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Abstract: A new attack model in which the number of collud-
ers is distributed according to a certain probability distribution
is introduced. Two classes of collusion attacks which include
well-known collusion attacks in the context of multimedia fin-
gerprinting are provided. For these two attack classes, achiev-
able rates without the knowledge of the size of actual colluders
are derived. Then, achievable rates for some particular attacks
are investigated. For the AND attack, the achievable rate de-
rived in this paper coincides with the previously known achiev-
able rate although the attack model in this paper does not as-
sume that the decoder knows the actual number of colluders.
Moreover, for the averaging attack, it is shown that the derived
achievable rate can be achieved by binary linear codes.
Keywords: fingerprinting code, achievable rate, capacity, multiple-
access channel, collusion attack

I. Introduction

Due to rapid spread of wide-band networks, security against
illegal attacks becomes more important. The applications of
such problems, for example, watermarking [19], [23], finger-
printing [21], network protocol [22], and detection of attacks
to information systems [20], have been studied well.
In a distribution system of digital contents, illicit users may
collude to produce illegal copies of an original content. Dig-
ital fingerprinting [2], [3], [7]–[12], [14]–[18] is one of the
key techniques to protect digital contents against piracy. For
distributors of digital contents, it is desired to detect some or
all members of the colluders from pirated copies. In a fin-
gerprinting system, information which is unique to each user
is embedded into a host content (covertext) to identify illicit
users.
In the context of multimedia fingerprinting, Trappe et al.

[17] have proposed anti-collusion fingerprinting codes based
on spread spectrum embedding against the averaging attack,
and these codes can detect all the colluders when the number
of colluders is less than or equal to some constant k. The
anti-collusion fingerprinting codes by Trappe et al. are based
on two-stage coding; a codeword of fingerprinting codes a-
gainst the AND attack is first encoded, and orthogonal spread
spectrum sequences are concatenated with the encoded code-
word. The application of such fingerprinting codes for large
user groups has been discussed in [7] and recently an effec-
tive detection method has been proposed [9].
Recently, Koga [8] has introduced a probabilistic model in
which the AND attack is conducted by at most k users, and
has shown an achievable rate under the condition that all the
colluders should be detected with a vanishingly small error
probability as the code length n increases. However, in the
model of [8], the probability that the number of colluders is
strictly less than k goes to zero exponentially with n. This
implies that the number of colluders is assumed to be known
a-priori to the digital fingerprinting system. From the practi-
cal point of view, however, the assumed maximum number of
colluders, k, should be set larger than the expected number
of colluders in order to guarantee the security. Theoretical
analysis of this model is similar to deriving the capacity re-
gion of multiple access channels (MAC) [1], [4], [5], and
deriving lower and upper bounds on achievable rates of fin-
gerprinting codes based on the marking assumption [3] have
been studied in [2], [14], [15]. Also constructions of finger-
printing codes can be found in [16], [10]. P. Moulin [11],
[12] has considered a fairly wide class of collusion attacks
based on information theoretic framework, and has derived
the capacity of digital fingerprinting codes against any num-
ber of colluders and any attack in an assumed attack class.
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The main technique is a generalization of universal coding
based on constant composition codes (e.g., [4]). Based on
the results shown in [11] and [12], it is expected that the
coding and decoding scheme by [11] and [12] can also be
applied to the attack model introduced in [8], and the derived
achievable rate may coincide with the capacity against the
AND attack. However, it is still difficult to implement the
universal coding, in which constant composition codes and
maximum empirical mutual information decoding are used,
in practical systems.
In this paper, as a generalization of the attack model con-
sidered in [8], we introduce a new attack model in which
the number of colluders is distributed according to a certain
probability distribution Pr[|S|] = ℓ, ℓ = 2, . . . , k, where S
and k denote the set of colluders and the maximum number
of colluders, respectively. We assume that the encoder and
the decoder of anti-collusion codes know only the maximum
number of colluders k but not the actual probability distri-
bution. We define two classes of collusion attacks which in-
clude many collusion attacks in the context of multimedia
fingerprinting [17], [18]. For these two attack classes, we de-
rive a lower bound on the maximum achievable rates for the
unknown size of the actual colluders. Based on the derived
achievable rates, we investigate achieve rates for some partic-
ular attacks. For the AND attack, our bound coincides with
that given by Koga [8] although our model does not assume
that the decoder knows the actual number of colluders. For
the averaging attack, it is clarified that the derived achiev-
able rate is larger than the previously known one [10]. We
give some numerical results, and it is shown that the derived
achieve rate can be attained by an ensemble of binary ran-
dom linear codes against the averaging attack as claimed in
[10]. The approach of this paper is similar to [11] and [12] in
the sense that only the maximum number of colluders is as-
sumed for a class of attacks. However, our coding scheme is
not universal in contrast to [11] since we need to assume that
the decoder knows the probability distribution of an attack.
It is our primary contribution that for these introduced attack
classes, we give an achievability scheme that may be imple-
mented by an ensemble of random linear codes or random
coset codes. We generalize the technique of jointly typical
set decoding [5] to allow mismatched likelihood function-
s in terms of the number of colluders. From our result, it
is clarified that an ensemble of random linear codes them-
selves can be used against the averaging attack. On the other
hand, for the other well-known attacks such as the AND at-
tack, the erasure attack, etc, the combination of random coset
codes and a well-known symbol mapping technique devised
by Gallager [6, Sect. 6.2] is sufficient to attain the derived
achievable rates.
This paper is organized as follows: Section II is preliminaries
where we will give a fingerprinting system and assumed at-
tack classes (Attack Classes A and B). In Section III, achiev-
able rates for Attack Classes A and B are derived. Numeri-
cal examples will be presented in Section IV and proofs for
lemma and theorem will be given in Section V. Finally con-
clusion will be given in Section VI.

