
Journal of Information Assurance and Security. 
ISSN 1554-1010 Volume 6 (2011) pp. 512-521 
© MIR Labs, www.mirlabs.net/jias/index.html                                                                                                                 
 
 

Dynamic Publishers, Inc., USA 
 

Hybrid Multithreaded Pattern Matching Algorithm 
for Intrusion Detections Systems 

  
Monther Aldwairi and Niveen Ekailan 

 
College of Computer and Information Technology, Jordan University of Science and Technology, 

Irbid, 22110, Jordan  
munzer@just.edu.jo, nyekailan081@cit.just.edu.jo   

 
 

Abstract: Intrusion Detection System (IDS) is a powerful tool 
to discover and counter malicious activities over the Internet. An 
IDS inspects the packet payload and header to identify attack 
signatures. Pattern matching over packet payload is the most 
expensive operation in the detection stage in terms of speed and 
memory. Therefore there is a real need to improve the existing 
pattern matching algorithms and reduce their memory 
requirements, run time and complexity. In this effort we propose 
a hybrid Aho-Corasick (AC) and Wu-Manber (WM) pattern 
matching algorithm for speeding up IDS. The premise is that AC 
performs better for short patterns while WM outperforms AC 
for longer patterns. In addition, AC performs better for clean 
traffic with constant worst case performance as opposed to WM 
which performs better for malicious traffic. A novel partitioning 
algorithm is developed to equally divide the attack signatures 
between AC and WM. Multiple threading configurations are 
investigated and the best configuration is identified. Over the 
entire new algorithm achieves a best case 73% speed 
improvement compared to four threads of WM, and 64% 
compared to the four threads of AC algorithm. In terms of 
memory requirement we achieve a best case reduction of 53% 
compared to four threads of WM, and 67 % compared to four 
threads of AC. 
 

Keywords: Network Security, Intrusion Detection, Pattern 
Matching, Multithreading, Aho-Corasick, Wu-Manber.  

I. Introduction 
With the Internet growing popularity and speeds, more 
sensitive information is exchanged and with that comes new 
problems. Threats become more severe, an increasing the 
number of people are being victimized and sophisticated 
attacks are increasing in frequency. Therefore, Security has 
become a real challenge. This makes a case for fast, accurate 
and configurable network security tools that could handle this 
amount of malicious traffic in real time.  

Intrusion detection systems aim to detect malicious activity 
by either matching packets against attack signatures or 
detecting suspicious behavior in network traffic. It looks for 
specific patterns or behavior anomalies that characterize 
malicious intents. An IDS is classified into either misuse or 
anomaly. Misuse, often referred to as signature based, 
intrusion detection system gathers information from the 
incoming traffic then analyzes it looking for attack signatures. 
The major advantages of this approach are speed and accuracy 
represented by less false positives compared to anomaly based 

approaches. However, the accuracy of misuse detection 
depends on the accuracy of the rules containing attack 
signatures. Unfortunately the rules are manually maintained 
which makes it efficient to mitigate only previously known 
attacks. In addition, the overall performance degrades as the 
number of signatures and amount of traffic increases. 
Anomaly IDS defines a normal baseline for the network 
behavior. It monitors the ongoing traffic then compares the 
behavior of the traffic to the predefined baseline. Any 
deviation from the baseline is considered anomalous. 
Anomaly IDSs are slow, require long training stage, and 
suffer from high false positives and negatives. 

Intrusion detection systems can also be classified based on 
deployment into or host and network based detection. A host 
based IDS (HIDS) is software designed to check internal 
behavior of a machine. It inspects all host activities and 
actions such as system calls, running applications, and log 
files. HIDS uses database of normal states of all objects under 
monitoring. It is vital for this kind of IDS to keep the system 
database strongly protected. The attacker who targets HIDS 
tries to manipulate the system database to conceal the traces of 
their attack. Network based intrusion detection system (NIDS) 
on the other hand, is a processing device connected to a 
network ingress point to monitor its behavior. It captures and 
analyzes all packets in real time. Three modules are mainly 
used in NIDS. First, a filter module is used to analyze data in 
real time. It passes all known non malicious traffic and 
forwards the suspected traffic to the attack recognition 
module to be checked for attack signatures. Once an attack 
signature is found a response module is invoked to take a 
predetermined action specified by the rules. 

Signature based IDS is more commonly used because it is 
faster and has less false positives. Signature based IDS simply 
inspects packets payload for attack signatures which makes 
pattern matching the most critical part of IDS. Mike Fisk and 
George Varghese showed that 31% of Snort (widely used 
signature based IDS) processing time is spent in pattern 
matching. They also showed that the cost of the matching 
operation increases rapidly in case of highly malicious traffic 
to reach 80% of the overall processing time [1]. In addition 
the number of attacks and potential threats increases rapidly. 
Therefore, the signatures database grows significantly each 
year, imposing more restrictions on IDS speeds and memory 



  

requirements [2]. Hence, it is highly important to reduce the 
amount of work and processing time spent on content 
matching operations. More efficient pattern matching 
algorithms for real time packet inspection is a very active 
research area. 

This paper introduces a fast efficient pattern matching 
algorithm for intrusion detection systems. We propose a 
hybrid pattern matching algorithm, based on two well-known 
multiple pattern matching algorithms Wu-Manber, and 
Aho-Corasick. The new algorithm matches long patterns 
against packet payload using WM and short patterns are 
matched using AC. A new partitioning algorithm is designed 
to divide the signatures between the two algorithms to keep 
the workloads balanced for optimal performance. Multiple 
threads are used to match the packets against different sets of 
signatures.  

The rest of this paper is organized as follows. Section II 
will present the background necessary to understand the 
problem. It explains Snort, pattern matching for IDS and 
different parallelism types. Section III presents the state of the 
art IDS systems. Section IV presents the partitioning 
algorithm and describes the hybrid algorithm in details. 
Finally, Section VI presents a complete theoretical and 
experimental analysis. 

II. Background 
In order to understand the hybrid algorithm we must first 
study the properties of the IDS rules, attack signatures and 
pattern matching algorithms. The following subsections will 
introduce Snort and its rule format. Next a detailed 
description of pattern matching algorithms and more 
specifically the Aho-Corasick and Wu-Manber algorithms is 
brought forward. Finally, detailed examples from Snort 
extracted signatures are thoroughly explained.  

