
Journal of Information Assurance and Security.
ISSN 1554-1010 Volume 7 (2012) pp. 32-40
c©MIR Labs, www.mirlabs.net/jias/index.html

User Data Confidentiality in an Orchestration of
Web Services

Thomas Demongeot1, Eric Totel2, Valerie Viet Triem Tong2 and Yves Le Traon3

1DGA - Information Superiority Unit - Bruz - France
Telecom Bretagne - Cesson-Sévigné - France

thomas.demongeot@dga.defense.gouv.fr

2Supelec - Cesson-Sévigné - France
surname.name@supelec.fr

3University of Luxembourg
yves.letraon@uni.lu

Abstract:
Web Services are currently the base of a lot a e-commerce

applications. Nevertheless, the clients often use these services
without knowing anything about their internals. Moreover, they
have no clue about the use of their personal data inside the
global applications. BPEL (Business Process Execution Lan-
guage) is a programming language for orchestrating Web Ser-
vices within Service-Oriented Architecture (SOA). As one fea-
ture of SOAs is the dynamic discovery of services actually used
during execution, a BPEL user does not know prior to the ex-
ecution how, and by who, the data he provides will be used. In
this paper, we offer the opportunity to the user to specify con-
straints on the use of its personal data. To ensure the privacy of
data at runtime, we define a distributed security policy model.
This policy is configured at runtime by the user of the BPEL
program. This policy is enforced within a BPEL interpreter,
and ensures that no information flow can be produced from
the user data to unauthorized services. However, the dynam-
ic aspects of the web services lead to situations where the policy
prohibits the nominal operation of the orchestration (e.g., when
using a service that is unknown by the user). To solve this prob-
lem, we propose to the user to dynamically permit exception-
al unauthorized flows. In order to make its decision, the user
is provided with all information necessary for decision-making.
An implementation inside the Orchestra BPEL interpreter il-
lustrates our approach and exhibits the CPU overhead induced
by the security mechanisms.

I. Introduction

Web services [1] were originally designed as a set of reusable
services freely available to everyone. Service-orientation
eventually offers an elegant way to build new services com-
posed of existing ones using the notion of orchestration.

On one hand, since services are based on encapsulation,
the client does not need to understand how a service works.
On the other hand, this lack of information also means that
the client does not know how his data are used and by who.
Currently, most of the efforts in web service security focus
on the confidentiality of the information at the communica-

tion protocol level, but do not solve the problem of how to
make a specific service orchestration trustable for the clients.
Even if the service orchestration provider is trustable, it has
no technical solution to guarantee for a specific client that
it satisfies his expectations in terms of data protection. Us-
er data protection in a service orchestration is thus crucial,
and requires two basic bricks. First, the expectations of the
client must be expressed, which implies some security policy
language to be available. In this paper, we propose such an
elementary data protection policy configurable by the user of
the service.

Second, the technical support for checking the client’s da-
ta protection policy must be embedded in the orchestration
interpreter. In this paper, we propose to check at runtime
whether the data protection policy is satisfied with a proto-
type tool called OrchestraFlow. This tool extends a BPEL
interpretation engine, which is the standard language for pro-
gramming an orchestration of web services. BPEL (Business
Process Execution Language) [2] is a relatively simple lan-
guage that describes the sequences of service calls necessary
to achieve properly a composite service. A BPEL program1

may receive information from users, and use these data to
provide information to the invoked services. Therefore, the
BPEL program produces information flows from the user da-
ta to the used services. The problem is whether these infor-
mation flows are legal according to the user privacy policy.
OrchestraFlow takes the data protection policies of the ser-
vice actors as inputs and checks whether there is a risk of
information leakage at runtime w.r.t. the policy. Instead of a
static analysis of the BPEL program, a dynamic analysis has
been chosen in order to be able to handle dynamic function
discovery and dynamic update of the security policy.

Before describing this solution, we first propose an exam-
ple to illustrate the problems of confidentiality that may oc-
cur in a BPEL program (Section II). The solution proposed

1We define a BPEL program as a Web Service written in BPEL exe-
cuted by a BPEL interpreter. A BPEL program is an orchestration of Web
Services.

MIR Labs, USA

33 Demongeot et al.

here is based on dynamic information flow tracking, thus
Section III presents a state of the art on this topic. We define
a security policy that specifies legal information flows. We
define what properties it can provide (Section IV) and how
to verify the policy (Section V). Section VI presents how to
dynamically update the security policy. Finally we describe
our implementation called OrchestraFlow (Section VII) and
study its performances (Section VIII). Finally, we conclude
and expose future work in Section IX.

