
Journal of Information Assurance and Security.
ISSN 1554-1010 Volume 6 (2011) pp. 503–511
c© MIR Labs, www.mirlabs.net/jias/index.html

IRC BotChallenger: Creating Botnet-Resilient
Networks

M. Y. Mahmoud1 and Ashraf Matrawy2

Carleton University, Department of Systems and Computer Engineering,
Ottawa, ON, K1S 5B6, Canada

(1mimam, 2amatrawy)@sce.carleton.ca

Abstract: This paper presents a new approach to eliminate
the effect of botnets by disrupting their command and control
(C&C) communications. The focus is on botnets that employ
the IRC (Internet Relay Chat) environments as IRC is the most
common platform for botnet Command and Control communi-
cation. However, we see this work extendable to other botnet
communication platforms such as HTTP and Peer-to-Peer bot-
nets. In this approach we use a system we call BotChallenger to
intercept outgoing and/or incoming IRC traffic and subject it to
user’s approval.

The novelty of this work is that it doesn’t try to identify bot-
nets, rather it actively disrupts their communication. There-
fore, it is expected that this BotChallenger application level ap-
proach should work with various types of botnets that use IRC
for their C&C communication, which makes it capable of dis-
rupting new IRC botnets without the need to learn about or
identify them.

Two user profiles are simulated based on the presence of
nodes adopting the BotChallenger in a network. The simula-
tion results suggest that as the percentage of nodes adopting the
BotChallenger in a network increases, the percentage of C&C
messages passing through decreases -which leads to complete
disruption of a botnet even if the network is still infected. It also
shows that the number of useable computers is proportional
to the percentage of BotChallenger deployment. This gives a
chance for other intervention methods to disinfect the network
while the botnet is in an ineffective state.

Keywords: Botnet, IRC, command and control communica-
tions, SPAM

I. Introduction

Botnets are known to be one of the most dangerous Internet
security threats. A botnet is comprised of a network of hosts
(bots) waiting for a command from a controlling node (bot-
master). Botmasters gain control of hosts by infecting them
with robot software (botnet code). After that, botmasters can
communicate with their botnet with a command and control
(C&C) communication protocol [21].

As Fig. 1 shows, botnet infection follows a life-cycle.
First, the botnet initial infection phase will take place when
botnet node(s) exploit a victim node’s vulnerabilities to infect
the victim’s machine. Then, once the target host is infected,
it will execute a code that downloads and installs the botnet
malware on the victim’s machine. After that, the botnet pro-
gram establishes a connection with the botnet’s C&C server.

Once a connection with a C&C channel is established, the
victim becomes part of the botnet. Botnet nodes will listen
to the C&C channels waiting for botnet updates and mainte-
nance or other malicious commands from the botmaster [8]
[10].

Theoretically, botmasters can command their botnets to do
anything. They can use their botnets to gain computational
power, run distributed denial of service (DDoS), attacks, and
send spam emails. Furthermore, botmasters usually use their
botnets for advertising, spying, online fraud, phishing and for
identity theft. It is estimated that 80% of the Internet spam is
generated from botnets [22]. Studies show [1] that more than
fifteen percent of the computers connected to the Internet are
infected and used by botnets. It has been documented that
one botnet has infected and had more than 400,000 comput-
ers under its control [21] [8].

1. Initial infection

2. Injection

3. C&C Connection

Malicious C&C
Maintenance

C&C Server(s)

Botnet Vulnerable Node

Botmaster

4(b). Maintenance

4(a). Malicious activities

1. Initial infection: infect a victim.
2. Injection: victim runs & downloads botnet code.
3. Connection: establish connection with C&C server(s).
4. Victim has joined the Botnet waiting for:
a. Commands for malicious activities.
b. Maintenance and updates from Botmaster.

Figure. 1: Botnet Life-Cycle.

Detecting botnets is a challenging task. Therefore, 100%
detection of all known and unknown botnets is not possible
because botnets have very manipulative behaviors. Botnets’

Dynamic Publishers, Inc., USA

hibernation and their very low activity traffic volume keep
them hidden. Furthermore, botnets may use unusual destina-
tion port or encrypt their C&C traffic to stay undetected [12]
[17].

The IRC [18] protocol is a simple, distributed and scal-
able protocol designed to facilitate a chatting environment.
The IRC protocol’s simplicity and reliability made it a widely
available public exchange domain that facilitates almost in-
stant communication. Therefore, the earliest and most com-
mon botnets use IRC for C&C communication [17] [6] [13] .
Although botnet designers are increasingly moving towards
other protocols, IRC remains to be the most used protocol for
botnets’ C&C messaging [6] [19].

The following classification of some botnets detection sys-
tems are given to help explaining this paper:

• Online Vs. Offline Systems: In online sytems the traf-
fic is fed directly from the network to the detection sys-
tem whereas in offline systems traffic traces are col-
lected and then fed to the detection system.

• Real-Time Vs. Non Real-Time Systems: Real-time
systems are online systems that are capable of produc-
ing results in real-time whereas non real-time systems
might be online, but they need some time to produce
their results.

• Active Vs. Passive systems: Active systems will ac-
tively intercept, block and/or alter botnet malicious traf-
fic and does not wait for external intervention. On the
other hand, passive systems detect the possibility of
a botnet threat and then alert system administrator(s)
or/and the IDS (Intrusion Detection System).

