaff packets and clock skew

may affect these methods. We present a comparison of the

algorithms in terms of false rates of detection, and identify one of the

approaches that can efficiently achieve good performance under a

variety of circumstances.

Keywords: stepping-stone attack, intrusion detection, network

security, connection chain, chaff evasion technique, clock skew.

I. Introduction

Cybercrime not only threatens the privacy of those who

use the Internet, but also causes a serious data protection

problem for the society. A popular technique of choice for

cyber criminals to maintain anonymity nowadays is

“stepping-stone attack” (see Figure 1 for an illustration),

which uses a sequence of stepping-stone hosts to initiate

attacks rather than directly linked from the intruder’s origin. A

“stepping-stone host” is a previously compromised

intermediary host that allows an intruder to login and route the

traffic to the destination. By routing the attack through several

intermediate stepping-stone hosts, it becomes practically

impossible to trace the route back to the originating host. The

intruder can thus remain their anonymity. The goal of a

stepping-stone detection system is to detect such attacks and

protect the victim host from the intrusion.

A variety of techniques to detect stepping-stone attacks

have been proposed previously [3],[4],[5]. Most of them

studied the detection of a single stepping stone host by finding

correlations of two consecutive connections in a connection

chain (e.g. in Figure 1, determining if Host E is being used as

a stepping-stone host by studying the correlation between

connections 4 and 5). A generalization of the problem is to

detect a stepping-stone chain across several hosts. Previous

algorithms do not allow analyzing a correlation across

multiple stepping-stone hosts (e.g. to determine whether

Connections 2 and 5 are part of a connection chain). Since it

is not realistic to have every host’s information available, it

may be required to detect the correlation between two traffic

flows which are not necessarily consecutive in a

stepping-stone connection chain. For example, if we suspect

the attack originated from a particular host (by other means),

we can try to correlate the connections on both ends to

confirm such an attack.

Correlating two streams of packets in the multi-hop

stepping-stone pair is very similar to the problems in Pattern

Recognition. In this paper, we propose three Dynamic

Programming (DP) based pattern recognition schemes for

finding the correlation of two consecutive connections of two

adjacent or non-adjacent connections across intermediate

host(s). We examine which schemes make better performance

under different circumstances such as clock skew and chaff

involvement. The preliminary results of this work were

published in [17].

The rest of this paper is structured as follows. In the next

section we discuss the background of stepping-stone

detections and the motivation of this paper. Section 3 provides

the problem definition and the notations used. We proposed

our novel schemes which inspired from pattern recognition

approaches in Section 4. The experiments that we designed to

compare several new and previous detection methods and the

performance of the schemes are presented in Section 5.

Finally, the conclusion is made in Section 6.

II. Background and Motivation

To date, most of the approaches for detecting encrypted

stepping-stone connections are timing-based. There were two

types of stepping-stone detection approaches. The first type

was to distinguish the long stepping-stone connection chains

from short, ones such as [1],[2]. Recently, Huang et al. [2]

used an approximated round-trip time (RTT) to estimate the

chain length with the intention of differentiating a long

connection chain from a short one.

In this paper, we used the second type of approach, which

was to find the correlation of a pair of connection flows so as

Figure 1. Example of Stepping-Stone Attack

Ying-Wei Kuo and Shou-Hsuan Stephen Huang

Journal of Information Assurance and Security.
ISSN 1554-1010 Volume 6 (2011) pp. 452–461
© MIR Labs, www.mirlabs.net/jias/index.html

Dynamic Publishers, Inc., USA

to cut off the incoming flow from the suspicious host. There

were some well known approaches [3],[4],[5] that find the

correlation using the timestamps of the incoming/outgoing

packets to/from a stepping-stone host. Donoho et al. [6]

investigated the restrictions on the ability of intruders to hide

their traffic through timing perturbation and packet padding.

Blum et al. [7] proposed the methods that considered both

delay and chaff insertion (existed separately) by calculating

the amount of packets needed to confidently detect stepping

stone flows. Moreover, Kuo and Huang [8] introduced a

one-to-one order-preserving mapping algorithm DMIM

which was proven to have close to 100% accuracy between a

pair of incoming and outgoing flows. Since the 1-1 mapping

does not always hold due to the traffic issues (such as packet

loss), DM2 algorithm in [9] was later designed to solve this

problem.

Recently, Kuo and Huang [16] proposed another algorithm

named Optimal Subsequence with Merge (OSSM) with

O(n
2
m

3
) time complexity where n

 and m are the number of

packets in two monitoring traffic streams. The main

advantages of OSSM algorithm were: it avoided the possible

clock skew on the host by mapping the intervals of two

adjacent packets instead of the packets timestamps; and it

allowed a limited amount of injected chaff packets.

In order to use single-hop stepping-stone detection

algorithms to trace the intruder, it will require all the

intermediate hosts to collaborate with the investigator. That is

not practical when these stepping-stone hosts belong to

different organization and maybe reside in different countries.

If we suspect an intrusion coming from a particular host, we

can compare the streams on both ends of the chain to confirm

if they belong to the same chain without knowing much about

the intermediate hosts. . One of our goals is to design a method

of detecting the correlation between two traffic flows across

multiple stepping-stone (not necessarily adjacent) hosts.

Clock skew is another issue that may cause inaccurate

matching for which most of the single-hop detection

algorithms did not have to take into consideration. On the

Internet, clock skew is denoted as the difference in time

shown by the system clocks at different hosts on the network.