II. Problem statement

A web service orchestration consists in the execution of a set
of services that manipulate and transform data. These data
are injected by other services or by the users. In a BPEL
program these data are protected at different levels. At mes-
sage level WS-Security [3] aims at providing security for
exchanging SOAP messages. Besides security architecture,
there exists XML-based languages such as SAML (Security
Assertion Markup Language) [4] and XACML (eXtensible
Access Control Markup Language) [5] that allow to specify
access control rules for accessing data or services. However
there is no access control to data once the data has left its
original container. Using XACML we can specify that a user
or a service can access some data but once these data are ac-
cessed by a service there is no control on their propagation.
In this article we aim at providing a better security level by
offering both a context-adaptative security policy driven by
users and a dynamic enforcement mechanism of the security
policy.

Before detailing our approach, let us have an example:
Figure 1 details an online bookshop service which uses d-
ifferent services, such as a bookstore and a bank providing a
payment service. The accesses to these services are orches-
trated in a BPEL program.

The various actors in this transaction are:

• the seller who provides three services: it computes the
total amount of the transaction to allow bank payment
(s1), emits the bill (s2) and finally prepares the order
that will be delivered to the client address (s3);

• the bank provides a payment service (s4);

• the client who could be seen as a service (s5).

The services are not necessarily known before the execu-
tion as they can be discovered at runtime, after a search in
a directory of services for example. Thus we don’t know
before the execution which services are called. Due to this
particular feature we believe that a precise security mecha-
nism depends on the context of the execution and has to be
adjustable at run-time.

As we will explain in the later our approach will permit
the client to specify that only the seller knows which product
the client has chosen, the bank account information is pro-
vided only to the bank. The security policy will be defined
by users and can be updated at run-time, for instance when
the services are discovered. The security policy enforced at
runtime relies on information flow tracking mechanisms that
permit to detect user data leakage inside a BPEL interpreter.

In the following section we briefly present work related to
information flow tracking in programs.

III. Related work

The area of information flow tracking has been well-studied
during the last decade. The basic idea of information flow
tracking is that sensible data are marked with an identifier
sometimes called a taint, a label, a tag or a mark. The marks
are propagated along the flow to taint objects in the system.
The propagation can be either dynamically observed or stati-
cally analysed. Several researches have helped to strengthen
the control of data privacy in BPEL programs, particularly by
statically controlling data flows. In [6] BPEL is considered
as the description of a distributed collaborative system with
a multi-level security policy. This policy ensures that data
from Web Services are used properly, it lacks flexibility and
does not manage dynamic adaptation. [7] and [8] proposed
type systems in order to guarantee non-interference property
in dynamic service composition. But the method proposed
by [7] needs to analyse each service involved in the orches-
tration and does not support complex orchestration. In [8]
each service involved in the orchestration need to produce
a contract describing its internal behaviour and the authors
proposed a framework to analyse service orchestration. In
[9], the authors propose an XML schema for specifying an
employment policy of available Web-Services statically ver-
ified in BPEL programs. In both cases, security policies are
defined by the host of BPEL and do not specify a security
policy for each user. Moreover, the verification of informa-
tion flows is done statically: it is impossible to address the
problem of dynamic discovery of services. In [10] and [11]
Myers and Liskov propose more expressive marks (which are
called labels). A label attached to a value denote both owners
and readers of this value. An owner decides which principals
can access his data, these principals are the readers. In [12]
Myers presents Jif, where labels are used to annotate data
items in a Java program. Jif checks at compile time, in a
manner similar to type checking, if all the executions of an-
notated programs verify the information flow policy. In their
approach, the information flow policy consists of the defi-
nition of the readers by the owner. This policy is defined
before the analysis and can be updated by relabelling data.
Their model authorises only two relabelling rules: restric-
tion and declassification. Data can only be relabelled from
L1 to L2 if L2 is more restrictive than L1 intuitively if it re-
moves readers, adds owners, or both. A datum is declassified
when it is relabelled to a label containing more readers for
an owner o or when a owner o is removed. A declassifica-
tion process is allowed only when the process acts for o. In
[13, 14] the authors explicitly distinguish information from
containers and thus propose to mark containers of informa-
tion with two tags reflecting both the origins of the value and
the security policy attached to the container. More precisely
sensible data are associated to a numerical identifier and an
information flow policy specifies how combinations of these
identified data can flow in information containers. The model
of marks presented in [14] can be either implemented at sys-
tem level or at program level. In [13] information flows are
tracked at run-time allowing us to check if the current execu-
tion is correct with regard to the definition of the policy. The
policy is completely defined at the initialisation and can be
either deduced from an interpretation of access control rights
or manually defined. The policy can be updated at run-time

User Data Confidentiality in an Orchestration of Web Services 34

Client
(s5) BPEL Interpreter

Seller
(s1, s2, s3)

Bank
(s4)

Product
Bank details

email

TotalAmount (s1)
bill (s2)

order (s3)

Payment (s4)

Figure. 1: Online bookshop service

simply by changing the tags. In [14] the authors explain how
to perform a modification of the policy by changing tag val-
ue but do not define how, why or when to perform such a
modification. We propose to adapt these previous models in
the particular context of web services. We aim to observe
information flows inside an orchestration of web services in
order to ensure the user’s data protection. We adopt a dy-
namic observation of these flows since in a context of web
services we will dynamically discover the environment. As
in [13, 14] we explicitly identify user’s data with numerical
identifier. As Myers and Liskov in [10] and [11] the secu-
rity policy will specify owners and readers of the identified
information items. In other words a user defines which ser-
vices can access his information items. The description of
all readers could be difficult for uninformed users. To solve
this problem we propose to dynamically update the securi-
ty policy when services are discovered. Our tool interacts
with the users to adapt or complete the security policy when
required.