Most of the research on botnet detection and defense mea-
sures focuses on passive systems and algorithms. Passive
monitors or systems - though might be real-time systems
[11]- rely on system administrator(s) or/and IDS to take ap-
propriate action in eliminating any threats. An active de-
fence system, however, will actively affect the network traf-
fic. Therefore, active defence systems could be very disrup-
tive if they have many false positives.

In this research, the focus is on IRC-based botnets because
they are the most common botnets. Peer-to-Peer (P2P) and
HTTP-based botnets’ detection is a work in progress. The
BotChallenger concept will be extended to other types of
botnets (including those which use UDP for their C&C com-
munication) in our ongoing work. The idea of BotChallenger
is presented to actively intercept and challenge any IRC mes-
sages then blocks botnets C&C messages. The performance
of this system relies heavily on identifying the C&C com-
munication protocol (IRC in this case). If a botnet’s C&C
traffic is successfully blocked by the BotChallenger, the bot-
master would no longer be able to communicate with its bots.
Therefore, no matter how smart and manipulative a botnet is,
being able to disrupt its C&C communication would make it
useless to the botmaster and the botnets’ threat will be elim-
inated.

The main contribution of this work is that the emphasis
is on C&C communication disruption not on blocking mali-
cious botnet activities. In other words, looking at botnet life-
cycle (Fig. 1), the BotChallenger will not try to block the
first two steps (infection and injection) rather it will block

the other three steps (connection, commands and mainte-
nance). C&C communication disruption renders the botnet
nodes in the network unable to communicate with their bot-
master. The IRC BotChallenger is a distributed solution that
is capable of protecting the network from new unknown IRC
botnets without the need for botnet identification.

The rest of this paper is organized as follows; section II
highlights some related research work on defense measures
against botnets. Section III states the problem description
and the intuition behind of the proposed solution. After that,
section IV drives a description of the BotChallenger system
proposed. Then, in section V, two user profiles are used to
study the performance of the BotChallenger. Simulation as-
sumptions, environment, and results are also illustrated. Fi-
nally, the paper’s conclusion is in section VI and suggestions
for future work are in section VII.

II. Related Work

Most of the literature on the defense against botnet focuses
on botnet detection methods. Most botnets can be detected
based on their behavior and/or by detecting their DNS (Do-
main Name Server) traffic.

Botnets rely heavily on DNS, and they usually use Dy-
namic DNS (DDNS) for their C&C servers. In [5], the au-
thors propose an anomaly-based technique to detect botnets
by monitoring their DNS traffic. The botnet DNS traffic has
a unique feature that the authors define as group activity.
Botnet members can be detected by using the group activ-
ity property of botnet DNS traffic while bots are connecting
to their server or migrating to another server. Their algorithm
is capable of detecting unknown and/or encrypted botnets re-
gardless of botnets’ protocol or structure. However, the false
positive and false negative ratios depend on a threshold that
can be tricky to determine in large networks.

Mazzariello [17] proposed an IRC detection method based
on a model of IRC user behavior. The main idea is to find a
way to differentiate human IRC traffic and automated IRC
traffic using classifiers. Response times, vocabulary and lan-
guage complexity can be used in this classification. The
author used Support Vector Machine (SVM) [23] and J48
[20] decision trees in the experiment. Though the experi-
ment was very successful and the author in [17] was able to
separate botnet C&C traffic with almost 100% accuracy, try-
ing to identify the correlated botnets’ responses could lead
to falsely identifying a legitimate node as C&C server due to
large number of clients connecting to it. Moreover, the au-
thor was not sure whether these results were because of the
algorithm or the dataset used to test the algorithm. Unfor-
tunately, when it comes to the response time, botnets could
be designed to adjust their response time so it mimics human
response.

Akiyama et al. [2] proposed a three metric measure for
botnet detection. They assumed that bots belonging to a bot-
net will have regularities in relationship, response and syn-
chronization. In their experiment, Akiyama et al. [2] ana-
lyzed the collected traffic and found that high density struc-
ture of hosts is related to the relationship among bots. Fur-
thermore, the response time must be a significant factor in
detecting botnets. They also concluded that dynamics of
measured traffic is a component of the synchronization of

504 Mahmoud and Matrawy

bots. Though this three-metric detection looks promising,
it has some limitations. Trying to identify the botnet rela-
tionship could lead to falsely identifying a legitimate node
as botmaster due to a large number of clients connecting to
it. When it comes to the response time, a botnet could be
designed to adjust its response time so it mimics human re-
sponse.

In [3], Binkley et al. suggested an anomaly-based detec-
tion algorithm for IRC botnets. Their algorithm is based on
the fact that all IRC hosts will be grouped based on their
channel name. Then an IRC channel will be considered
“evil” if it has most of its hosts performing TCP SYN scan-
ning. This algorithm does not need botnet signature for de-
tection and it can detect unknown IRC botnets. However,
this algorithm cannot detect encrypted botnets. Furthermore,
this is not a real-time detection algorithm as it cannot detect
botnets if they are not running an attack.