A. Snort 
Snort is a popular open source IDS that relies on a rule based 
engine to detect attacks [2]. A Snort rule specifies an action to 
be taken when a packet matches the rule header and options. 
The rules header specifies the IP address and port duple of a 
packet source and destination. Rules may contain one or more 
options consisting of two parts: a keyword and an argument. 
Rule options contain extra information for matching packets 
payload such as the content keyword which is used to find 
attack signatures in the packet. Contents or attack signatures 
could be presented as binary data in hexadecimal or in the 
form of ASCII character string. The uricontent keyword is 
similar to the content keyword except it checks only the 
Uniform Resource Identifier (URI) part of http packets. The 
offset keyword is used to start the search at a certain offset 
from the beginning of the packet payload. The nocase 
keyword is used to perform case insensitive search of 
signatures within the packet payload while the ttl keyword 
tests the IP header's TTL field value. The sid keyword 
specifies the signature identification number and rev keyword 
indicates the rules database revision number. The msg 
keyword indicates the message to be logged [3]. 

Figure 1 shows a snippet of Snort rule number 1659. This 
rule indicates that an alert should be triggered for any HTTP 
packet from any external network to any HTTP server/port 

given that the packet tries to execute /sendmail.cfm’.  
Snort is composed of several components with the detection 
engine performing the core operations of pattern matching. It 
reads the signatures into a data structure and matches them 
against incoming packets. The complexity of the work at the 
detection engine is affected by several factors: mainly the 
number of rules that should be evaluated against the received 
traffic, the speed of the network interface, the speed of the 
hardware running the IDS and the quality of the pattern 
matching algorithm. Snort spends at worst case 80% of its 
processing time doing pattern matching [1] and 87% of the 
2003 Snort rules contain signatures to match against [4]. 

Snort implements Boyer-Moore, Aho-Corasick and 
Wu-Manber pattern matching algorithms in different stages of 
the detection process. The pattern matching operation remains 
the bottleneck of any IDS regardless of the algorithm. 

B. Pattern matching for IDS 
Pattern matching algorithms are categorized into either single 
or multiple pattern matching algorithms. Single pattern 
matching algorithms search for one string at a time, while 
multiple pattern matching algorithms search for all patterns at 
once. 

1) Aho-Corasick 
Aho-Corasick is a multiple pattern matching algorithms [5]. A 
preprocessing procedure is performed over the set of strings, 
and then all packet contents are searched at once in the search 
phase. In preprocessing, a deterministic finite state machine 
automata (DFA) is built from the strings as follow. The 
algorithm starts in the idle state as the root state of the 
automata. Then the characters of the first pattern are added to 
trie one by one. The same process is repeated for all patterns. 
A failure function is used to add links that point to partial 
string matches. The failure link is used in case of mismatch, 
where the current searched string is a substring of many 
patterns. 
 
 
 
 
 
 
 

Figure 1.  Snippet of Snort rule number 1659 

 
Figure 2. AC state machine 

alert tcp $EXTERNAL_NET any -> $HTTP_ 
SERVERS $HTTP_PORTS (msg:"WEB-COLD 
FUSION sendmail.cfm access"; uri 
content:"/sendmail.cfm"; nocase; 
classtype:attempted-recon; sid:1659; 
rev:6) 

  

   
  

  
513 Aldwairi and Ekailan



In the search process, the text is passed through the state 
machine character by character. If there is a match the goto 
function is invoked to proceed and match the next character. 
Otherwise the fail function is used to match the text against 
other patterns if possible or return no match idle state. 
Figure 2 shows the trie for a set of string extracted from actual 
Snort rules, P = {CPWD, PWD, PASS, PORT, SIZE, PASV}. 
Solid arrows represent goto function and dotted arrows 
represent failure links. 

2) Wu-Manber 
Wu-Manber is a high performance multiple pattern matching 
algorithm. The matching process in WM is divided into two 
main stages: preprocessing and scanning stages. In the 
preprocessing stage WM builds three tables: SHIFT, HASH, 
and PREFIX [6]. 

In preprocessing stage, WM computes the minimum length 
of patterns, m. WM considers only the first m characters of 
each pattern in the SHIFT table computation. Only the entries 
with 0 shift values will be a candidate entry to HASH and 
PREFIX tables. 

The SHIFT table contains a shift value for each possible 
substring of size B. In other words, it specifies the number of 
characters to skip when matching a substring of size B. To 
construct the SHIFT table take X, which is a substring 
representing the last B characters of Snort signatures of size m. 
Given X, there are two possibilities: 

1. X does not exist in any patterns, then the maximum 
safe shift without missing any matches is m-B+1, 
which is the default value stored into SHIFT[X]. 

2. X exists in some patterns. Find the rightmost incident 
of X in all patterns, call it q. Then the maximum safe 
shift without missing any matches is m-q and it will 
be stored into SHIFT[X]. 

The HASH table contains groups of patterns of the same 
substring that have a zero shift value in the SHIFT table and it 
is accessed using the same hash function used to access the 
SHIFT table. The HASH table is needed to reduce the cost of 
searching for a substring that matches several patterns. The 
first B characters of all patterns are mapped into the PREFIX 
table as well to help search strings with different prefixes. 
When the search for the SHIFT table returns 0, the HASH and 
PREFIX tables are consulted to determine if there is a match. 

In the scanning stage the following steps will be performed 
on a sliding window of size, w>B, over the packet. 

1. Compute the HASH table entry h, based on the last B 
characters of the current sliding window. 

2. If SHIFT[h] >0, shift the current sliding window and 
return to 1, else go to 3. 

3. Compute the prefix hash value, p. 
4. Check for p given that HASH[h] ≤ p < HASH[h+1] 

where PREFIX[p] = text prefix. If TRUE, match the 
pattern against the text. 

 
Block Shift Block Shift 
PW 1 OR 1 
WD 0 RT 0 
AS 1 SV 0 
SS 0 Other

s 
2 

Table 1. Wu-Manber SHIFT table 

  
Figure 3. WM HASH table 

  
Figure 4. WM scanning process 

To search for these patterns {CPWD, PWD, PASS, PORT, 
PASV} using the WM algorithm, we first program the SHIFT 
table as shown in Table 1. Minimum pattern length is m=3 
and we select a block of size B=2. The default shift value 
3-2+1=2 is listed under {others}. To calculate the shift for 
{PW} we locate the right most occurrence of the block in any 
string, q=2 for signature {CPWD}. Therefore the shift value 
is 3-2=1. On the other hand, for {WD} there are two matches: 
{CPWD} with occurrence index of 3 and {PWD} with 
occurrence index of 2. We pick the rightmost to calculate the 
shift = 3-3=0. 