IV. Privacy Security Policy

A. Characterization of information and information granu-
larity

A piece of information is a data item, a value such as a string,
or an integer. A piece of information is provided to a we-
b service orchestration through a call to this service. This
piece of information is manipulated by the orchestration and
the services it invoked and mixed with other pieces of in-
formation. In this work, we consider that sensitive informa-
tion and in particular users private data have to be monitored
in order to protect where these information data items flow.
For that purpose we reuse the notion of atomic information
first introduced in [14] to identify sensitive or private infor-
mation. Any piece of information handled in the system is
either atomic or obtained after treatments (like calculus) on
one or more atomic information. Here any non-atomic infor-
mation is the compound of one or more atomic information.
For example, if x, y are atomic information 2× x, x+ y, . . .
are compound information, the first non-atomic information
results from the use x, the second results from the use of x
and y.

In the example detailed in section II, atomic information
items are provided by the client : the chosen product, bank
details and client email address. These atomic data are used
to compute all information items handled by the complete

system, such as the total amount of the transaction, the con-
firmation of payment, final product delivery notification,. . .

In a web service orchestration, the information is located
in logical containers of information like the variables manip-
ulated by services. The operations performed by program-
s or services will generate information flows between vari-
ables and consequently information will be mixed and/or will
move from one variable to another. In this work we want to
prevent private or sensitive information to be accessed by a
non-authorized service, i.e., we want to ensure that sensible
information flows only into variables readable by authorized
services.

B. Defining the security policy

The security policy allows the user to specify which services
are authorized to manipulate each atomic information (and
by composition for all the compound information). For that
purpose we first determine an owner for each atomic infor-
mation (usually the service/user that provides it to the sys-
tem). The owner is responsible for determining statically (at
the start of the service invocation) or dynamically (during the
execution of the service orchestration) the set of services that
can access this information. These services will be called in-
formation readers. A service is allowed to read an atomic
information only when it appears in the set of legal readers
for this atomic information.

The rest of the policy is determined by composition. When
an information is derived from several atomic information
items, the owner of this compound information is the set of
all owners of atomic information. The readers of this com-
pound information are all the services that are also readers of
each atomic information from which it derives.

This security policy can be seen as an information flow
policy: a flow of information i (atomic or compound) to a
container belonging to a service s is legal if and only if the
service s has the right of access to information i, i.e., if s is
a reader of i.

More formally we use the following notations:

• Information: I = {i1, ..., in} is the set of atomic infor-
mation of the system. Information derived from several
atomic information ij , . . . , ik is denoted by ij⊕ . . .⊕ ik

• Services: S = {s1, ..sm} is the set of services of the
system.

35 Demongeot et al.

• Owners of information i are services that we denote
owner(i) ⊆ S. They are defined as follows:

– If i is an atomic information then its owner is the
service that injected it into the system.

– If i is a compound information, i.e., i = ij⊕ . . .⊕
ik then

owner(i) = owner(ij) ∪ . . . ∪ owner(ik) (1)

• Readers of an information i are services defined by the
owners of i which we denote readers(i) ⊆ S. Readers
are defined as follows:

– if i is an atomic information, readers of i are the
readers allowed by the service which injected it
into the system;

– if i = ij ⊕ . . .⊕ ik then

readers(i) = readers(ij) ∩ . . . ∩ readers(ik)
(2)

• The security policy defines allowed readers for each
atomic information, rules of composition (1) and (2) de-
fine, by composition, readers of every compound infor-
mation. The policy is defined by the owners of infor-
mation, since an owner determines the readers that are
allowed to read its atomic informations. A call to a ser-
vice that brings an information is legal only if the ser-
vice called is a reader for this information. In the same
way, a response from a service is only authorized if the
caller is a legal reader for the information received.

The policy can be updated at any time by adding or remov-
ing a reader from the set of readers of an information. An
owner is responsible for removing readers to its own atomic
information. When an information is compound, the several
owners have to agree for any modification.

C. Example of privacy policy

Let us consider again the example detailed in Section II in
Figure 1. In this example five services are present:

• s1, s2 and s3 are three services provided by the seller;

• s4 is the payment service provided by the bank;

• s5 is the user service that calls the BPEL orchestration
to place an order.