Chi et al. [4] proposed another metric for botnets detec-
tion by monitoring the massive malicious traffic. Accord-
ing to them, as botnets are based on the IRC protocol, they
must wait for the botmaster to send commands. As soon as
the master sends an attack command to the bots, thousands
of bots prepare to attack the victim at the same time. As a
result, massive malicious packets arrive at the victim simul-
taneously. By analyzing the flows of packets to the victim,
defenders then can block the malicious traffic and stop the
botnet. The authors of [4] proposed a method to detect the
botmaster during an attack by starting from the victim and
working backwards through the routers. This algorithm [4] is
for real-time detection and does not require botnet signature
for detection. It is capable of detecting unknown botnets and
has low false negative rate and low computational power. On
the other hand, this algorithm is incapable of detecting en-
crypted botnets. The detection is performed during botnet’s
attack, which is too late. Moreover, it requires an IDS to be
installed on the victim hosts.

Goebel et al. proposed ‘Rishi’ [9]. It is a detection sys-
tem based on the used IRC channel nickname for the detec-
tion of botnets. According to the them, the bot contact its
C&C directly after an infection. Every bot connected to its
IRC server has a username called the nickname. The detec-
tion method here relies on the IRC nicknames. The detec-
tion technique is based on passively monitoring the network
traffic for unusual or suspicious IRC nicknames. Although
Rishi is a low cost botnet detection system, it is a non-real-
time passive system that can only detect un-encrypted IRC
botnets.

Gu et al. proposed three systems to detect botnets. Bot-
Hunter [11] is a real time “evident-trail” approach that de-
tects botnet infection using IDS-driven dialog correlation
based on a predefined botnet infection life-cycle (i.e. target
scanning, infection exploitation, botnet binary downloading,
botnet code execution, C&C communication and outbound
scanning). This system is capable of detecting bots regard-
less of the C&C structure and network protocol as long as
the bot behavior follows a predefined infection cycle dialog
model. BotHunter is a real-time, protocol and structure in-
dependent detection system capable of detecting unknown
botnets with few false positives/negatives. However, it is a
passive system that requires botnet to follow a predefined in-

fection cycle dialog model to be detected and it is not capable
of detecting encrypted botnets.

BotSniffe [12] is an anomaly-based algorithm designed to
detect botnet C&C traffic in Local Area Networks (LANs.)
The system monitors LAN traffic for botnet messages and ac-
tivity responses. These messages carry commands from bot-
master to bots, whereas activities are botnet malicious tasks.
Bots usually respond the same way in a response crowd. The
system then utilizes botnet’s traffic spatial-temporal correla-
tion and similarities without any prior knowledge of a bot-
net. Botnets need to connect to C&C server to get com-
mands and thereby need to act upon on receiving a command,
so they have much stronger synchronization and correlation
than humans. This algorithm (Botsniffer) does not require
prior knowledge of C&C traffic signatures and can detect en-
crypted C&C communication. It does not need a large num-
ber of bots to work and has low false positive and false neg-
ative rates. However, it is not a real-time system that can
detect botnet in LANs only.

BotMiner [10] is a detection frame work comprised of
three main phases; monitoring, clustering, and correlating.
BotMiner clusters similar communication traffic and simi-
lar malicious traffic and perform cross correlation to identify
the hosts that share both similar communication patters and
similar malicious activities. BotMiner has low false positive
rate. It is independent of botnet C&C protocol and structure,
and requires no botnet signature. Therefore, it can detect
encrypted, centralized (IRC and HTTP) or distributed (P2P)
botnets. On the other hand, it is a passive non-real-time de-
tection system.

All detection methods mentioned above are online algo-
rithms in which the traffic is fed directly from the network
to the detection system. As for offline detection methods -
where traffic traces are collected and then fed to the detection
system- the authors of [22] and [16] analyzed network traffic
traces trying to isolate botnet traffic.

Strayer et al. [22] analyzed traffic traces in pipeline man-
ner. They start by filtering out the flows those are probably
not part of botnets. Then, they correlate surviving flows look-
ing for any indication of being in same botnet. After that,
flow information is further examined to find out if they share
any hubs. The goal of this paper [22] is to detect C&C flows
in IRC based botnet. They started by filtering the traffic to ig-
nore all traffic that cannot be C&C. Then, they classified the
traffic into IRC and non-IRC flows. Finally, the Topological
Analysis stage takes place to identify C&C traffic.

The internetwork research department at BBN technolo-
gies proposes a Machine Learning (ML) technique to detect
IRC-based botnet C&C traffic [16]. First, they divide the
traffic into IRC and non-IRC traffic. Then, they look further
into the IRC traffic trying to detect botnet C&C traffic. To
do so, they isolate the flows that likely contain C&C traffic,
correlate them to group flows that belong to the same botnet
in order to identify the C&C host.

This method has high false positive rates, high computa-
tional overhead and it is not in real time.

III. Problem Statement

Theoretically, botmasters can command their botnets to do
anything. They can use their botnets to gain computational

 505IRC BotChallenger: Creating Botnet-Resilient Networks

power, run distributed denial of service (DDoS) attacks, and
send spam emails. Furthermore, botmasters usually use their
botnets for advertising, spying, online fraud, phishing and for
identity theft. We look at this problem from the end user’s
point of view (organizations or individuals). By blocking
botnets, the end user would gain some of the following ad-
vantages:

• Protect your identity and financial data: By stopping
spying, identity theft, E-mail address harvesting, click
fraud.