Figure 3 shows the HASH for the same signatures. It 
contains, for each B character with SHIFT table value of 0, a 
linked list with all strings containing that substring. Figure 4 
shows the search process for the text {APCWDPWD} with a 
sliding window of three characters. The arrows point to the 
substring to be used to access the SHIFT table in each step. 
The first window is {APC}; check the SHIFT table for block 
{PC}, which falls under “Other”, with a shift value of 2. The 
window is shifted by two to {CWD}. Check the SHIFT table 
for block {WD} which has a shift of 0 indicating a possible 
match. Next the HASH table is checked and no match is 
returned. The sliding window is shifted by one to become 
{WDP}. Step three retrieves a shift of 2 from SHIFT table for 
block {DP} which makes the next window {PWD}. In step 
four block {WD} has a shift of 0 indicating a possible match. 
The HASH table indicates a match for {PWD}. 

III. IDS Parallel Techniques 
Distributed IDS is different from parallel IDS in that 
distributed IDS performs monitoring at different locations of 
the target network while parallel IDS is the system that 
processes traffic in a parallel fashion or performs other 
processing tasks at the same time. In general, a parallel IDS 
monitors traffic on a single ingress or egress point [7]. The 
main function of distributed IDS is to improve the detection 
process and minimize the risk of malicious traffic. 

Parallelism on the other hand can help reduce the time 
consumed in pattern matching and increases the throughput. 
Parallelism techniques can be classified into two categories: 
data and function parallel. Data parallel techniques aim to 
divide the processing load over several threads or nodes. 
Although the actual processing time will not be greatly 
improved, the key advantage of those techniques is to 
decrease the arrival time and increase the throughput. In 

514Hybrid Multithreaded Pattern Matching Algorithm for Intrusion Detections Systems



  

function parallel techniques each node or thread performs 
different work than the other threads. That is each thread 
performs different part or task of the processed job. This 
parallelism technique reduces the processing time of each 
packet on a single node. 

Parallelism can be deployed at three levels in IDS: 
subcomponent, component, and node level. Deploying 
parallelism at one level will not affect the behaviour or the 
performance of other levels. Parallelism of both types may be 
deployed at one, two, or at all levels [8]. The following 
subsections will shed some light on the two classes of 
parallelism: data and function parallel as well as provide a 
brief description of the three parallelism deployment levels. 

A. Data parallel techniques 
Data parallel techniques offer three possible scenarios for 
dividing the load of signature-based intrusion detection 
systems. First, pattern division, the attack signatures are 
divided over several threads. In this scenario each thread 
matches all packets against a subset of the signatures dataset. 
Second, packets division where each packet is divided to 
several fragments and each fragment is forwarded to a thread. 
Each thread matches a complete set of patterns against the 
received packet fragment. The third scenario is a hybrid of 
both. 

Several attempts were made to make use of data parallel 
techniques to improve IDS performance. Wheeler et al. 
introduced a data parallel algorithm, called dual algorithm [9] 
based on the idea of gaps in the rules set. It divides the rules 
set into two groups: one and two bye patterns. If the group is 
small, Snort’s default Boyer-Moore (BM) algorithm [10] is 
used for the search process. Otherwise, if the group is large a 
special one character version of WM is used. Christopher 
Kopek proposed Divided Data Parallel (DDP) content 
matching algorithm [11]. He divided the incoming packet 
across n processors and studied the performance enhancement 
given the added division overhead. The overhead is caused by 
the overlap between packets fragments which must be larger 
than longest signature in order not to miss any attack 
signatures by splitting them into two different packet 
fragments. DDP provided each processor with WM HASH, 
SHIFT, and PREFIX tables programmed with all rules. The 
results show a 1.94 speed gain in case of two processors, and 
3.48 in case of four. Because of the increasing maximum 
signature length this algorithm will suffer because the penalty 
is magnified. 

B. Function parallel techniques 
There are variant ways to implement function parallelism 
depending on the pattern matching algorithm. Zhang et al. [12] 
proposed a function parallel architecture to parallelize the 
WM algorithm. They proposed to spread the HASH table 
entries on a number of threads. By using this technique the 
search time per thread will be reduced, because reducing the 
number of HASH table entries will decrease the number of 
distinct patterns to be compared per thread. Consequently, 
each thread has less patterns to match against packet payload, 
by doing this it is most probable that each processing thread 
will skip larger segment of the searched text when no match 
returned by the search process.  On the other hand, decreasing 
the number of entries in the HASH table and increasing the 
shift values means that the number of calls to the HASH table 
decreases, so the overall performance of the search process 

will be optimized. The practical test of this technique did not 
show much optimization because the number of rules 
increases rapidly, which makes the effect of spreading the 
HASH table entries meaningless. In one hand the time needed 
to perform a search with 30 HASH table entries is almost the 
same as searching a HASH table with 120 entries. On the 
other hand, the overhead of spreading the HASH table and 
handle all nodes will be an extra charge. Therefore, the search 
time each thread needs will be almost the same time needed if 
it has a complete rule set. 

C. Component level parallelism  
Component level parallelism is generally a function 
parallelism with some functionality isolated in separate 
processing units. In IDS there are two candidates for 
component level parallelism: preprocessing and content 
matching. In practice component level parallelism could be 
implemented as lightweight processes or threads, where each 
single component uses a single process or thread to be 
executed. Another implementation is to use a single processor 
for each IDS component. This technique main advantage is 
that the instruction remains in the cache memory of its 
processing unit, therefore, the performance is improved [9]. 

D. Subcomponent level parallelism 
In this technique some components of the detection system 
are parallelized. In practical we can classify the preprocessing 
stage into critical and non-critical as argued in [11]. Practical 
implementation can be either by spreading malicious traffic 
rules on a group of processing units, so each processing unit 
serves only network traffic with certain characteristics applied 
to a set of rule group or by grouping the rule set and 
processing these groups in parallel fashion. One of the 
practical applications of this technique is in matching web 
traffic where pure-content rules and rules containing 
uri-content implemented in two isolated structures. Aldwairi 
et al. divided the traffic between parallel engines based on the 
port [4]. 