Although the Network Time Protocol (NTP) is widely used on

the Internet for synchronizing the clocks of systems, not all

Internet hosts synchronized the clock with it. Although OSSM

algorithm [16] is able to deal with clock skew and some

injected chaff, it has the drawback of high time complexity.

Therefore, a second objective of this paper is to design an

efficient algorithm that can avoid the clock skew issue.

Most of the recent timing-based approaches make an

assumption that the intruder is willing to accept a maximum

tolerable delay Δ (since humans are not willing to work over

interactive connections with very long latencies) and the delay

of each packet must be in the range of [0, Δ). Thus an

important issue in the past is to find a suitable value for the

maximum tolerable delay is a given environment. Our last

objective is to design a method without making such an

assumption.

III. Problem Definition

This paper considers the problem of detecting multi-hop

stepping-stone stream pairs under the following assumptions:

1. Content of the packets are encrypted.

2. Only two streams of packets are available and there

is no need to know other streams between them.

3. There may not be a one-to-one mapping between the

two streams due to network issues, such as packet

loss.

4. The timestamps on the two streams may have a clock

skew.

5. Intruders may introduce chaff packets to evade

detection. Thus one stream of the two under

investigation may include some chaff packets and

the other may not.

In this work, each connection includes a list of packet

timestamps. Our strategy is to assign a dissimilarity score for

a pair of connections, and if the dissimilarity value is below a

user predefined threshold, an alarm indicating a potential

stepping-stone attack is triggered. The reason to use a

dissimilarity score instead of a similarity score is inherited

from the Dynamic Time Warping algorithms that our

algorithm was derived from. In those algorithms, there is a

cost associated with the difference of time sequences. Here

are some notations used in this paper:

 R: A reference stream R = {r1, r2, r3, …, rn} of length n
which contains the timestamps of the packets in
increasing order.

 T: A target stream T = {t1, t2, t3, …, tm} of length m
which contains the timestamps of the packets in
increasing order.

 d(p,q): The distance between points rp and tq typically
measured in Euclidean distance.

 cost(p,q): The local cumulative difference between (up
to) the aligned substreams {r1 …, ,rp} and {t1, …, tq}
in the two time series.

 Dis(R,T): The dissimilarity score between stream R
and stream T. The higher the score, the less
similarity of two streams.

To overcome the obstacles mentioned in last section, we

aim to find some methods that can intelligently avoid the

disturbances. The idea in this paper is inspired by some DP

based pattern recognition techniques [14] which are variations

of Dynamic Time Warping (DTW) [10],[11], with application

areas such as handwriting matching [12], speech recognition

[15] and incomplete time series to post-stroke rehabilitation

[13], etc. DTW technique not only measures optimal

difference (dissimilarity) between two sequences but also

solve the problem of time scaling (warps non-linearly by

stretching or shrinking it) in time series. The basic idea is

locally recovering the time axis in order to minimize the local

cumulative difference between the aligned points in two time

series R and T, and the possible alignments considered include

all local compressions and shifts. DTW technique allowed

one-to-many or many-to-one mapping, which tolerated an

element on either stream to be mapped more than once. It is

stated more formally in (1):

(1)

453 Kuo and Huang

IV. Our Schemes

It uses the local distance d(p,q) (Euclidean distance is used

here) plus the minimum of three given values cost(p,q-1),

cost(p-1,q), cost(p-1,q-1) to calculate cost(p,q) iteratively

where p = 1, …, n and q = 1, …, m. Dissimilarity score of two

time-series R and T is always saved in cost(n,m). The time

complexity is O(nm), because all the matching possibilities

need to be considered to ensure the optimal answer found.

OSSM algorithm [16], on the other hand, uses the merge

function to skip the outliers on the target stream, and uses a

constant penalty (ρ) function to skip the outliers on the

reference stream. During the one-to-one mapping, OSSM

allows an interval on the target stream to merge with its

previous intervals, one at a time until the smallest difference

(the difference between an interval on reference stream and its

corresponding interval(s) on target stream) among the merged

intervals was found. The OSSM algorithm is defined in (2):

According to the assumption that the clock skew between

each host is unknown, it is very likely that either the reference

or target connection has a shifted timeline. Unfortunately,

DTW technique returns higher dissimilarity score as the clock

skew increases and the attack pair may be misidentified as

normal pair. So, we present our first scheme named DTW

with Sliding Window (DTWW) as a solution. The idea

(shown in Figure 2) is to take a subsequence of timestamps

with a fixed time window w from the end of the downstream

connection as the reference stream, and do a sliding window

operation on the upstream.

The sliding window starts from the beginning point and

moves a packet at a time. Each window of the timestamps

after a move is treated as the target stream. Then it uses (1)

above to measure the dissimilarity score between each pair of

the reference and target streams. The optimal (minimum)

dissimilarity score of all pairs denotes the final dissimilarity

for this connection pair. The time complexity is O(nm(l-w/n)),

where l is the duration period. In the case it is unclear which

stream is the upper stream, we can test both cases and one will

work much better than the other one.

Figure 2. Example of sliding windows using DTWW

algorithm

From our experience, the selection of the beginning point

does affect the result. This method is the improvement of [17].