Atomic information items in the system are provided by
the user service, i.e., service s5. i1 corresponds to the cho-
sen product. The client imposes that i1 is accessible only to
the seller and thus readers(i1) = {s1, s2, s3}, the services
provided by the seller. i2 corresponds to the bank detail-
s. The client imposes that they are accessible only to the
bank, we thus have readers(i2) = {s4}, the payment ser-
vice provided by the bank. Similarly the client wants i3 (the
client email address) to be accessible to the seller only. We
have readers(i3) = {s1, s2, s3}. In all cases the owner of
such atomic information is the service calling the command
(called directly by the client), i.e., s5.

More formally in this example

Atomic information name Owners Readers
i1 s5 {s1, s2, s3}
i2 s5 {s4}
i3 s5 {s1, s2, s3}

Figure. 2: A security policy for the example detailed in sec-
tion II

• Informations are I = {i1, i2, i3};

• Services are S = {s1, . . . , s5};

• Owners of I , owner(I) = owner(i1) = owner(i2) =
owner(i3) = {s5};

• Readers of I are defined as follows, readers(i1) =
{s1, s2, s3}, readers(i2) = {s4}, readers(i3) =
{s1, s2, s3}.

In other words, the policy is entirely defined Figure 2.

V. Dynamic Checking of the Security Policy

In this work, the security policy is enforced through meta-
data or simply labels put on every containers of information:
which means on every variables in a BPEL program. As it
has been proposed by Myers in [10] a label of a variable de-
notes the owners and the legal readers of its content. In order
to follow the origin of information flow, we add to each vari-
able the list of initial information used to produce the content
of this variable. The value of a label is initialized as empty
and is firstly modified when a new item of information is in-
jected in the web service through a call to this service. At
this moment, the injected item of information is considered
as atomic, its owner is the caller. The caller also defines the
allowed readers for this new item and consequently the new
value of the label. The label is further modified at each oper-
ation on the variable that modify the content of the variable.
Labels are modified to reflect owners and readers attached
to the information contained in the variable. When a service
calls another service or makes a response to another service,
a verifier checks if the flow engendered is legal with respec-
t to the current security policy. More precisely the verifier
checks if the recipient of the flow appears as a reader in the
label of the item sent. In the following, we formally define
how labels are defined and modified.

A. Definition of Security Labels

As stated before, a label is a meta-data attached to each con-
tainer and describes owners and readers of the information
currently located in the container. If c is a container its secu-
rity label is of the form

Lc = {i1 : sα . sα1
, ..., sαn

; ...; ij : sβ . sβ1
, ..., sβm

}

Such a label means that information i contained in c is
based on information i1, ..., ij. Information i1 is owned by
owners(i1) = sα which authorizes readers sα1

, ..., sαn
. De-

pending on this label the readers allowed to access the infor-
mation located in c are those authorized by all the owners,

User Data Confidentiality in an Orchestration of Web Services 36

i.e., readers(c) = {{sα1 , ..., sαn} ∩ ... ∩ {sβ1 , ..., sβm}}.
By abusing the notation we may use owners(Lc) or
readers(Lc) to express the owners/readers of a container c
labeled by Lc.

B. Initialization and Modification of Security Labels

Let us consider a service s1 injecting an item of informa-
tion i in another service s2 by calling s2 using a variable v.
The service s1 is considered to be the owner of the atom-
ic information i now located in the variable v of s2. The
variable v is the container of i and its label is on the form
{s1 . sα1

, . . . , sαn
} where sα1

, . . . , sαn
are the readers of

i allowed by s1. In practical terms if the service s1 is exe-
cuted by a user, this user will be asked to define the services
allowed as readers of its own information.

When a service is called, it makes some internal computa-
tion before sending a response. These internal computation-
s induce some information flows and modify the content of
containers of information. Since a label attached to a con-
tainer describes the security policy of its current content, it
has to be updated at each observation of an information flow
towards the container.

From a general point of view, we consider a set of contain-
ers cj , ..., ck labeled by Lj , ..., Lk if we observe an informa-
tion flow from the containers cj , ..., ck to another container
c, then we update the label of c which is now the union of
labels attached to cj , ..., ck. As Myers, we use the notation
Lj t . . .tLk to denote the union of labels. The precise def-
inition of t is given below. This new label means that the
owner of the content of c is now the union of owners of con-
tent located in cj , ..., ck and the readers are those commonly
allowed by these owners. The new label should also reflect
that information contained in c depends on information from
cj , ..., ck, i.e., the label should reflect the information history.