E. Node level parallelism 
Node level parallelism consists of a number of independent 
systems that performs their tasks separately. Packets are 
delivered to the processing nodes using packet splitter or 
traffic duplicator based on the behavior of the system. Each 
processing node could be a processor unit, multiprocessor 
desktop, uniprocessor desktop, or any other system. Each 
node at this level of parallelism operates as a black box system 
that works on data or function parallel manner [9]. A one 
significant advantage of node level parallelism is that packet 
pre-processing performed once before splitting over the 
processing nodes. On the other hand, the need for a 
sophisticated traffic splitter is almost the main drawback of 
this parallel system [11]. 

Fulp et al. [13] introduced a novel firewall architecture 
that performs packet matching under heavy traffic loads, 
higher traffic speeds, and high quality of service requirements. 
The proposed architecture runs multiple firewalls in parallel, 
where each single firewall runs a subset of the original policy 
set. This system checks the incoming packets in parallel 
fashion; each packet is checked by all the firewalls. The 
proposed firewall architecture has lower time complexity and 
higher throughput. It provides 74% speedup with four firewall 
architecture. Furthermore this technique has a major 

    

   
  

  
515 Aldwairi and Ekailan



advantage, because it provides state full packet verification, 
which is vital to identify certain types of attacks. 

IV. Related Work 
Several works are introduced in pattern matching research 
area to reduce the time, complexity and memory requirements 
in both single and multiple pattern matching algorithms. Kim 
et al. [14] proposed a multiple string pattern matching 
algorithm based on compact encoding. They assume that the 
bit representation of a single pattern needs one word to be 
stored. The proposed algorithm shows high performance in 
matching large number of patterns simultaneously. The 
algorithm performs better than gerp and agerp in many test 
cases. They used hashing to handle the problem of having a 
large number of patterns without affecting the performance of 
the matching process.  

For single pattern matching algorithms, Liu et al. [15] 
proposed double single pattern matching algorithms. Each 
single matching algorithm consists of two structures: a finite 
state automation and smallest suffix automation. The 
proposed algorithm shows better performance in terms of time 
in average and it over performs BM in matching short and 
long patterns. In addition, by comparing the performance of 
the proposed algorithm with RF and Long Derivative 
Matching (LDM) [16], it provides lower time complexity than 
both in matching short patterns. 

There exist many efficient pattern matching algorithms for 
IDS suitable for hardware implementation. Rafla et al. [17] 
proposed a Finite State Machine (FSM) pattern matching 
algorithm for hardware implementation. The proposed design 
is RAM based and is reconfigured on the fly through altering 
memory contents. For reconfiguration they used embedded 
processing unit. The results of their experiments show that the 
proposed system can be restructured to handle new patterns. 
The performance evaluation of this algorithms shows that 
every search iteration took one clock cycle to finish, and that 
pattern length did not affect the clock frequency. In [4] 
Aldwairi et al. proposed a reconfigurable memory based 
accelerator for intrusion detection. The memory system 
consists of high speed DMA and multi-port SRAM. In order 
to increase pattern matching speed they experimented with a 
number of configurable accelerators. The proposed system 
consists of two components: a software executed on a VLIW 
core and a hardware accelerator for pattern matching for FSM 
construction. The software creates an FSM and builds the 
state tables, and then the FSM performs pattern matching 
using the original AC algorithm. The authors stored the AC 
state tables in SRAM using different techniques, which 
improves the overall throughput of the system. The 
experimental evaluation of the proposed technique reported 
throughput of up to 14 Gbps using 8 parallel FSMs. On the 
other hand, the throughput degrades with increasing the 
number of patterns, because the number of characters to be 
matched increases and the number of states increases as well 
[18]. 
Weinsberg et al. [19] introduced a multiple string matching 
algorithm based on a standard RAM and Field Programmable 
Gate Arrays (FPGAs). The algorithm optimizes the detection 
speed while false positives and negatives remain the same.  In 
[20] Woods et al. introduced a real time pattern matching 
architecture for hardware implementation, the proposed 
architecture monitors network stream and analyses it in 

real-time. This system consists of a complex event processor 
connected with FPGAs. It is optimized for small packets 
(generated by financial applications) and was able to handle a 
saturated 1Gbps link. The system is reconfigurable by 
introducing a rich pattern description language. 

Many researchers introduced modified versions of AC and 
WM algorithms. Tuck et al. [21] proposed a modified version 
of AC. They optimized the memory required in the matching 
operation, and provide efficient solutions to improve the 
efficiency of the matching process on hardware 
implementation by using two techniques: applying bitmap 
compression on each node and apply path compression to AC 
to achieve compact storage and worst case performance. 
Zhang et al. [12] propose a modified version of WM 
algorithm that improves the performance of WM in short 
patterns matching. The proposed algorithm groups the 
malicious patterns based on length, then each group is 
processed independently. A single data structure for each 
group is built. This technique has lower time complexity than 
the basic WM algorithm. Yang Dong Hong et al. [22] merged 
Quick Search (QS) [23] and WM algorithms. They 
maximized the shift values by making use of the mismatch 
states in the matching phase. They modified the preprocessing 
phase of WM algorithm by adding a HEAD table to hold the 
first two characters of each pattern. The performance 
evaluation shows lower time complexity compared to regular 
WM with short patterns. 

Researchers additionally, made use of artificial 
intelligence algorithms for pattern matching. Lu et al. [24] 
used genetic algorithm to learn a set of rules from anomalous 
network traffic. They demonstrated potential to generate new 
rules using GA to detect unknown attacks. Despite the low 
false positives and negatives, the use of random crossover and 
mutations resulted in modest results in terms of accuracy.  

Moraru et al. introduced a modified version of Rabin-Karp 
string search algorithm with feed-forward Bloom filter [25].  
They take into consideration that very large number of 
patterns generates small number of matches. They used the 
Bloom filter to discard all corpuses that does not return hits in 
the filter because they cannot contain a match. They benefit 
from a memory hierarchy to attain a speedup between 2 and 
30 times and memory reduction with almost 50 percent 
compared to gerp. 