According to [17], the sliding window starts from the

beginning point and moves a fixed time interval at a time (1

second has been used in [17]). In the current version, we

move the window to directly the next packets. This

improvement not only reduces the time required but also

improves the accuracy of the algorithm. Approximately

3%~6% of improvement on the false negative rate can be

achieved with the same clock skew.

An example to demonstrate the effectiveness of this

algorithm can be seen in Figure 3. The reference stream tests

the clock skew from -10 seconds to +10 seconds with an

increment of 1 second at a time. According to the figure, the

optimal dissimilarity score is 0.002 second at zero shifting

time (no clock skew). For normal pairs of streams, the

dissimilarity are generally much higher than those of the

attack pairs. Not only the dissimilarities of the normal pairs

are within a range they also fluctuate. On the other hand, the

dissimilarity of the attack pairs has a distinct U-shape with a

minimum in the middle. Thus our algorithm is set to look for

the minimum point in such a U-shape curve and select the

dissimilarity at the minimum point as the actual value.

Figure 3. Example of using DTWW for a normal pair and an

attack pair with the clock skews from -10 to +10 seconds.

0

20

40

60

80

100

-10 -5 0 5 10

D
is

si
m

il
ar

it
y
 S

co
re

Shift (Second)

Stepping-Stone Attack Pair

Normal Connection Pair

(2)

Optimal Dissimilarity

Score

Upstream (Target)

 t1 t2 t3 t4 t5 t6 t7 t8 t9

 r1 r2 r3 r4 t5 t6 t7 t8

Downstream (Reference)

 454Detecting Multi-Hop Stepping-Stone Pairs with Chaff and Clock Skew

A. Dynamic Time Warping with Sliding Window (DTWW)

If we draw lines matching a packet in the reference stream

to it’s corresponding packet in the target stream (see Figure 4

for example), we will see that these lines have very similar

slopes if the matching is a correct one. So our next algorithm

will be trying to find all these “slope” as close to each other as

possible. One of the ways to solve the clock skew issue is to

use the “slope” or so-called delay between a reference packet

and a target packet instead of using the packet timestamps or

the interval between two consecutive packets. It is measured

by the local distance d(p, q) without using absolute value (a

slope may be positive or negative). Slope correlation then

compares the difference of two slopes which will not be

affected even though the time is shifted on one flow. Such a

slope-based scheme is called Dynamic Time Warping with

Slope (DTWS). This method has no restriction on which flow

becomes reference stream and which becomes target stream.

Since it considers all the possibilities for the optimal matching,

its time complexity is O(nm). DTWS algorithm is formally

defined in (3):

DTWS scheme uses the minimum of three given slope

correlations to calculate cost(p,q) repeatedly where p = 1, …,

n and q = 1, …, m. An example of using this algorithm is

described in Figure 4. Based on the definition, cost(4, 5) is the

minimum of cost(5, 4)+|d(r5, t4)-d(r5, t3)|, cost(4, 3)+|d(r5,

t4)-d(r4, t3)| and cost(4, 4)+|d(r5, t4)-d(r4, t4)|.

Figure 4. Example of comparing the slope correlation using

DTWS algorithm

Both DTWW and DTWS schemes have a main limitation,

which is particularly sensitive to outliers. In other words, they

always match the reference stream to the whole target stream

no matter whether the target stream had a longer length (due

to network problem or chaff) than the reference stream.

Optimal Slope Alignment (OSA) scheme is designed to solve

such potential problems. The goal of such scheme is to find

the subsequences R’ of R and T’ of T such that R’ best matches

T’. Occasionally, an extra packet may appear on the reference

stream which may cause serious misalignment of packets.

Thus the unique feature of the next algorithm is that we allow

some of the packets in the reference stream to be “skipped.”

Note that we have to do this carefully because clearly if we

skip all packets the cost can go down to zero. So we have to

add some type of penalty for skipping a packet.

Once more, OSA method compares the slope correlation,

(3)

ALGORITHM I. Optimal Slope Alignment (OSA)

Algorithm OSA(R,T,n,m,ρ)

//initialization

for (q=0; q<m; q++)

 cost(0,q) = 0;

//calculate all possible costs

for (p=1; p<n; p++){

 for (q=0; q<m; q++){

 for (k=0; k≤q; k++){

 currSlope = tq-rp;

 prevSlope = tk-rp-1;

 slopeDiff = |currSlope-prevSlope|;

 //give a penalty if it’s many-to-one mappings

 if(k==q) slopeDiff= ρ*slopeDiff;

 //update the cost, when there is a smaller one

 if(cost(p,q)>cost(p-1,k)+slopeDiff)

 cost(p,q) = cost(p-1,k)+slopeDiff;

 }

 }

}

//find optimal solution

minCost= ;

for (q=n-1;q<m;q++){

 if(cost(n-1,q)<minCost) minCost= cost(n-1,q);

}

DisScore=minCost;

 Target

 t1 t2 t3 t4 t5 t6 t7 t8 t9

 r1 r2 r3 r4 t5 t6 t7 t8

Reference

455 Kuo and Huang

B. Dynamic Time Warping with Slope (DTWS)

C. Optimal Slope Alignment (OSA)

so the local distance d(p, q) allows either a positive or

negative value. It assumes that the reference stream is shorter

than or equal to the target stream (allows to match partial

target stream) and both reference and target streams may

contain outliers. OSA scheme has the ability to skip outliers

during the matching process, restricting that no points on the

reference stream can be mapped more than once. It skips the

outliers (chaff injected by intruders on a purpose to evade the

detection) from the target stream without penalty, and

introduces the penalty ρ for skipping on the reference stream

(extra packets due to network issue). The optimal structure of

OSA is formally defined in (4):