• Protect yourself from trouble with the law: By stopping
hosting of phishing or illegal sites, click fraud, attacks,
illegal e-mails.

• Preserve bandwidth: By stopping forwarding botnet
traffic (Fast-flux), e-mail spam, Adware, attacks, hosted
sites.

• Preserve computer performance: By stopping the botnet
from adding or deleting autostart applications, running
or terminating programs, hosting sites, port scanning,
Adware, attacks.

Most of the research on botnet defense mechanisms is fo-
cused on identifying and detecting known botnets. Obvi-
ously, these mechanisms will not work against new botnet
designs. Some researchers proposed detection systems that
are capable of detecting unknown new botnets [11]. How-
ever, all these systems are passive systems that are based on
either anomalies of nodes’ traffic or DNS queries. Smart de-
sign of botnets could reduce the efficiency of these systems.
Countermeasures proposed in the literature have one or more
of the following disadvantages:

• Botnet signature requirement.
• Predefined models [11].
• Passive systems [11] [12] [10] [16] [22].
• Offline systems [16] [22].
• Non real-time detection [10] [12] [16] [22].
• High false positives/nigatives rates [9].
• High computational power [10].
• Thresholds that need to be adjusted according to net-

works’ user behavior [5].

The BotChallenger is designed to eliminate the threat of bot-
nets and avoid all previously mentioned disadvantages as ex-
plained in section IV.

IV. The Design of BotChallenger

As mentioned earlier, the novelty of this approach is the abil-
ity to eliminate the effect of botnets without trying to iden-
tify them, by disrupting their C&C communication in IRC
networks. In this approach, on every node, an instance of
the BotChallenger is used to challenge any traffic associated
with IRC process. Its purpose is to make sure that the user is
aware of the IRC communication being processed by his/her
computer. This BotChallenger will block all IRC traffic that
is not authorized by the user. Thus effectively block C&C
traffic rendering the botnet unable to function. An important
part of the design of BotChallenger is to be able to accurately
identify C&C communication protocol (IRC in this case).

A. Detecting Botnets Vs. Disturbing their C&C Traffic

Assume the scenario where we need to protect an organiza-
tion network of 500 computers against IRC botnets. Looking
at the countermeasures explained in section II, offline algo-
rithms (e.g. [16] and [22]) are not practical for this scenario
because traffic traces need to be collected first, then, these al-
gorithms are applied to determine if these traffic traces con-
tain botnet traffic. On the other hand, online algorithms (e.g.
[2], [3], [9], [11], [12], [10], and [17]) are mostly passive in
the sense that once a botnet activity is detected, it is up to
the system administrator to take the necessary actions. This
might include running cleanup tools to remove known bot-
nets or taking infected systems off the network until clean-
ing software is developed/updated or until the botmaster is
shutdown. These are not cost effective choices. The solu-
tion proposed in [4] is an active one where botnet’s traffic is
blocked router-by-router starting from the victim’s computer.
Unfortunately, this trace-back algorithm works only during
botnet attack, which could be too late for vital organization
computers. Moreover, working under attack could be very
challenging if the attack is affecting the network availability.

On the other hand, deploying the BotChallenger renders
the botnet nodes in the organization unable to communicate
with their botmaster. While the network administrator is de-
veloping/updating the clean-up tool, the botmaster will not
be able to use these bots to harvest information, send SPAM,
start DDoS attack,... etc. The only limitation will be the
end users who intentionally allow their computers to com-
municate with the botmaster. We say “intentionally” because
if the warning system is designed according to [7], the user
will be protected 100% of the time (details are given in sec-
tion IV-C). Keep in mind that the BotChallenger will also
keep all systems protected 100% of the time during business
afterhours because all IRC traffic well be blocked then.

Our simulation in section V-C shows that in the scenario
adopting the BotChallenger solution in a network, the num-
ber of useable computers in that network will be much higher
than it is in the scenarios where botnet detection systems are
used. In our result, we refer to these systems as generic de-
tection (GD) systems.

B. IRC Traffic Detection Methodology

To identify IRC communication, the keywords NICK,
USER, JOIN, TOPIC, PRIVMSG and NOTICE are used.
The BotChallenger would be able to detect any request to
join an IRC channel using either NICK or JOIN keyword be-
cause every user needs to use these two commands to join
an IRC channel. However, for better detection and to enable
users to install the BotChallenger on botnet infected hosts
and still be able to disrupt any ongoing botnet C&C commu-
nication, the other keywords could be used. PRIVMSG and
NOTICE keyword are used to detect private messages com-
munication after joining an IRC channel. Each of these key-
words has a specific syntax. Therefore, the BotChallenger
will be able to provide the user with the IRC channel name
and/or the remote user’s nickname and possibly real name to
make the decision more realistic to the users.

On the other hand, the system keeps an updated list of
all known encrypted IRC servers. This would give the Bot-
Challenger the capability to challenge the any communica-

506 Mahmoud and Matrawy

tion with these servers. However, there is a small possibility
that the botnet is using the same IRC server the user is us-
ing to conduct legitimate IRC conversation. This will limit
the BotChallenger’s ability to distinguish between these two
conversations. Furthermore, in order to avoid having a too
noisy system that could force users to ignore all warnings for
convenience, some measures are considered and explained in
the following section.