The problem of speeding up pattern matching remains 
open and a wealth of new research projects is being conducted. 
More recently, Prasad et al. introduced an approximate 
multiple pattern matching algorithm [26] that finds all 
occurrences of a set of patterns in the searched text with 
minimum false negatives. It does not require verification and 
can handle long patterns efficiently. Pendlimarri et al. 
proposed a multiple pattern matching algorithm in [27] by 
designing a new version of the dynamic programming-based 
(DP) algorithm. They enhanced the algorithm to work as a 
multiple instead of single pattern matching algorithm. The 
proposed algorithm preprocesses the searched text once 
before starting the search phase. The performance of this 
algorithm is better than the BM algorithm with almost 
33%-91%, and 37%-85% than Quick Search algorithm. 

Parallelism has sparked the attention of researchers in the 
field. Thinh et al. parallelized Cuckoo hashing on an FPGA to 
achieve up to 8.8 Gbps for four characters sliding window 
[28]. They report area savings of 30% with high flexibility to 

516Hybrid Multithreaded Pattern Matching Algorithm for Intrusion Detections Systems



  

add new patterns without hardware reconfiguration. Kim et al. 
partitioned the patterns into subgroups based on balancing the 
patterns length for each matching unit [29]. Later Kim et al. 
used a bit-split parallel string matching to reduce the number 
of states and state transitions [30]. The use of the balanced 
length pattern portioning resulted in homogeneous matching 
units and an overall 47.8% reduction in memory usage. 

Luchaup et al. exploited data parallelism by dividing the 
packet into independent chunks [31]. They scanned multiple 
byes using speculation to guess the next state of the DFA. The 
incorrect speculations are corrected later and on average the 
reported a small memory usage and throughput improvements 
on commodity processors. In order to benefit from the 
speculation they later used Cell architecture to achieve a 1.6 
speedup and a 1.33 Gbps throughput using 8 threads [32]. 
Their solution still suffers from the limited storage available 
on the RISC based processing units in the Cell architecture 
and the extra overhead added by speculation. 

V. The Algorithm 
In this paper we aim to reduce the pattern matching cost by 
dividing the pattern matching task over several threads. To 
this end, we partition IDS signatures into several classes 
based on two factors: pattern length, and percentage of 
occurrence of each length in the signatures database. Most of 
the previous algorithms relied on the number of signatures 
which is misleading because of the variation in signatures 
lengths. Rather we use the the number of characters which 
represents the actual workload. The goal is to have equal 
workloads for each thread. Threads run different algorithms 
depending on their assigned signatures class properties. 
Before we can explain the hybrid algorithm we have to divide 
the signatures between AC and WM algorithms. 

A. Signatures partitioning algorithm 
We study attack signatures extracted from Snort 2.8.4.1 
database published in 2009 [33]. Figure 5 plots the average 
pattern length and the percentage of occurrence of each 
pattern length. We observe that the majority of the signatures 
lie in length interval of 3 to 20. The area under the curve 
represents the number of characters in that range. We 
approximate the area by calculating the area of rectangles as 
opposed to calculating the integral. Algorithm 1, partitioning 
algorithm, divides the signatures based on the area under the 
curve as marked by colored rectangles shown in Figure 5. The 
first interval was chosen based on, experimental AC 
performance measurement and the number of threads to be 
used. The adopted partitioning was corroborated by 
experimental results reported in previous work.  Faro et al. [34] 
split the signatures based on theoretical assumptions into four 
classes: very short (m ≤ 4), short (4 < m ≤ 32), long (32 < m ≤ 
256) and very long patterns (m > 256). A simple examination 
of Figure 5 shows that this partitioning does not even come 
close to load balancing. In fact, 74.6% of signatures have a 
length less than twenty characters and would fall under the 
first two classes: very short and short. 

Algorithm 1 partitions the signatures into 7 classes with 
almost equal workload and average area under the curve of 14. 
The remaining signatures are summed up in class 7 as shown 
in Table 2.    

B. The hybrid algorithm 
The premise is to exploit the fact that WM is inefficient for 
short strings and AC performance degrades for longer strings. 
WM performance depends on several factors. The main factor 
is the maximum shift length which is bound by the length of 
the shortest pattern in the signatures database. The maximum 
shift determines the maximum text skipped without search. 
The longer the strings the better WM will perform. On the 
other hand, AC performance depends on the number of states 
to be traversed. The number of states grows exponentially 
with the number of strings or characters. Therefore AC 
performs better for shorter strings.  

The Hybrid algorithm uses AC threads to match pattern 
classes with short signatures length, and WM threads to match 
patterns with relatively longer length. In other words, the 
hybrid algorithm tries to make the best of both. Each packet 
will be processed by all threads. The number of threads is 
determined experimentally as shown next. 

VI. Experimental Results 
We bring forward a comprehensive set of experiments to 
evaluate the performance of the proposed algorithm. 
Experimental time and memory measurements are carried out 
using actual traffic traces. Subsection A explains the 
simulation environment and performance metrics used for 
evaluation. Subsection B presents the various configurations 
in search of the perfect combination of AM and WM threads. 
Subsection C evaluates the relative performance for the best 
hybrid multithreading configuration. Finally, Subsection D 
evaluates how the algorithm performance scales with 
increasing number of threads.  

A. Simulation environment and performance metrics 

We implement the hybrid algorithm using C++ under 
Windows operation system and MS Visual Studio 2010. The 
simulator reads packets and signatures form text files, 
performs the matching using the target algorithm and 
measures time and memory to be compared against the 
original AC and WM algorithms. Numbers reported in 
following subsections are the average of five runs. 
Simulations are conducted on a workstation with Intel Core 2 
Quad 2.60GHz processor and 4GB of memory. To measure 
the execution time, we use CodeProject ExecutionStopwatch 
class and we use the GlobalMemoryStatusEx function to 
measure the memory usage.  

  
Figure 5. WM scanning process 

 

      

   
  

  
517 Aldwairi and Ekailan



 
 

Class 
No. 

Length 
Interva

l 

Class 
No. 