The penalty ρ is a user defined parameter between 0 and 1

if k equals q. Figure 5 illustrates an example of using such a

slope correlation. This algorithm uses the minimum of all

possible slope correlations to calculate cost(p, q) repeatedly

where p = 1, …, n and q = 1, …, m. Based on the definition,

cost(5, 4) is the minimum of cost(4, 4)+ρ×|d(r5, t4)-d(r4, t4)|,

cost(4, 3)+|d(r5, t4)-d(r4, t3)|, cost(4, 2)+|d(r5, t4)-d(r4, t2)| and

cost(4, 1)+|d(r5, t4)-d(r4, t1)|.

The details of the algorithm are given in Algorithm I. For

initialization, OSA scheme sets the distance between the first

point in R and every point in T to 0 and infinity for all other

possible matching. In the main loop, p goes over each point in

R stream and q goes over each point in T stream while k goes

over points in T stream up to the q
th

 point, respectively. Each

node for OSA scheme is updated only when there is a smaller

dissimilarity score from a connected node in the previous row,

and guarantee to return the cost of the optimal (shortest) path

leading to every node. In other words, the minimum value in

the last row is the optimal score between two compared

streams. Thus the complexity of OSA algorithm is O(nm
2
).

Figure 6. Example of comparing the slope correlation using

OSA algorithm

V Comparison of the Schemes

The goal of the comparison is to inspect the accuracy and

the performance of the various schemes. DTW and OSSM

schemes are used to compare with our schemes. Whether an

attack alarm is raised or not is based on the thresholds

supplied by the respective schemes. Since the standards of

how to calculate the dissimilarity scores are different for each

scheme, the dissimilarly scores are not comparable across all

of them. Hence, we use the false positive rate (FPR) and false

negative rate (FNR) as the metrics to compare all the schemes.

In order to test the effectiveness of the correlation

algorithms between two traffic flows (adjacent or not), we

collect the traffic flows into and out of every host along this

chain. Thus we first set up a stepping-stone connection chain

with 7 intermediate stepping-stone hosts. This is done by

using secured connection SSH to link different remote servers

one followed another under various UNIX operating systems.

An illustration of the connection chain setup is depicted in

Figure 6 below.

(4)

Figure 5. An example of the setup for the stepping-stone traffic flow collection

Target Stream

 t1 t2 t3 t4 t5 t6 t7 t8 t9

 If this has been

 chosen, ρ is required

 r1 r2 r3 r4 t5 t6 t7 t8

Reference Stream

 456Detecting Multi-Hop Stepping-Stone Pairs with Chaff and Clock Skew

A. Experiment Setup

For the experiments, we have created several long distance

flows. We have prepared three hosts far away from our

campus (Host 1 in Wisconsin, USA, Host 2 in Shanghai,

China, and Host 3 in Chicago, USA), and all others severs are

on our campus network in Texas, USA. The chain is linked

with a local host and a long distance host alternatively so that

we can capture packets on all streams in the chain. For

instance, one of the chains is linked in the order as follows:

local → Wisconsin → local → Shanghai → local → Chicago

→ local. This setup allows us to analyze chains of different

lengths with the same packet contents and timing information.

All the flows are captured from live network connections.

This alternating setup allows us to collect data of various

lengths.

To generate traffics, we have three users (acted as three

attackers) from three separate local hosts linked to the same

stepping-stone chain and then connected to the corresponding

victim’s machine in different locations. The collection has

been repeated 10 times on different dates, and the order of the

three long distance hosts is different each time, even though

the length of the chain remains the same. The users typed at

their own pace and were only approximately synchronized at

the beginning of the test.

The collected data contains 30 (3 users times 10

collections) chains with 7 traffic flows (each from 0 hop to 6

hops). Of all combinations on each hop, there are 30 streams

(attacker i to victim i) which serve as stepping-stone attack

connections and the rest of 60 (attacker i to victim j where i ≠ j)

streams are acting as normal connections. The hop denotes the

distance between the hosts or the number of intermediate

hosts between the streams. For example, 0 Hop represents the

comparison across a single stepping-stone host (Host A),

which compares connection Cu,0 with connection Cu,1, where u

=1, 2, 3; and 1 Hop denotes the comparison across two

stepping-stone hosts (Host A and B which compares

connection Cu,0 with connection Cu,2, where u = 1, 2, 3). Of

each stream, we took 60 seconds as the duration time for

packet collection. For we set DTWW scheme’s window w to

20 seconds and the starting point of each sliding window is

increased at 1 second each time during the experiments.

Essentially, we try to classify stepping-stones flows into

two groups in which one is the target named “attack” if there

is strong correlation between streams and the other one is

“normal”. We conduct the study in a way that none of the

investigators knows the locations or number of the

stepping-stone hosts when the data are analyzed. We

considered the following four scenarios on our stepping stone

problem:

Scenario 1: Neither clock skew nor chaff exists,

Scenario 2: Only clock skew exists,

Scenario 3: Only chaff exists, and

Scenario 4: Clock skew and chaff exists simultaneously.