C. The IRC BotChallenger Architecture

As Fig. 2 shows, the IRC BotChallenger incorporates user
manageable white and black lists. The user has the ability
to allow/block individual messages and/or individuals. This
white/black listing can be done for one message, for the cur-
rent session, or forever (for IRC username). Furthermore,
the user has the ability to white or black list an IRC channel.
In order not to challenge every packet passing to the appli-
cation layer, and to keep track of current messages, sessions
and/or IRC channels, a lookup table is constructed using the
following packet header fields:

• Source IP addresses.
• Destination IP addresses.
• Packet ID.
• Protocol.
• Flags.
• Fragment.

The BotChallenger will intercept TCP traffic only (because
we are dealing with IRC for now).

If the traffic is classified as TCP, the keyword above are
used to detect if this traffic is IRC. If the traffic is encrypted,
the remote host will be checked against the updated list of
known encrypted IRC servers. Then, IRC traffic is checked
against the white and black lists. While the traffic belonging

BotChallenger
Is TCP?

Pass

Incoming traffic

Is IRC?

Whitelisted?

Blacklisted?

Challenge
User

(user, channel, session)
White List

Permanent
List (PW)

Temporary
List (TW)

(user, channel, session)
Black List

Permanent
List (PB)

Temporary
List (TB)

PW
PB

TB
TW

N Y

Y

Y

N

N

N

Y

Allow

Block

Figure. 2: IRC BotChallenger Architecture.

to whitelisted users, sessions or channels will pass, traffic
associated with blacklisted users, sessions or channels will
be blocked. The rest of IRC traffic (neither whitelisted not
blacklisted) will be challenged by the user. The user then
will decide whether to allow this traffic to pass or to block
it. With the user decision, the white and black lists could be
updated.

According to the study made by Egelman et al. [7], in
order for a security warning to be effective, it needs to satisfy
the following:

• It needs to capture the user’s attention.
• It must capture the user’s attention long enough to allow

them to attempt comprehension.
• It should “fail safely”. i.e. if the user did not read or

understand the warning and clicked the default, he/she
should be protected.

• It must give the user indication of danger and clearly
suggest action(s).

• It should not be similar to less serious warnings.

They found that regardless of user’s background, mental
frame, or understanding level of the warning, 100% of them
were protected by warnings that were designed to fulfill these
conditions.

The BotChallenger is a distributed solution that does not
suffer from singe point failure. It is capable of protecting
the network from new unknown botnets because it disrupts
the botnet’s C&C communication instead of trying to detect
them. We assume that the BotChallenger process is pro-
tected. i.e. the malicious software cannot inject their code
to the BotChallenger process. BotChallenger process pro-
tection is beyond the scope of this research.

V. Simulation

A. User Profiles

According to Egelman et al. [7], an efficient design of the
BotChallenger warning messages will protect all the users
using the system 100% of the time.

The novelty of this proposal is that it fights botnets, not
by trying to identify them like other algorithms, but by dis-
turbing their C&C traffic. Therefore, even if a botnet is com-
prised of thousands of bot computers (bots in short), after
adopting this BotChallenger the botmaster will no longer
be able to control these bots or use them for computational
power, running DDoS attacks or sending SPAM. To enhance
the usability of the challenger, the default setting will be to
block all IRC traffic if the user is not chatting on the IRC.
Once a user starts an IRC chat, the challenger will switch
to an interactive mode to challenge all IRC messages and/or
sessions. To reduce the amount of unnecessary challenges,
the user will have the option to trust all messages to/from a
given IRC username for the current section.

Designing the BotChallenger to fulfill Egelman et al.’s [7]
security warning conditions gives us two profiles.

• BotChallenger: normal users who read warning mes-
sages given from the challenger and respond accord-
ingly. These users will block 100% of all suspicious
IRC traffic and allow high percentage of legitimate IRC

 507IRC BotChallenger: Creating Botnet-Resilient Networks

to pass through. It is assumed that most of the network
users fall into this category. This is reasonable even if
most of the users do not know what IRC is, because
the challenger messages could be very simple. For ex-
ample, the challenger could send these messages to the
user asking for a response;

Your computer is trying to join IRC channel
< ChannelName >,

if you are not running a chat session or
trying to join an IRC channel, then most

probably your computer is infected with a
malware and you should block this

communication.

Your computer is trying to send/receive a
message to/from < NickName >

(< RealName >),
if you are not running a chat session or

communicating with < NickName >, then
most probably your computer is infected
with a malware and you should block this

message.

• No BotChallenger: Users without challenger. These
users will allow all IRC traffic to pass through.

B. Simulation Setup

In this paper, we chose to simulate a botnet that is generating
SPAM. Other malicious behavior such as DDoS could have
been simulated easily. We do not see this as the main focus
of the study. We are just trying to demonstrate the effect of
the BotChallenger on the botnet’s behavior. The Donbot [14]
and Festi [15] SPAM botnets were studied to find the param-
eters needed for the simulation. The Donbot botnet generate
an average of 8000 SPAM messages per hour per bot. That
is about 134 SPAM email per minute per bot. To simulate
the effect of the BotChallenger, we used SPAM emails as
a measure for malicious traffic. The network behavior was
simulated, where 500 nodes are set to send messages using
the following assumptions:

• We assumed that throughout the simulation all traffic
generation follows Poisson distribution instead of self-
similar traffic.