Length 
Interva

l 
0 1-4 4 14-19 
1 5-7 5 20-36 
2 8-10 6 37-50 
3 11-13 7 >50 

Table 2. Snort signatures partitions 

B. Traffic and signatures extraction  
To evaluate the algorithm we use the extracted Snort 
signatures partitioned earlier [33]. As far as packet traces are 
concerned we adopt the good, bad and ugly traces studied in 
our previous work [35]. The classification is based on the 
maliciousness of packets defined as the percentage of Snort 
signatures found in the trace. For the worst case performance 
evaluation we use the bad and ugly traces extracted from the 
2009 Capture the Flag (CTF) competition held at DEFCON17 
conference [36]. Out of the 78 attack infested traces we pick 
the most malicious traces 51 and 52 as the ugly traces, and the 
least malicious traces 1 and 22 as the bad traces.  

To evaluate the best case performance we use the good 
traces extracted from normal traffic. The traces are extracted 
as follows. SIP is a video and audio streaming trace from 2009 
TechTraces [37], Web is email traffic taken from 2008 TkuIM 
Mail [38], LC is a live chat trace and GD is a good download 
traffic from 2007 v8 Laura's Lab Kit [39]. 

C. Optimal combination 
First we start with only four threads (two signature classes per 
thread) with the intention to find the best hybrid combination 
of AC and WM threads. The first experiment, named, 
1TAC_3TWM, starts with four threads: one thread running 
AC (short patterns in classes 0 and 1) and the other three 
running WM for the remaining signature classes. The name, 
1TAC_3TWM, is read as follows:  One thread running AC 
and 3 threads running WM. We run experiments for all 
possible combinations: 4T_AC, 1TAC_3TWM, 2TAC_ 
2TWM, 3TAC_1TWM  and  4T_WM. In addition, we 
simulate two more configurations with only one thread of AC 
and one thread of WM, they are named: 1T_AC, 1T_WM, 
respectively. The last two experiments represent the classical 
no threading runtime for the original algorithms. 

For all seven configurations outlined earlier, Table 3 
shows the matching runtime in seconds and Table 4 shows the 

memory consumption in MBs. It is evidently clear that 
1TAC_3TWM has the smallest runtime for all traces: the 
good, bad and the ugly. In terms of memory usage 
1TAC_3TWM is the best when it comes to worst case bad and 
ugly traces. For the good traces a one thread WM slightly tops 
1TAC_3TWM. In general you can see from columns one and 
two that one thread WM outperforms AC in terms of run time 
and memory for all traces. It can be also observed that the 
memory consumption for WM is almost steady when we 
move to more malicious traces while AC memory 
requirements increase sharply. Finally, the last two columns 
show that the overhead caused by threading in the cases of 
four AC and WM threads renders multithreading useless. 
Those conclusions confirm the original thinking that AC and 
WM perform very well for short and long signatures, 
respectively. 

D. A closer look 
Next we analyze the performance of the best combination, 
that is, 1TAC_3TWM.  The column chart in Figure 6 
compares the runtime for 1TAC_3TWM to the one and four 
threads original algorithms for all traces. While the column 
chart in Figure 7 compares the memory requirements for 
1TAC_3TWM to the one and four threads original algorithms 
for all traces. Both figures show a significant reduction in 
both runtime and memory usage. On average for all traces, 
1TAC_3TWM reduces the runtime by 41%  and 33% 
compared to 1T_AC and 1T_WM, respectively. Best case 
runtime reduction is reported for GD traces of 50% and 40% 
compared to 1T_AC and 1T_WM, respectively. Additionally, 
on average for all traces, 1TAC_3TWM reduces the memory 
usage by 42% and 9% compared to 1T_AC and 1T_WM, 
respectively.  However if we compare to 4T_AC and 4T_WM 
the average reduction in runtime is 50%, 55% and the average 
the reduction in memory usage is 54% and 37%, 
respectively. The best case runtime reduction compared to 
4T_AC and 4T_WM becomes 63% and 73%. 
 

 

 

 

 

 

 

 

Table 3. Execution runtime in seconds 

 

 

 

 

 

 

 

Table 4. Memory usage in MBs 

Algorithm 1 Patterns Partitioning 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 

procedure Partition () 
Input: patterns file 
Output: subsets of patterns with equal number of character 
nI = no. of patterns of length I; initial =1 
% of occurrence of length i = nI / (total no. of patterns) 
i = initial +1 
Sum= % of occurrence of patterns of length1 
While(!EOF) 
    Sum = Sum + % of occurrence of patterns of length i 
    Average % of occurrence= Sum / (i-initial) 
    Area = Average % of occurrence×( i-initial) 
    If Area =14 then  
          interval={initial, i} 
     initial= i+1 
     i=i+1 
end While  
end procedure 

  Experiment 

  1T_ 
WM

1T_ 
AC

1TAC_
3TWM 

2TAC_
2TWM 

3TAC_
1TWM

4T_  
AC

4T_ 
WM

GD 25.04 36.56 25.21 35.555 40.05 44.97 33.44
LC 26.32 37.08 25.56 35.328 41.68 43.99 33.06

WEB 26.62 36.56 26.75 35.602 41.71 44.07 33.81
Good

SIP 26.55 36.46 26.69 35.218 42.07 46.28 33.06
1 33.83 55.77 27.73 65.238 83.59 84.37 55.35Bad

22 33.84 56.11 28.37 63.106 82.46 85.11 56.36
51 33.62 69.11 27.64 60.83 84.90 83.68 58.85Ugly
52 34.29 69.99 27.61 60.916 83.48 83.95 58.91

  Experiment 

  1T_ 
WM

1T_ 
AC

1TAC_
3TWM 

2TAC_
2TWM 

3TAC_
1TWM

4T_  
AC

4T_ 
WM

GD 15.06 18.34 9.11 13.53 12.97 19.68 33.50
LC 11.83 11.81 7.31 9.23 8.31 12.66 23.97

WEB 14.12 18.31 9.76 10.51 11.44 13.66 30.67
Good

SIP 13.99 17.59 9.46 10.27 10.65 13.63 30.93
1 78.41 81.76 51.89 67.10 138.81 142.19 88.96Bad

22 77.83 84.13 52.01 66.92 138.67 141.59 87.22
51 79.23 88.75 52.71 67.42 139.83 141.41 88.73Ugly
52 78.83 88.27 58.83 67.34 139.20 141.70 88.68

518Hybrid Multithreaded Pattern Matching Algorithm for Intrusion Detections Systems



  

 
Figure 6. 1TAC_3TWM runtime vs. original algorithms for 

all traces 

 
Figure 7. 1TAC_3TWM memory usage vs. original 

algorithms for all traces 

 
Figure 8. 1TAC_3TWM runtime for varying thread 

configurations 

 
Figure 9. 1TAC_3TWM memory usage vs. original 

algorithms for all traces 

E. Performance scaling 
Finally, we vary the number of threads to check how the 

performance of the hybrid algorithm scales for increasing 
numbers of threads. Unfortunately, we do not have access 
to a workstation with 8 cores to better simulate eight 
threads. The 3D column charts in Figures 8 and 9 compare 
the runtime and memory requirements for 1TAC_1TWM, 
1TAC_3TWM and 2TAC_6TWM for all traces. In both 
cases increasing the number of threads hurts performance 
because of the increasing number of copies of the packet. 
1TAC_3TWM remains the favorable best performing 
combination of AC and WM threads. 