To validate our algorithms, we have to computer the

accuracy of the classification. In all the correlation

algorithms, we classify a pair of streams as attack if the

dissimilarity is low (i.e., they are similar). Thus one issue that

we have to deal with is to determine the threshold that

separate attack from normal. Since each scheme computes the

dissimilarity in their own way, they need to assign their own

unique threshold. The threshold certainly depends on the

network traffic and the testing environment such as operating

systems etc. It is not practical to produce a number that can be

used everywhere. Hence, we use the false rates, false positive

rate and false negative rate, of the schemes to measure their

performance. The false positive rate (FPR) represents the

proportion of absent events that yield positive test outcomes,

i.e., the ratio of normal connections falsely identify as the

stepping-stone attack connections. On the other hand, the

false negative rate (FNR) represents the proportion of present

events that yield negative test outcomes, i.e., the ratio of

stepping-stone attack connections misidentify as the normal

connections.

Thus we shall describe our algorithm on selecting these

thresholds. Our algorithm is based on machine learning where

part of the data are used to train the system to derive a

threshold and other data are used to test the effectiveness of

the threshold. Each threshold is obtained via Leave-one-out

cross validation. We split the original data into two sets. One

sample is used as training data and all other data is used as the

testing data. We use training data to generate the threshold

and assign the similarity scores for the testing data. This

operation is repeated n times (n is the number of samples). At

each time, the training set cannot be redundantly assigned and

a similarity score is generated. If the dissimilarity scores of

both normal and attack are overlapped, the threshold is set to

the 90 percentile (targeting 10% false positive rate) of the

combined scores across the cross validation. Otherwise, if

there is a gap between the dissimilarity scores of both classes,

the threshold is set to the top 20 percentile of the gap. Note

that the gap was the minimum of the normal dissimilarity

scores minus the maximum of the attack dissimilarity scores.

As we explained in the previous section, skipping (not

matching) some packets from reference stream R and target

stream T is necessary, because both streams may contain some

dummy packets. However, skipping too many packets of

sequence R reduces the distance cost between two streams and

causes the false positive rate to increase. On the other hand,

skipping not enough packets of sequence R increases a chance

of accidental matches (tolerate some extra packets due to

network issue) and causes the true positive rate to drop. To

prevent this from happening and to find the best possible

correspondence of subsequence R’ of R and T’ of T, a suitable

penalty ρ for skipping packets is has to be determined.

We study the differences of dissimilarity score between

various numbers of penalties (in 0.2 second increments)

without making any assumptions of the underlying statistical

distribution. The result is summarized in Figure 7 above.

Each attack box-plot contains 30 samples and each normal

box-plot contains 60 samples. The data used in this

experiment was with consecutive connections. Note the

bottom and top of the box are always the 25th and 75th

percentile (the lower and upper quartiles), the band near the

middle of the box is the 50th percentile (the median), and the

ends of the box represent the minimum and maximum of all

the data. Based on the figure, we can see setting penalty to

approximately 0.8 can give us the maximum range between

the separation of attack pairs and normal pairs. However, we

need a more systematic way to find the optimal penalty.

457 Kuo and Huang

B. Experiment Design

C. Dissimilarity Threshold and False Rate

D. Penalty Selection of OSA Scheme

0.2 0.4 0.6 0.8 1.0

0.00

0.01

0.02

D
iss

im
ila

rit
y

Sc
or

e

Penalty Value

a) Stepping-stone Attack Connections

0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

25

30

Di
ss

im
ila

rit
y

Sc
or

e

 Penalty Value

b) Normal Connections

Figure 7. Box-Plot with various penalties. a) represents

the results of stepping-stone attack connections; b) shows the

results of normal connections.

The optimal penalty may vary because of the different

network traffic environment. In order to define the optimal

penalty for different data set, we extract five points with even

interval (incremented by 0.2) between the possible range 0

and 1 and develop a distribution model for these points (2
nd

order, polynomial trend-line is suggested and used here).

Then the trend-line can be used to compute the peak over

penalty (extreme value). The result of finding such peak is

displayed in Figure 9. We also investigate the difference of

using points from the median (y = -42.63x
2
+ 69.72x - 4.685),

25
th

 (y = -37.50x
2

+ 61.68x - 3.792) and 75
th

 (y = -31.75x
2
+

51.83x - 3.077) percentiles and find the results of the peak

over penalty are consistent (0.818, 0.822 and 0.816). A user

may use either the median, 25
th

 or 75
th

percentiles

to find the

optimal penalty of own set of data. We use 0.819 (the average

of all three values) as the penalty throughout this paper.

Figure 9. Trend-lines of median, 25th and 75th percentile

based on the results from Figure 7 - Normal.