• Botmaster generate SPAM C&C messages following
Poisson message generation rate with mean of 1 minute
(i.e. 60 simulation cycle).

• Each bot will generate 134 SPAM emails upon re-
ceiving the botmaster’s C&C message (that is 8070
SPAM/hour/bot).

• Nodes are capable of sending non-IRC traffic and IRC
traffic. Bots will send botnet IRC C&C traffic (bot traf-
fic in short) in addition to the normal traffic.

• We assumed that every node has an input buffer of
length 20 (messages), but no output buffer. Therefore,
whenever there is a message burst, all messages will be
released at the current cycle and may be buffered at the

0 5 10 15
0

50

100

150

200

250

300

350

400

450

500

x 40 Minutes

A
ve

ra
ge

 N
um

be
r

of
 B

ot
s

in
 th

e
N

et
w

or
k

Average Number of Bots Vs. Time

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Figure. 3: Average Number of Bots Vs. Time for Different
Percentages of Deployment.

destination’s input buffer if the destination buffer has
enough capacity. Otherwise, messages will be dropped
if there is no space in the destination’s input buffer.

• User profiles assigned to nodes will stay fixed through-
out the simulation. However, node’s behavior will
change if it gets infected with a botnet message. Hence,
once a node is infected it starts to generate some botnet
C&C traffic.

• We assumed no defence against infection. The main
idea of the BotChallenger is not to identify the botnet
or block the infection. We assumed an infection attempt
3% of the total simulation time. With every infection
attempt 5% of the network nodes will be infected.

At every simulation cycle all nodes will be checked. If a node
has messages to send, the traffic will be challenged by its
outgoing BotChallenger. Then, the messages will be queued
into the destination’s input buffer. If a node has messages in
its input buffer, a message is dequeued after being challenged
by the node’s incoming BotChallenger. The main purpose of
this simulation is to see if the BotChallenger can accurately
block botnet C&C traffic and disrupt the botnet operation.

C. Simulation Results

Fig. 3 illustrates the relation between the number of botnet
infected nodes versus time for different percentages of Bot-
Challenger deployment. It shows that regardless of the per-
centage of deployment, eventually, all nodes will be infected.
This is because we “intentionally” did not adopt any protec-
tion against botnet infection in our simulation.

SPAM generation in the network is used to simulate ma-
licious traffic. Fig. 4 illustrates relation between the num-
ber of SPAM emails versus time for different percentages of
BotChallenger deployment. It shows that as the percentages
of network nodes adopting the BotChallenger increases, the
total number of SPAM emails generated by the network de-
creases. Note that this is happening despite the fact that the
network gets fully infected as shown in Fig. 3 because the
BotChallenger renders the bot ineffective even while it is in-
fected.

508 Mahmoud and Matrawy

2 4 6 8 10 12 14

10
5

10
6

x 40 Minutes

N
um

be
r

of
 S

P
A

M
 M

es
sa

ge
s

G
en

er
at

ed
 fr

om
 w

ith
in

 th
e

N
et

w
or

k

Number of SPAM Messages Vs. Time for Different Deployments

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Figure. 4: Number of SPAM emails Vs. Time for Different
Percentages of Deployment.

Logarithmic scale is used for this figure, therefore, the line
for 100% deployment is not shown because it has value of
zero. The fluctuation in the curves is due to the random dis-
tribution used to generate the SPAM. The SPAM messages
burst are generated following Poisson distribution with mean
of 134 message and exponential inter-arrival times with mean
of 60 seconds. Fig. 5 show the same result from another
perspective. It shows that the total number of SPAM emails
in the network is inversely proportional to the percentage of
node adopting the BotChallenger in the network.

To illustrate the advantage of using the IRC BotChallenger
over other generic detections (GD) systems -where infected
nodes are taken off the network for cleaning- we run the sim-
ulation comparing the BotChallenger against generic detec-
tion methods with different cleaning time values. We com-
pared the number of useable computers in the network. Use-
able computers are those how are functional in the network
without being a threat. We computed the number of useable
computers according to the following formula:

For GD solutions :
nUseable = nNodes − nBots

For the BotChallenger solution :
nUseable = nNodes − nVBots

Where :
nUseable = Number of useable nodes.
nNodes = Total number of nodes.
nBots = Number of bots
nVBots = Number of bots without BotChallenger .