Labels for Derived Values (Definition of L1 t L2)
owners(L1 t L2) = owners(L1) ∪ owners(L2)
readers(L1 t L2) = readers(L1) ∩ readers(L2)
history(L1 t L2) = history(L1) ∪ history(L2)

Let us have an example with three containers c1, c2 and
c3, respectively labeled by :

• Lc1 : {i1 : s1 . s5, s6; i2 : s1 . s5, s6}

• Lc2 : {i1 : s1 . s5, s6; i3 : s2 . s6, s7}

• Lc3 : {i4 : s3 . s4, s7}

We consider an information flow from c1 and c2 to c3. This
flow modifies the content of c3 which is now a value derived
from those located in c1 and c2. The label Lc3 is updated to
Lc1 t Lc2 , i.e.
{i1 : s1 . s5, s6; i2 : s1 . s5, s6; i3 : s2 . s6, s7}
and means that

owners(c3) = owners(c1) ∪ owners(c2) =
{s1} ∪ {s1, s2} = {s1, s2}

readers(c3) = readers(c1) ∩ readers(c2) =
{{s5, s6} ∩ {s5, s6}} ∩ {{s5, s6} ∩ {s6, s7}} = {s6}

history(c3) = history(c1) ∪ history(c2) =
{i1, i2} ∪ {i1, i3} = {i1, i2, i3}

The definition of the security policy is carried out via the
propagation of the labels attached to the containers of infor-
mation. When a service performs a response using a variable
c this response will be authorized according to the security
policy if the recipient appears as a reader in Lc.

From a practical point of view, in our work the security
policy is propagated through the labels at runtime in a mod-
ified BPEL interpreter. The legality of a call to a service or
a response from a service is checked just before the call /
response.

VI. Dynamic Update of the Security Policy

Let us consider a BPEL program performs a call of a ser-
vice s (or similarly a response to a service s) using data d
having a label on the form

Ld = {i1 : s1 . s11 , ..., s1n ; ...; ij : sj . sj1 , ..., sjm}

We have to verify if this call is legal with regard to the se-
curity policy before performing the call. By definition of the
security policy this call is legal if and only if the service s
is an authorised reader for the data d. To check this legality
we only need to verify if s appears as a reader in the label
attached to d, i.e., if s ∈ {s11 , ..., s1n , . . . sj1 , . . . sjm}. If s
is an authorized reader then the BPEL program performs the
call. Otherwise we ask owners of s to confirm if that the call
must although be authorized. Indeed, since services can be
dynamically discovered we can not decide if the call is really
forbidden or if the owners have not completely defined the
security policy.

We use a dedicated service to ask all owners (s1, . . . , sj)
if they authorize or not to send a compound information d
computed using their atomic information resp. i1, . . . , ij.

More precisely the BPEL interpreter calls a dedicated ser-
vice to contact owners of information. This service is an ex-
ception to the security policy, we consider that this particu-
lar service is a reader for any atomic information. In future
work we plan to protect this dedicated service: for instance
we plan to encrypt the data send to/by this service. This ser-
vice is used to ask every owner sk of atomic information ik
if they accept to modify the policy of ik. The service thus
uses a request composed of four parts:

• the initial information ik that was used to compute the
value d ;

• the value d if the owner is an authorized reader of d, this
part is empty otherwise;

• the service s ;

• if the information actually sent to the service depends
explicitly or implicitly on the initial information.

For each owner, this call may have in three possible re-
sponses:

• (refusal) the owner refuses to modify the security poli-
cy.

• (temporary exception) the owner accepts the update of
the security policy only for this call/response of service.

37 Demongeot et al.

• (agreement) the owner accepts the update of the secu-
rity policy until the end of the execution of the BPEL
program. In this case the label of the variable is modi-
fied.

If at least one owner refuses the modification, the service call
(or the response) is not performed. If all the owners accept
the modification but at least one of them authorises only a
temporary exception then the call (or the response) is per-
formed and the label attached to d remains the same. Finally
when all the owner accept the modification, the label is mod-
ified: s is added as reader for d.

VII. OrchestraFlow : an implementation of a
privacy policy in a BPEL interpreter

In this section we present OrchestraFlow which implements
the model detailed in the previous sections as a patch for the
BPEL interpreter Orchestra2. OrchestraFlow taints variables
of a BPEL program using labels as detailed before, the im-
plementation of labels is presented in section VII-A. A label
is updated at each modification of the content of the variable.
In a BPEL program this content is directly modified by op-
erations involving the variable. Thus we have modified the
original Orchestra interpreter to observe information flows
made by a BPEL program and to consequently update the
labels of the involved variables. This part of the implementa-
tion is detailed in section VII-B. In Section VII-C and VII-D
we present mechanisms that allow dynamic checks and up-
dates of the security policy.

A. Security Label Implementation

A BPEL program takes as inputs messages coming from oth-
er web services. Because all messages are in XML format,
we modify the XML inputs in order to add our security label.
We modified all XML primitive types by adding an optional
label attribute where authorized readers are represented by
an URI (adress of Web Services) separated by a semi-colon.
If the label attribute is used with an empty string then no
service is allowed to access that data. If the label attribute
is not used, all services are allowed to access that data. In
the following item the chosen product is accessible by the
online-shop and the bank, bank details are accessible by no-
body, and the e-mail adress by everybody.
<chosenProduct

readers="http://myShop ; http://myBank">
myProduct

</chosenProduct>
<bankDetails readers=""> 123456789 </bankDetails>
<adress> myAdress <adress>

In order to allow dynamic update of the security policy,
each user of a BPEL program uses a client side security ser-
vice. The security service is a simple web-service that runs
on the computer of the client. This service receives all re-
quests to update the security policy defined in the BPEL pro-
gram.