0

5

10

15

20

25

30

0.2 0.4 0.6 0.8 1

D
is

si
m

ila
ri

ty
 S

co
re

Penalty Value

median

25%

75%

Poly. (median)

Poly. (25%)

Poly. (75%)

(a) DTWW Algorithm (b) DTWS Algorithm (c) OSA Algorithm

(d) DTW Algorithm (e) OSSM Algorithm

Figure 8. Dissimilarity Scores of each hop for algorithm DTWW, DTWS, OSA, DTW and OSSM

0

10

20

30

0 1 2 3 4 5 6

D
is

si
m

il
ar

it
y

S
co

re

Hop

DTWW - Max. Attack
DTWW - Min. Normal

0

10

20

30

0 1 2 3 4 5 6

D
is

si
m

il
ar

it
y

S
co

re

Hop

DTWS - Max. Attack

DTWS - Min. Normal

0

10

20

30

0 1 2 3 4 5 6

D
is

si
m

il
ar

it
y

S
co

re

Hop

OSA - Max. Attack

OSA - Min. Normal

0

20

40

60

80

0 1 2 3 4 5 6

D
is

si
m

il
ar

it
y

S
co

re

Hop

DTW - Max. Attack

DTW - Min. Normal

0

10

20

30

0 1 2 3 4 5 6

D
is

si
m

il
ar

it
y

S
co

re

Hop

OSSM - Max. Attack

OSSM - Min. Normal

458Detecting Multi-Hop Stepping-Stone Pairs with Chaff and Clock Skew

We firstly investigate the schemes’ performance without

involving any clock skew or chaff. Based on the results

provided in Figure 6, we learned that the normal connection

pairs stay constant with different hops, while the attack

connection pairs slightly increase the dissimilarity score with

the increasing number of hops between two connections.

Hence, we conclude that when the distance of two

connections is long (long stepping-stone connection chain),

the accuracy of the detection may suffer.

To tolerate the clock skew in the detection, algorithm

OSSM has used the “interval” along two adjacent packets to

construct the detection. Our schemes use slope (delay)

between a reference packet and a target packet to find the

correlation. In this section, we investigate the impact of the

clock skew on the discussed schemes. We use the same data

as described previously and then inject a fixed length time

delay for every packet in the target stream.

We present the performance results of having 3 seconds

clock skew are illustrated in Table I. There are 100% FNR for

DTW scheme and 17%~27% FNR for DTWW scheme. It

indicates that using the sliding window operation does

improve the performance of DTW scheme. However, because

of the many-to-many operation and timestamp correlation,

DTW and DTWW may falsely map a packet to several others

and result in a high dissimilarity score. Although OSSM also

uses the interval correlation, it supports one-to-one mapping

operations. Therefore, it returns 0% false rate. Both DTWS

and OSA schemes have 0% false rate, because they use slope

correlation which does not change the difference when clock

skew is present. Hence, using the slope correlation can resolve

te clock skew issue well.

Table II. False Rates for DTW, OSSM, DTWW, DTWS and

OSA algorithms. Data contains clock skew of 3 seconds.

H

O

P

ALGORITHMS

 DTW OSSM DTWW DTWS OSA

Corr. Time Interval Time Slope Slope

0
FPR 0% 0% 0% 0% 0%

FNR 93% 0% 17% 0% 0%

1
FPR 0% 0% 0% 0% 0%

FNR 100% 0% 25% 0% 0%

2
FPR 0% 0% 0% 0% 0%

FNR 100% 0% 17% 0% 0%

3
FPR 0% 0% 0% 0% 0%

FNR 100% 0% 25% 0% 0%

4
FPR 0% 0% 0% 0% 0%

FNR 93% 0% 27% 0% 0%

5
FPR 0% 0% 0% 0% 0%

FNR 100% 0% 21% 0% 0%

6
FPR 0% 0% 0% 0% 0%

FNR 100% 0% 21% 0% 0%

It is very likely that intruders may inject chaff packets

into the traffic and remove them later to decrease the

possibility of being detected. Thus, we examine the tolerance

of our schemes in the presence of chaff. We evaluate the

performance of the algorithms when the chaff packets are

involved by using the same data. The chaff packets obeying

the Poisson distribution are inserted into the target stream at a

chaff rate (CR). As a restriction, the chaff packets can only be

added on just one side of streams and the stream injected with

chaff packets will be treated as the target stream. We assume

adding chaff packets to either incoming streams or outgoing

streams would not affect the overall results as long as only one

side of streams is involved. The chaff rate is the number of

chaff packets divided by the number of original packets on

that particular injected stream. We assume that the chaff

packets can only be added on just one side of streams.

The performance results are shown in Table II below.

Unfortunately, DTW, DTWW and DTWS schemes are not

able to tolerate the chaff packets even with a low 50% chaff

rate (more than 80% false rate). OSSM is able to tolerate up

to 150% chaff rate with a maximal of 4% FPR and 17% FNR.

Table I. False Rates with various chaff rate for the five algorithms.