VII. Conclusions 
Network intrusion detection system inspects the incoming 
traffic to find attack signatures.  The most intensive operation 
in the detection process is pattern matching in terms of CPU 
and memory requirements. In this paper we propose a hybrid 
AC and WM multithreaded algorithm to improve the runtime 
memory usage of the matching operation. We propose a novel 
partitioning algorithm used to balance the load between the 
threads to maximize the performance of the hybrid algorithm. 
In terms of average search time the hybrid algorithm provides 
41%  and 33% reduction compared to 1T_AC and 1T_WM, 
respectively. Best case runtime reduction is reported for GD 
traces of 50% and 40% compared to 1T_AC and 1T_WM, 
respectively.  

References 
[1] M. Fisk and G. Varghese. “An analysis of fast string 

matching applied to content-based forwarding and 
intrusion detection”. Technical Report CS2001-0670, 
University of California, San Diego, 2002. 

[2] M. Roesch. “Snort – Lightweight Intrusion Detection for 
Networks”. In Proceedings of USENIX (LISA’99), pp. 
229-238, Seattle, WA, 1999. 

[3] R. Rehman. “Intrusion Detection Systems with Snort 
Advanced IDS Techniques Using Snort”, Prentice Hall 
PTR, New Jersey, 2003. 

[4] M. Aldwairi, T. Conte and P. Franzon. “Configurable 
String Matching Hardware for Speeding up Intrusion 
Detection”, ACM SIGARCH Computer Architecture 
News, 33(1), pp. 99-107, 2005. 

[5] A. Aho and M. Corasick. “Efficient string matching: An 
aid to bibliographic search”, Communications of the 
ACM, 18(6), pp. 333-340, 1975. 

[6] S. Wu, U. Manber. “A Fast Algorithm for Multi-Pattern 
Searching”. Technical Report TR-94-17, University of 
Arizona, Tuscon, 1994.  

[7] S. Snapp, J. Brentano, G. Dias, T. Goan, L. Heberlein, C. 
Ho, K. Levitt, B. Mukherjee, S. Smaha, T. Grance, D. 
Teal and D. Mansur. “DIDS (Distributed Intrusion 
Detection System) - Motivation, Architecture, and an 
early Prototype”. In Proceedings of the 14th National 
Computer Security Conference, pp.167-176, Oct 1991. 

[8] P. Wheeler and E. Fulp. “Taxonomy of Parallel 
Techniques for Intrusion Detection”. In Proceedings of 
ACM 45th Southeast Regional Conference, pp. 278–282, 
2007. 

      

   
  

  
519 Aldwairi and Ekailan



[9] P. Wheeler. “Techniques for Improving the Performance 
of Signature-Based Network Intrusion Detection 
Systems”. MS Thesis. University of California Davis, 
CA, 2006. 

[10] R. Boyer and S. Moore. “A Fast String Searching 
Algorithm”, Communications of the ACM, 20(10), pp. 
762-772, 1977. 

[11] C. Kopek. “Parallel Intrusion Detection Systems For 
High Speed Networks Using The Divided Data Parallel 
Method”. MS Thesis, Wake Forest University, 
Winston-Salem, NC 2007. 

[12] B. Zhang, X. Chen, X. Pan and Z. Wu. “High 
Concurrence Wu-Manber Multiple Patterns Matching 
Algorithm”. In Proceedings of the 2009 International 
Symposium on Information Processing (ISIP’09), 
Huangshan, , pp. 404-409, P. R. China, Aug 2009. 

[13] E. Fulp and R. Farley. "A Function-Parallel Architecture 
for High-Speed Firewalls". In Proceedings of the IEEE 
International Conference on Communications (ICC'06), 
pp.2213-2218, Jun 2006. 

[14] S. Kim and Y. Kim. “A Fast Multiple String-Pattern 
Matching Algorithm”. In Proceedings of the 17th 
AoM/IAoM International Conference on Computer 
Science, San Diego, 1999.  

[15] C. Liu, D. Liu and D. Li. “Two Improved Single Pattern 
Matching Algorithms”. In Proceedings of the 16th 
International Conference on Artificial Reality and 
Telexistence-Workshops, pp.419-422, Hangzhou, China, 
2006. 

[16] Y. Takahashi, H. Tanaka, A. Shio and S. Ohtsuka. 
"Log-derivative Matching Method for Pattern 
Comparison", In Proceedings of the SPIE 3653, 
pp.956-965, San Jose, CA, 1998. 

[17] N. Rafla, I. Gauba. “A Reconfigurable Pattern Matching 
Hardware Implementation using On-Chip RAM-Based 
FSM”, In Proceedings of the 53rd IEEE International 
Midwest Symposium on Circuits and Systems 
(MWSCAS), pp.49-52, Seattle, WA, Aug 2010. 

[18] S. Fide, S. Jenks. “A Survey of String Matching 
Approaches in Hardware”. Technical Report,   
University of California, Irvine, 2006. 

[19] Y. Weinsberg, S. Tzur-David, D. Dolev and T. Anker. 
“One Algorithm to Match Them All: On a Generic NIPS 
Pattern Matching Algorithm”. In Proceedings of the 
High Performance Switching and Routing Conference, 
pp.1-6, Brooklyn, NY, 2007. 

[20] L. Woods, J. Teubner, G. Alonso. “Real-Time Pattern 
Matching with FPGAs”. In Proceedings of the 27th 
International Conference on Data Engineering (ICDE), 
Demonstration Track, pp.1292-1295, Hannover, 
Germany, Apr 2011. 