If the sender is another web service which does not exe-
cute OrchestraFlow, then we consider the variable as a new
atomic information without label (meaning that all services
are legal readers). Applying this property allows us to be

2http://orchestra.ow2.org/xwiki/bin/view/Main/WebHome

Example of a BPEL variable in a XML tree structure:

<Payment>
<amount>12</amount>
<b a n k D e t a i l s >123123</ b a n k D e t a i l s>

</Payment>

and its corresponding label added in OrchestraFlow
|-userData

|-amount : Label :
{[Product : http://localhost/Booktore :

http://localhost:8081/Seller/ ;
http://localhost:8081/Bank/]}

|-bankDetails : Label :
{[bankDetails : http://localhost/Booktore :

http://localhost:8081/Bank/]}

Figure. 3: Example of a BPEL variable and its label

compatible with existing BPEL interpreters that do not carry
out our protection mechanisms.

In OrchestraFlow, a label is thus a list of triple on the form
(initial information ; owner ; list of readers authorized for this
owner). In BPEL, a variable is represented via a XML tree
structure that can be composed of leafs (simple elementary
values) or nodes (complex variables composed of several el-
ementary values). In order to store the labels attached to each
variable, the tree structure is duplicated and filled up with the
labels of the elements composing the variable.

Figure 3 is an example of a variable composed of two parts
(amount and bankDetails), each of them has its own label s-
tored on a duplicated tree structure. After the initial informa-
tion, the first URI of a label represents the owner of the data,
and the following URIs, separated by a semi-colon, represent
the authorized readers of this data. Amount is produced by
the initial information product. It has one owner which au-
thorizes two readers to access this data. BankDetails has the
same owner which authorizes one reader.

B. Propagation of Labels

The label of a variable is updated at each observation of an
information flow. As defined early by D. Denning in [15],
Information flows from object x to object y, whenever infor-
mation stored in x is transferred to, or used to derive infor-
mation transferred to, object y. We distinguish here implic-
it or explicit information flow. An implicit information flow
signals information through the control structure of a pro-
gram [16]. Our reader will find a complete survey on this
subject in [16]. First we focus on explicit information flows
between variables which are transfers of information induced
by operations made by the program involving these variables.
In BPEL the operations are listed on table 1. Among them
Assign, Invoke, Receive, Reply induce explicit
information flows. Later we also treat implicit flows induced
by conditional and loop.

OrchestraFlow extends Orchestra in order to update con-
cerned labels at each call of one of the mentioned operations.

1) Production of explicit information flow

Explicit information flows are mostly induced by assign-
ments and communication with services.

An assignment copies the value of the expression e in x.
After the execution of the assignment the information con-
tained in x depends now on every information contained in

User Data Confidentiality in an Orchestration of Web Services 38

Order Description Security Policy Information Flow
Input Verification Explicit Implicit

Assignments Assign Assignment X
Empty activity Empty Empty activity
Communication Invoke Web Service call X X X
with services Receive Reception of an incoming message X

Reply Response to an incoming message X
Sequence Sequence Sequential organization of activities
Conditional Switch Conditional execution of activities X
and loops While Loop execution of a set of activities X

ForEach Loop can run in parallel mode X
Exceptions Compensate Compensation

Terminate Explicit request to stop a process X
Throw Raising an exception X

Table 1: The main orders of BPEL

e. In this case, we must ensure that the label of x after the ex-
ecution of the assignment reflects the policy of the informa-
tion contained in e. When e is simply a single BPEL variable
then value of label of x is updated to the value of the label
of e. In other words, if an assignement copies the value of
e in x then OrchestraFlow propagates the value of the label
Le in Lx. More generally an expression e in a BPEL pro-
gram could be a part of a BPEL variable or a more complex
expression written in an external language. OrchestraFlow
uses, like Orchestra, XPath 1.0 as expression language. For
each XPath expression we calculate the resulting label from
each information contained in the XPath expression accord-
ing to the definition V-B.

Communication between Services Three BPEL function-
s allow communications with external services : invoke,
receive and reply. The first, invoke, provides syn-
chronous communications with services, i.e., in the same
function data are sent to the service and a response is re-
ceived. In order to allow asynchronous communication with
services, we use the same function invoke with the second
function receivewhich allows the asynchronous reception
of the response of the service called with the invoke func-
tion.

These communication primitives produce information
flows from the caller to the receiver. It is thus necessary to
update the labels of the messages sent (case of invoke) or the
labels of the variables assigned at the reception of a message
(case of a receive) by performing the union of the labels of
the data involved.

For example, by using an invoke function, the service
my service is called with the variable e as input parameter.
The result of this service will be stored in the variable x. The
variable x after executing the service depends both on the
information returned by the called service (my service) but
also on information contained in the variable e. Indeed there
are information flows from e and the return of my service.
The security label of x after the execution of the invocation
of my service is computed according to the definition V-B.