H

O

P

 ALGORITHM

DTWS OSSM DTWW DTWS OSA

CR% 0 50 0 50 100 150 0 50 0 50 100 0 50 100 150 200 250 300

0
FPR

FNR

0%

0%

0%

100%

0%

0%

3%

0%

0%

0%

3%

0%

0%

0%

0%

93%

0%

0%

0%

83%

0%

93%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

3%

0%

8%

0%

1
FPR

FNR

0%

0%

0%

100%

0%

0%

3%

0%

0%

0%

3%

0%

0%

0%

0%

93%

0%

0%

0%

83%

0%

93%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

3%

0%

7%

0%

2
FPR

FNR

0%

0%

0%

100%

0%

0%

3%

0%

0%

0%

3%

0%

0%

0%

0%

93%

0%

0%

0%

83%

0%

93%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

3%

0%

7%

0%

3
FPR

FNR

0%

0%

0%

100%

0%

0%

3%

0%

0%

0%

3%

0%

0%

0%

0%

93%

0%

0%

0%

90%

0%

93%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

2%

0%

7%

0%

4
FPR

FNR

0%

0%

0%

100%

0%

0%

3%

13%

0%

13%

3%

7%

0%

0%

0%

92%

0%

0%

0%

90%

0%

93%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

1%

0%

6%

0%

5
FPR

FNR

0%

0%

0%

100%

0%

0%

4%

25%

0%

17%

4%

17%

0%

0%

0%

92%

0%

0%

0%

93%

0%

91%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

1%

0%

6%

0%

6
FPR

FNR

0%

0%

0%

100%

0%

0%

4%

25%

0%

17%

4%

17%

0%

0%

0%

92%

0%

0%

0%

93%

0%

91%

0%

0%

0%

1%

0%

0%

0%

0%

0%

0%

1%

0%

7%

0%

459 Kuo and Huang

E. Performance without Clock Skew and/or Chaff

F. Performance with Clock Skew Issue G. Performance with Chaff Involvement

On the positive side, all three of our schemes can find the
gap of the dissimilarity score between attack and normal up to
6 hops. Figure 9 shows the worst case scenario, since each
attack point in the figure represents the maximum dissimilarity
score out of all 30 comparisons and each normal point
represents the minimum dissimilarity score out of all 60
samples. All schemes return 0% false positive rate and 0%
false negative rate among all the comparisons of up to 7
stepping-stone hosts (0 to 6 hops), while the attackers do not
insert any chaff packets into the traffic flow.

OSA scheme is able to tolerate up to 300% chaff rate with the

maximal of 8% FPR and 0% FNR. This is because OSA was

designed to skip chaff packets without penalty.

The previous experiments use only one threshold to

compare. By varying the thresholds, we obtain different

tradeoffs between false positive and false negative rates. We

further investigate the performances of those schemes using

The Receiver Operating Characteristic (ROC) curve. This

curve could display the relative trade-offs between the true

positive rate (benefits) and false positive rate (costs) for the

schemes. Please note that true positive rate TPR = 1- false

negative rate FNR. We know that the curves close to the upper

left corner represent the better performance since the upper

left corner represents 100% sensitivity (no false negatives)

and 100% specificity (no false positives).

In this paper, we hypothesize that correlation detection

between two traffic connections may exist across multiple

hosts even with the presence of time skew and chaff packets.

To validate it, we design three dynamic programming

algorithms, inspired from pattern recognition techniques.

These approaches rely on either repeatedly doing the

comparison with a sliding windows, the interval correlation or

the slope correlation. The connections analyzed in this work

can be adjacent (as a special case) or across multiple hosts.

The paper also aims to find ways to reduce the effect of clock

skew and chaff issues while keeping relatively low time

complexity.

Our experiments show interesting results under four

different scenarios. If no clock skew or chaff packet exists, all

three of our schemes gives 0% false rate in all of the tests up to

a length of 7 stepping-stone hosts. When the clock skew is

involved, DTWS and OSA schemes still remain 0% false rate

by using slope correlation. Although DTWW scheme using

sliding window operation shows a 27% FNR in our

experiment, it does improve the performance of DTW scheme.

We believe that this sliding window scheme is still valuable to

be used in combinations with other pattern recognition

schemes in order to deal with the clock skew issue. When the

chaff packets are present, OSA scheme turns out to uniformly

dominate other schemes. The similar result is concluded by

looking at the ROC curve when involving both clock skew

and chaff. In addition, Our novel scheme - OSA is a faster

algorithm with a lower time complexity O(nm
2
), compared

with the time complexity O(n
2
m

3
) for OSSM scheme.

Because OSA finds the slope correlations of two flows, not

only clock skew and chaff packets are ignored but also the

parameter of maximum tolerable delay can be omitted. Hence,

Figure 10. ROC curves for OSSM, OSA and DTWS schemes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

T
ru

e
P

o
si

ti
v
e

R
at

e
(T

P
R

)

False Positive Rate (FPR)

OSSM

OSA

DTWS

DTWW

DTW

 460Detecting Multi-Hop Stepping-Stone Pairs with Chaff and Clock Skew

VI. Conclusion

H. Performance Involved Both Clock Skew and Chaff

Figure 10 displays the ROC curves for DTW, OSSM,
DTWS, OSA and OSSM. The results are taken from the
average of all the hops (0 to 6 Hops) with a 0% to 200% chaff
rate (50% CR increments) injected into the target streams. In
addition, there are 3 seconds of clock skew. OSA scheme
(0.96% FPR corresponds to 99.98% TPR) seems to uniformly
dominate DTW, DTWW and DTWS schemes and it is
somewhat better than OSSM scheme. Considering the
problem’s complexity, the result for OSA scheme is exciting.

OSA scheme can detect stepping-stone attacks with low time

complexity, even in complex circumstances such as clock

skew and chaff included.

These detection algorithms are useful in several situations.

A large portion of intruders are actually insiders according to

many studies. In such cases, the algorithm can be used to

compare connections entering and exiting a local area

network. The algorithm can also be used to confirm attacks

from a host that we suspect (through other means). For

example, if we suspect Host A is hacking into Host V, we can

compare the suspected incoming stream to Host V and the

outgoing packet streams of Host A. Our algorithm such as

OSA can be used to confirm or reject such suspicion with

reasonable accuracy. There is no need of collecting any

packets on the intermediate hosts.

Acknowledgment

This research is supported in part by a grant from National

Science Foundation (CNS- 0755500).