Fig. 6 shows the average number of useable computers on
the network versus BotChallenger percentage of deployment
and other generic detections systems. It shows that for the
BotChallenger, the number of useable computers is propor-
tional to the percentage of deployment. Note that this is hap-
pening despite the fact that the network gets fully infected as
shown in Fig. 3 because we consider an infected node that is
running the BotChallenger to be a usable node since the Bot-

Challenger stops the bot’ malicious activity by disabling its
C&C. On the other hand, for other generic detection systems,
the number of useable computers is affected by the cleaning
time. It does not exceed 30% of total computers in the net-
work in the best case scenario where the cleaning time is only
10 minutes. These values are obtained on a network simula-
tion where 3% of the time there is an infection attempt to
infect 5% of the computers on the network.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18
x 10

6

Percentage of Deployments

A
ve

ra
ge

 N
um

be
r

of
 S

P
A

M
 M

es
sa

ge
s

Number of SPAM Messages Vs. Percentage of Deployments

Figure. 5: Number of SPAM emails Vs. Percentage of De-
ployment.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

500

Percentage of Deployments

A
ve

ra
ge

 N
um

be
r

of
 U

se
ab

le
 N

od
es

Average Number of Useable Nodes Vs. Percentage of Deployments
for differnt Generic Detection’s (GD) Cleaning Times

BotChallenger
GD 10 Min
GD 20 Min
GD 30 Min
GD 40 Min
GD 60 Min
GD 1 Day

Figure. 6: Useable Nodes Vs. Percentage of Deployments

VI. Conclusion

Simulation results shows that as the percentage of nodes
adopting the BotChallenger increases, the total number of
SPAM emails generated by the network decreases. It also
shows that by adopting the BotChallenger, infected ma-
chines will still be safely functional in the network until net-
work admin runs cleaning utility to disinfect them. Thus,
the number of useable computers on networks that adopt
the BotChallenger is proportional the percentage of deploy-
ment. Further more, we should keep in mind that end users

 509IRC BotChallenger: Creating Botnet-Resilient Networks

who adopt the BotChallenger are protecting themselves from
many threats that are more serious than SPAM (like protect-
ing their identity and financial data, bandwidth, and com-
puter performance).

The BotChallenger is a solution based on a simple con-
cept. It is an application layer defense system that does
not require any infrastructure changes (routers, switches,
servers). It does not try to detect the presence of botnets.
Rather, it makes a botnet useless to its botmaster by disturb-
ing its C&C communication. It does so by making sure that
the user is aware of any C&C communication protocol traf-
fic (IRC in this case). The BotChallenger is an active reli-
able distributed approach that works for new unknown bot-
nets that use the same C&C protocol.

VII. Future Work

As the simulation results demonstrate the concept of this
research, the BotChallenger concept could be extended to
cover other types of botnets. This could include HTTP C&C
traffic, peer-to-peer C&C traffic, and encrypted peer-to-peer
C&C traffic. Finally, the latency of the load of the Bot-
Challenger needs to be evaluated. The BotChallenger ap-
plication could be improved to enable system administrators
to detect the presence of botnet(s) in their networks by col-
laborating all BotChallenger applications on network nodes
with the network administrator’s BotChallenger application.

VIII. Acknowledgment

Muhammad Mahmoud acknowledges King Fahd University
of Petroleum & Minerals for its support. Ashraf Matrawy ac-
knowledges support from Natural Sciences and Engineering
Research Council of Canada (NSERC).

References

[1] Emerging Cyber Threats. Report, Georgia Tech Infor-
mation Security Center, October 2008.

[2] Mitsuaki Akiyama, Takanori Kawamoto, Masayoshi
Shimamura, Teruaki Yokoyama, Youki Kadobayashi,
and Suguru Yamaguchi. A Proposal of Metrics for Bot-
net Detection Based on Its Cooperative Behavior. In
Applications and the Internet Workshops, 2007. SAINT
Workshops 2007. International Symposium on, pages
82 –82, January 2007.

[3] James R. Binkley and Suresh Singh. An Algorithm for
Anomaly-Based Botnet Detection. In SRUTI’06: Pro-
ceedings of the 2nd conference on Steps to Reducing
Unwanted Traffic on the Internet, pages 7 –7, Berkeley,
CA, USA, 2006. USENIX Association.

[4] Zhenhua Chi and Zixiang Zhao. Detecting and Block-
ing Malicious Traffic Caused by IRC Protocol Based
Botnets. In Network and Parallel Computing Work-
shops, 2007. NPC Workshops. IFIP International Con-
ference on, pages 485 –489, Dalian, China, September
2007.

[5] Hyunsang Choi, Hanwoo Lee, Heejo Lee, and Hyogon
Kim. Botnet Detection by Monitoring Group Activities
in DNS Traffic. In Computer and Information Technol-
ogy, 2007. CIT 2007. 7th IEEE International Confer-
ence on, pages 715 –720, October 2007.

[6] Evan Cooke, Farnam Jahanian, and Danny McPher-
son. The Zombie Roundup: Understanding, Detecting,
and Disrupting Botnets. In SRUTI’05: Proceedings of
the Steps to Reducing Unwanted Traffic on the Internet
on Steps to Reducing Unwanted Traffic on the Inter-
net Workshop, pages 6 –6, Berkeley, CA, USA, 2005.
USENIX Association.

[7] Serge Egelman, Lorrie Faith Cranor, and Jason Hong.
You’ve Been Warned: An Empirical Study of the Effec-
tiveness of Web Browser Phishing Warnings. In CHI
’08: Proceeding of the twenty-sixth annual SIGCHI
conference on Human factors in computing systems,
pages 1065 –1074, New York, NY, USA, April 2008.
ACM.