In the same way we propagate labels in OrchestraFlow
during an asynchronous service call with the functions
invoke and receive.

2) Production of implicit information flow

The second type of information flow that can be created by
the language is of implicit type. It is what happens by exam-
ple during conditional operations and loops. In these cases,
data manipulated within the structure of the loop or condi-
tional depends on the variables used in the conditional state-
ment of the condition or the loop.

Loops and conditionals are treated in the same way. All
operations performed inside the conditional or the loop are
implicitly dependent on the value of the condition c.

In the case of assignments in a conditional, the value of
the variable x receiving the expression e also depends on the
value of c. There is an information flow from c to x. The
label of x is computed from labels of e and c according to
the definition V-B.

In the case of service invocations in a conditional, if a ser-
vice call is performed there is an implicit information flow
from c to the service call since it is done according to the val-
ue of c. We must, at the time of the service call, ensure that
it is also authorized by the security policy associated with c.

In OrchestraFlow we modified the ScopeRuntime class in
order to add a stack which contains labels of conditional or
while condition. When a conditional starts, a label is added to
this stack. At the end of this conditional the label is removed.

During the execution of an explicit flow the computation
of the new label takes care of both the labels of the expression
considered in the explicit flow and the resulting label of the
implicit flow stack.

C. Checking the Security Policy

The legality of the information flow is checked when a ser-
vice tries to send information to an other service. Two func-
tions send data to external services: invoke and reply.
When one of this function is called, we verify that the service
call complies with the security policy, i.e., if the recipient
service belongs to the authorized readers of the data. More
formally, when a service uses invoke or reply with out-
put variable m towards a service s OrchestraFlow checks if
s ∈ reader(m) as defined in definition V-B.

In order to prevent implicit information flow, a second ver-
ification must be done. The service call should be authorized
by the resulting label of the implicit flow stack.

39 Demongeot et al.

Client Client Security
Service

OrchestraFlow Service 1

i:client()

i:value:Service1
OK

i

Figure. 4: BPEL program with security service

Example 1 Example 2 Example 3
Simple label transmission While loop Service call

Orchestra 29,33 ms 35,95ms 45,63 ms
OrchestraFlow 34,12 ms 45,62 ms 62,12 ms
Overhead 16% 27% 36%

Table 2: CPU overhead

D. Dynamic update of the security policy

When an illegal flow is detected, it is necessary to ask the
information owner if he accepts or not to update the security
policy. In Section VI we presented informations sent by the
BPEL interpreter to the owner and the possible answers of
the owner. To implement this functionality in OrchestraFlow
we have decided to delegate to each owner to implement their
own security service. This is a web service respecting a WS-
DL file describing the interface. This interface is common
to all security services enabling OrchestraFlow to interact in
the same way with all the security services. So when Orches-
traFlow detects illegal flow of information, it makes a call to
the web security service of the owner of that information (the
address of the security service is sent with the security poli-
cy information at the beginning of the BPEL program execu-
tion). Figure 4 summarizes the interactions between services,
the BPEL program and information owners.

VIII. Performances

To evaluate the performance of OrchestraFlow compared
with the Orchestra BPEL interpreter, we tested the same
BPEL programs on Orchestra and OrchestraFlow by varying
the number and type of BPEL instructions in the program-
s, the number of initial data items and the size of labels as
inputs.

The measurements of the execution times both with or
without the information flow checking mechanisms were
made using the nanoTime function of Java. We measure only
the time of execution of the BPEL interpreter, without taking
into account the communication times between the services
(that are not constant from an invocation to another).

The results are presented in Table 2. They show an aver-
age overhead of 26%. This overhead takes into account the
time involved by the label computation and propagation as
well as the flow checking mechanisms. As the orchestrations
used in our examples are pretty simple, the overhead is high.
This is due to the fact that the additional security mechanisms
are not negligible compared to the computations performed
by the orchestrations. In the case of complex computations
in the orchestration, we expect that the part of the security
mechanisms would be much less important.

IX. Conclusion

The goal of our work is to give the user of a web service
the ability to restrain the use of his data by services he n-
ever heard of. At the time of a service call, he is able to
define which user data can be accessed by which web ser-
vices. This property is guaranteed by a distributed security
policy that defines which data can be accessed by which ser-
vice. Using the security model defined by Myers et al. as a
basis, our contribution consists in applying this type of secu-
rity policy to Web Services and to dynamically define what
are the variables in an orchestration of Web Services (written
in a BPEL program) that are influenced by the user inputs.
For this purpose, we follow the information flows that are
produced by the various operations available in the BPEL in-
terpreter. When flows are produced between variables, we
update the labels attached to these variables to reflect the ser-
vices that can read the data items. Thus, we can detect im-
plicit or explicit data leakage and ensure the privacy of the
user data. This approach proved to be feasible and lead to
the implementation of the mechanisms inside the Orchestra
BPEL interpreter.