References

[1] K.H. Yung, “Detecting long connecting chains of

interactive terminal sessions,” In Proceedings of of the

5th International Symposium on Recent Advances in

Intrusion Detection (RAID), pp. 1-16, 2002,.

[2] S. Huang, W. Ding, M. Hausknecht, Z. Riggle,

“Detecting Stepping-Stone Intruders with Long

Connection Chains, " Journal of Information Assurance

and Security (JIAS), Vol. 5, pp. 500-514, 2010.

[3] Y. Zhang and V. Paxson, “Detecting Stepping Stones”, In

Proceedings of the 9th USENIX Security Symposium, pp.

171-184, 2000.

[4] X. Wang, D. Reeves, and S. Wu, “Inter-Packet

Delay-Based Correlation for Tracing Encrypted

Connections through Stepping Stones”, In Proceedings

of the 7
th

 European Symposium on Research in Computer

Security (ESORICS), pp. 244–263, 2002.

[5] X. Wang, and D. Reeves, “Robust Correlation of

Encrypted Attack Traffic Through Stepping Stones by

Manipulation of Inter-packet Delays”, In Proceedings of

ACM Conference on Computer and Communications

Security, pp. 20-29, 2003.

[6] D. Donoho, A.G. Flesia, U. Shankar, V. Paxson, and S.

Staniford, “Multiscale Stepping-Stone Detection:

Detecting Pairs of Jittered Interactive Streams by

Exploiting Maximum Tolerable Delay”, In Proceedings

of the 5
th

 Intl. Symposium on Recent Advances in

Intrusion Detection, pp. 244-263, 2002.

[7] A. Blum, D. Song and S. Venkataraman, “Detection of

Interactive Stepping Stones: Algorithms and Confidence

Bounds,” In Proceedings of the 7
th

 Intl. Symposium on

Recent Advances in Intrusion Detection (RAID), pp.

258-277, 2004.

[8] Y. Kuo and S. Huang, “Stepping-Stone Detection

Algorithm based on Order Preserving Mapping”, In

Proceedings of the 13
th

 Intl. Conference on Parallel and

Distributed Systems (ICPADS), pp. 1-8, 2007.

[9] Y. Kuo and S. Huang, “An Algorithm to Detect

Stepping-Stones in the Presence of Chaff Packets”, In

Proceedings of 14
th

 IEEE Intl. Conference on Parallel

and Distributed Systems (ICPADS), pp.485-492, 2008.

[10] D. Berndt and J. Clifford, “Using Dynamic Time

Warping to Find Patterns in Time Series,” In Proceedings

of AAAI-94 W. on Knowledge discovery and databases,

pp. 229-248, 1994.

[11] S. Chu, E. Keogh, D. Hart, and M. Pazzani, “Iterative

Deepening Dynamic Time Warping for Time Series,” In

Proceedings of the 2
nd

 SIAM Intl. Conference on Data

Mining, pp. 148–156, 2002.

[12] T.M. Rath and R. Manmatha, “Word Image Matching

uses Dynamic Time Warping,” In Proceedings of the

Conference on Computer Vision and Pattern

Recognition, pp. 521–527, 2003.

[13] P. Tormene, T. Giorgino, S. Quaglini and M. Stefanelli,

“Matching Incomplete Time Series with Dynamic Time

warping: An Algorithm and An Application to Poststroke

rehabilitation,” Artificial Intelligence in Medicine

Journal, Vol. 45, pp. 11-34, 2009.

[14] B. Burg, P.H. Missakian, and B Zavidovique, “Pattern

Recognition through Dynamic Programming,” In

Proceedings of SPIE's 29
th

 Annual Internal Technical

Symposium, 1985.

[15] H. Sakoe and S. Chiba, “Dynamic Programming

Algorithm Optimization for Spoken Word Recognition”,

IEEE Transactions on Acoustics, Speech and Signal

Processing, Vol. 26, pp. 43- 49, 1978.

[16] Y. Kuo, S. Huang, W. Ding, R. Kern and J. Yang, “Using

Dynamic Programming Algorithms to Detect Multi-Hop

Stepping-Stone Connection Pairs in a Long Chain,” In

Proceedings of the International Conference on

Advanced Information Networking and Applications

(AINA), pp. 198-205, 2010.

[17] Y. Kuo, S. Huang and C. Hill, “Detect Multi-Hop

Stepping-Stone pairs with Clock Skew,” In Proceedings

of the Sixth International Conference on Information

Assurance and Security (IAS), pp. 74-79, 2010.

Author Biographies

Ying-Wei Kuo is currently a Ph.D. Student in the
Department of Computer Science, the University of
Houston, United States. She received a B.S. degree in
computer science from the University of Otago, New
Zealand and a M.S. degree in computer science from
Oklahoma City University, United States. She was a
Computer Engineer at the Inventec Corporation, and
developed BIOS related software for Toshiba and HP
laptops using C. Her current research focuses on
designing efficient and highly accurate stepping-stone

detection algorithms in order to detect the intruders.

Shou-Hsuan Stephen Huang is professor of
Computer Science at the University of Houston,
Houston, TX, USA. His research interests include
data structures and algorithms, computer security,
and intrusion detection. He received his BS degree
in Mathematics from National Cheng Kung
University, Tainan, Taiwan and his MS and Ph.D.
degrees in Computer Science from the University of
Texas-Austin. He is a member of the ACM and a

senior member of the IEEE Computer Society.

461 Kuo and Huang