[8] M. Feily, A. Shahrestani, and S. Ramadass. A Sur-
vey of Botnet and Botnet Detection. Emerging Security
Information, Systems and Technologies (SECURWARE
’09). Third International Conference on, pages 268 –
273, June 2009.

[9] Jan Goebel and Thorsten Holz. Rishi: Identify Bot
Contaminated Hosts by IRC Nickname Evaluation. In
HotBots’07: Proceedings of the first conference on

510 Mahmoud and Matrawy

First Workshop on Hot Topics in Understanding Bot-
nets, pages 8 –8, Berkeley, CA, USA, 2007. USENIX
Association.

[10] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke
Lee. BotMiner: Clustering Analysis of Network Traf-
fic for Protocol- and Structure-Independent Botnet De-
tection. In SS’08: Proceedings of the 17th conference
on Security symposium, pages 139 –154, Berkeley, CA,
USA, 2008. USENIX Association.

[11] Guofei Gu, Phillip Porras, Vinod Yegneswaran, Mar-
tin Fong, and Wenke Lee. BotHunter: Detecting Mal-
ware Infection Through IDS-driven Dialog Correlation.
In SS’07: Proceedings of 16th USENIX Security Sym-
posium on USENIX Security Symposium, pages 1 –16,
Berkeley, CA, USA, 2007. USENIX Association.

[12] Guofei Gu, Junjie Zhang, and Wenke Lee. BotSniffer:
Detecting Botnet Command and Control Channels in
Network Traffic. In In Proceedings of 16th Annual
Network and Distributed System Security Symposium
(NDSS’08), Reston, VA, USA, February 2008. The In-
ternet Society.

[13] Anestis Karasaridis, Brian Rexroad, and David Hoe-
flin. Wide-Scale Botnet Detection and Characteriza-
tion. In HotBots’07: Proceedings of the first confer-
ence on First Workshop on Hot Topics in Understand-
ing Botnets, pages 7 –7, Berkeley, CA, USA, April
2007. USENIX Association.

[14] M86 Security Labs. Donbot, March 2009. Web Page,
(http://www.m86security.com/labs/spambotitem.asp?
article=899).

[15] M86 Security Labs. Festi, June 2010. Web Page,
(http://www.m86security.com/labs/spambotitem.asp?
article=1359).

[16] C. Livadas, R. Walsh, D. Lapsley, and W.T. Strayer.
Using Machine Learning Technliques to Identify Bot-
net Traffic. In Local Computer Networks, Proceed-
ings 2006 31st IEEE Conference on, pages 967 –974,
November 2006.

[17] C. Mazzariello. IRC Traffic Analysis for Botnet De-
tection. In Information Assurance and Security, 2008.
ISIAS ’08. Fourth International Conference on, pages
318 –323, Naples, Italy, September 2008.

[18] J. Oikarinen and D. Reed. Internet Relay Chat Protocol,
May 1993. RFC1459.

[19] Martin Overton. Bots and Botnets: Risks, Issues and
Prevention. In In Proceedings of Virus Bulletin Confer-
ence. Virus Bulletin, October 2005.

[20] J. Ross Quinlan. C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1993.

[21] Daniel Ramsbrock, Xinyuan Wang, and Xuxian Jiang.
A First Step towards Live Botmaster Traceback.
In Recent Advances in Intrusion Detection, volume
5230/2008 of Lecture Notes in Computer Science,
pages 59 –77. Springer, Berlin, Heidelberg, September
2008. Book, Chapter.

[22] W.T. Strayer, R. Walsh, C. Livadas, and D. Lapsley.
Detecting Botnets with Tight Command and Control.
In Local Computer Networks, Proceedings 2006 31st
IEEE Conference on, pages 195 –202, Cambridge, MA,
November 2006.

[23] Vladimir Vapnik, Steven E. Golowich, and Alex Smola.
Support Vector Method for Function Approximation,
Regression Estimation, and Signal Processing. In Ad-
vances in Neural Information Processing Systems, vol-
ume 9, pages 281 –287. MIT Press, 1996.

 511IRC BotChallenger: Creating Botnet-Resilient Networks

Author Biographies

Muhammad Mahmoud received the
B.Sc. and M.Sc. degrees in com-
puter engineering from King Fahd
University of Petroleum & Minerals,
Dhahran, Saudi Arabia. He is cur-
rently a Ph.D. Candidate in the De-
partment of Systems and Computer
Engineering at Carleton University,
Ottawa, ON, Canada. Muhammad re-
search interests include system logic

design, network security, computer networking, and Com-
munication Network Protocols.

Ashraf Matrawy received the B.Sc.
and M.Sc. degrees in computer
science and automatic control from
Alexandria University, Egypt, and the
Ph.D. degree in electrical engineer-
ing from Carleton University, Ottawa,
ON, Canada. Ashraf is currently an
Associate Professor at Carleton Uni-
versity. He is a senior member of the

IEEE, serves on the editorial board of the IEEE Communi-
cations Surveys and Tutorials journal, and has served as a
technical program committee member of a number of IEEE
and other international conferences. Ashrafs research inter-
ests include reliable and secure computer networking, and
analysis of Internet traffic. His research has been supported
by CFI/ORF, NSERC, OCE, Alcatel-Lucent Canada, and
Solana Networks.