However such an approach usually requires that the user
knows all services involved in the orchestration. That is why
we proposed a mechanism to dynamically update or build the
security policy and principles for integrating this mechanism
in OrchestraFlow. In particular, we defined a communication
protocol between the BPEL program and the owner of the
information.

Future work will focus on defining and implementing se-
curity services to ensure the authentication of actors and the
confidentiality of the communications between the BPEL in-
terpreter and the security service.

References

[1] E. Cerami, Web Services Essentials. Sebastopol, CA,
USA: O’Reilly and Associates, Inc., 2002.

[2] OASIS, “Web services business process execu-
tion language version 2.0,” OASIS Standard,
April 2007. [Online]. Available: http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html

[3] ——, “Web services security: Soap message
security 1.1,” OASIS Standard Specification,,
Feb 2006. [Online]. Available: http://www.oasis-
open.org/committees/download.php/16790/wss-v1.1-
spec-os-SOAPMessageSecurity.pdf

[4] ——, “Assertions and protocols for the oasis security
assertion markup language (saml) v2.0,” OASIS Stan-
dard, March 2005.

[5] ——, “extensible access control markup language (x-
acml) version 2.0,” OASIS Standard, Feb 2005.

[6] S. Nakajima, “Model-checking of safety and security
aspects in web service flows,” in Web Engineering, ser.
Lecture Notes in Computer Science, S. B. . Heidelberg,
Ed., vol. 3140/2004, 2004, p. 767.

User Data Confidentiality in an Orchestration of Web Services 40

[7] D. Hutter and M. Volkamer, “Information flow control
to secure dynamic web service composition,” in Securi-
ty in Pervasive Computing, ser. Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, 2006, vol.
3934.

[8] S. Rossi and D. Macedonio, “Information flow security
for service compositions.” in ICUMT. IEEE, 2009, pp.
1–8.

[9] K.-P. Fischer, U. Bleimann, W. Fuhrmann, and S. M.
Furnell, “Security policy enforcement in bpel-defined
collaborative business processes,” in ICDEW ’07: Pro-
ceedings of the 2007 IEEE 23rd International Confer-
ence on Data Engineering Workshop. Washington, D-
C, USA: IEEE Computer Society, 2007, pp. 685–694.

[10] A. C. Myers and B. Liskov, “A decentralized model for
information flow control,” Proc. ACM Symp. on Oper-
ating System Principles, pp. 129 – 142, October 1997.

[11] A. Myers and B. Liskov, “Complete, safe information
flow with decentralized labels,” in IEEE Symposium on
Security and Privacy, 1998.

[12] A. C. Myers, “Jflow: Pratical mostly-static information
flow control,” Proceedings of the 26th ACM Sympo-
sium on Principles of Programming Langages, pp. 228
– 241, 1999.

[13] G. Hiet, V. Viet Triem Tong, L. Me, and B. Morin,
“Policy-based intrusion detection in web applications
by monitoring java information flows,” Int. J. Inf. Com-
put. Secur., vol. 3, no. 3/4, pp. 265–279, 2009.

[14] V. Viet Triem Tong, A. Clark, and L. Mé, “Specifying
and enforcing a fine-grained information flow policy:
Model and experiments,” in Journal of Wireless Mobile
Networks, Ubiquitous Computing and Dependable Ap-
plications, 2010.

[15] D. E. Denning and P. J. Denning, “Certification of pro-
grams for secure information flow,” Communications of
the ACM, vol. 20, no. 7, pp. 504–513, July 1977.

[16] A. Sabelfeld and A. C. Myers, “Language-based
information-flow security,” IEEE Journal on Selected
Areas in Communications, vol. 21, no. 1, 2003.

Author Biographies

Thomas Demongeot is engineer for the french Ministry
of Defense since september 2008. He holds an engineering
degree in computer science (2008) and is preparing a PhD.
His main research interest focus on Service Oriented Archi-
tecture and information flow control.

Eric Totel is associate professor in Computer Science at
École Supérieure d’Électricité (SUPELEC) since September
2002. He holds an engineering degree in computer science
(1994), and a PhD in computer science (1998). He has been
working on safety critical systems in space industry during
four years, and is now associate professor since nine years.

His main research interest focus on intrusion detection.
He has published several national and international papers,
and served on several conferences as program committee
member.

Valrie Viet Triem Tong is associate professor at at École
Supérieure d’Électricité (SUPELEC). Her favorite research
topics mainly concern security and formal approaches in se-
curity.

Yves Le Traon is professor at Faculty of Science, Tech-
nology and Communication at University of Luxembourg,
Campus Kirchberg, in the domain of software engineering,
reliability, validation and security. He received his engineer-
ing degree and his PhD in Computer Science at the Institut
National Polytechnique in Grenoble, France, in 1997. His
research interests also include OO testing, design for testa-
bility, model-driven validation, model based testing, evolu-
tionary algorithms and software measurement.