[21] T. Tuck, T. Sherwood, B. Calder, and G. Varghese. 
“Deterministic Memory-Efficient String Matching 
Algorithms for Intrusion Detection”. In Proceedings of 
the 23rd Annual Joint Conference of the IEEE Computer 
and Communications Societies (INFOCOM), 
pp.2628-2639, Hong Kong, Mar 2004. 

[22] Y. Hong, X. Ke and C. Yong. “An Improved Wu-Manber 
Multiple Patterns Matching Algorithm”.  In Proceedings 
of the 25th IEEE International Performance, Computing, 
and Communications Conference (IPCCC'06), Phoenix, 
AZ, Apr 2006. 

[23] D. Sunday. “A Very Fast Substring Search Algorithm”, 
Communications of the ACM, 33(8), pp.132-142, 1990. 

[24] W. Lu and I. Traore. “Detecting New Forms of Network 
Intrusion using Genetic Programming”, Computational 
Intelligence, 20(3), pp.475–494, 2004. 

[25] I. Moraru, David and D. Andersen. “Exact Pattern 
Matching with Feed-Forward Bloom Filters''. In 
Proceedings of the Workshop on Algorithm Engineering 
and Experiments (ALENEX11), Jan 2011. 

[26] R. Prasad, A. Sharma, A. Singh, S. Agarwal and S. Misra. 
“Efficient bit-parallel multi-patterns approximate string 
matching algorithms”, Scientific Research and Essays, 
6(4), pp.876-881, 2011. 

[27] D. Pendlimarri, P. Petlu, R. Satrasala. “Novel 
Devaki-Paul Algorithm for Multiple Pattern Matching”, 
International Journal of Computer Applications, 13(3), 
37-42, 2011. 

[28] T. N. Thinh and S. Kittitornkun. "Massively Parallel 
Cuckoo Pattern Matching Applied for NIDS/NIPS", In 
Proceedings of the Fifth IEEE International Symposium 
on Electronic Design, Test and Application (DELTA '10), 
pp.217-221, Ho Chi Minh City, Vietnam,13-15 Jan. 
2010. 

[29] H. Kim and S. Kang. "A Pattern Group Partitioning for 
Parallel String Matching using a Pattern Grouping 
Metric", IEEE Communications Letters, 14(9), 
pp.878-880, Sept 2010. 

[30] H. Kim, H. Kim and S. Kang. "A Memory-Efficient 
Bit-Split Parallel String Matching Using Pattern 
Dividing for Intrusion Detection Systems", IEEE 
Transactions on Parallel and Distributed Systems, 
22(11), pp.1904-1911, Nov 2011. 

[31] D. Luchaup, R. Smith, C. Estan and S. Jha. "Speculative 
Parallel Pattern Matching", IEEE Transactions on 
Information Forensics and Security, 6(2), pp.438-451, 
Jun 2011. 

[32] C. Radu, C. Leordeanu, V. Cristea and D. Luchaup. 
“Using Cell Processors for Intrusion Detection through 
Regular Expression Matching with Speculation”, In 
Proceedings of the 2011 International Conference 
Complex, Intelligent and Software Intensive Systems 
(CISIS), pp.203-210, Seoul, Korea, Jun 30-Jul 2 2011 

[33] Snort rules, http://www.snort.org/snort-rules/, last access 
in April, 2011. 

[34] S. Faro, T. Lecroq. “The Exact String Matching Problem: 
a Comprehensive Experimental Evaluation”, CoRR, 
abs/1012.2547, 2010. 

[35] Monther Aldwairi and Duaa AL-ansari,“Exscind: Fast 
Pattern Matching For Intrusion Detection Using 
Exclusion and Inclusion Filters”. In Proceedings of the 
7th International Conference on Next Generation Web 
Services Practices (NWeSP 2011), Salamanca, Spain, 
Oct 2011. 

[36] DEFCON17 traffic traces, accessed in April, 2011, 
http://www.defcon.org. 

[37] TechTraces sample captures, accessed in April, 2011,           
http://techtraces.com/sample_captures/.  

[38]  TkuIM mail, accessed in April, 2011,           
http://mail.im.tku.edu.tw/~miller.lai/pcap/pcapList.php. 

[39] Laura's Lab Kit v.8, accessed in April, 2011,              
http://demeter.uni-regensburg.de/Lauras_Lab_Kit_v8/
AutoPlay/ trace_files_llk8/.  

520Hybrid Multithreaded Pattern Matching Algorithm for Intrusion Detections Systems



  

Author Biographies 
Monther Aldwairi was born in Irbid, Jordan in 1976. 
Aldwairi received a B.S. in electrical engineering from 
Jordan University of Science and University (JUST) in 
1998, and his M.S. and PhD degrees in computer 
engineering from North Carolina State University (NCSU), 
Raleigh, NC in 2001 and 2006, respectively. 
   He is an Assistant Professor of Network Engineering and 
Security Department at Jordan University of Science and 
Technology, where he has been since 2007. He is also the 
Vice Dean of Faculty of Computer and Information 
Technology since 2010 and was the Assistant Dean for 
Student Affairs in 2009. In addition, he is an Adjunct 
Professor at New York Institute of Technology (NYiT) 
since 2009. He worked as Post-Doctoral Research 
Associate in 2007 and as a research assistant at NCSU 
from 2001 to 2006. He interned at Borland Software 
Corporation in 2001. He worked as a system integration 
engineer for ARAMEX from 1998 to 2000. His research 
interests are in network and web security, intrusion 
detection and forensics, artificial intelligence, pattern 
matching, natural language processing and bioinformatics. 
He published several well cited articles.  
   Dr. Aldwairi is an IEEE and Jordan association of 
engineers’ member. He served at the steering and TPC 
committees of renowned conferences and he is a reviewer 
for several periodicals. He organized the Imagine cup 
2011-Jordan and the national technology parade 2010.  
 

 Niveen Ekailan was born in Amman, Jordan on October 1981. Eng. Ekailan 
received the B.S. degree in Electrical and Computer Engineering from 
Palestine Polytechnic University, Hebron in 2004. She received her M.S. in 
computer engineering from Jordan University of Science and Technology, 
Irbid in Aug of 2011.  
 
 

      

   
  

  
521 Aldwairi and Ekailan