II. Preliminaries

A. Notation

Throughout this paper, the base of log is two. For the ran-
dom variable Z, let z and Z be its realization and a set
of random variables. For integers 1 ≤ i ≤ j, let the
sequence of random variables Zi, Zi+1, . . . , Zj be denot-
ed by Zj

i . A sub-sequence of Zj
i , whose positions are in-

dexed by V = {i1, . . . , i|V |}, is denoted by Z(V ), i.e.,
Z(V ) = Zi1 , . . . , Zi|V | . Let PZ(z) := Pr[Z = z] be a
probability mass function on a set Z . For a set W and its
subset V ⊆ W , let V c be the complement set W \ V of V .

B. Fingerprinting System

Assume that a digital fingerprinting system provides a digi-
tal content for M users. The index set of users is denoted by
U = {1, . . . ,M}. A unique codeword is assigned to each us-
er. Note that each user cannot detect the assigned codeword
from the distributed content. Let C = {xi|i ∈ U} ⊆ {0, 1}n
be an anti-collusion fingerprinting code where n denotes the
codeword length, and xi ∈ {0, 1}n denotes a codeword of
user i ∈ U . The rate R of the anti-collusion fingerprinting
code C is defined by

R =
logM

n
. (1)

Let k denote the maximum number of colluders. Let the
probability mass function of the number of colluders be de-
noted by PL(ℓ) := Pr[L = ℓ], ℓ = 1, . . . , k, where ℓ is the
size of a set of colluders. When L = l, each of ℓ collud-
ers is uniformly and independently chosen from the set of
users U . Following the attack model in [8], we consider the
number of colluders to be less than ℓ when the same users
are chosen from U 1. Then the probability of users i1, . . . , iℓ,
ij ∈ U , being the colluders is 1

Mℓ where ij , j = 1, . . . , ℓ,
expresses the index of a user chosen from U at the j-th trial2.
Throughout this paper, we assume that the maximum num-
ber of colluders k is known to both the encoder and the de-
coder, whereas the probability distribution PL(ℓ) is unknown
to them. We sometimes denote the set of the colluders S of
size ℓ by S(ℓ). Let the codeword symbol corresponding to
user ij ∈ S(ℓ), j = 1, . . . , ℓ, be Xj ∈ Xj := {0, 1}. Let Y
be a forged symbol made by colluders S. For a given S(ℓ),
the forgery y is determined by the collusion attack

f (ℓ) : X1 × . . .×Xℓ → Y. (2)

We denote the conditional probability distribution corre-
sponding to f (ℓ) by

P (ℓ)(y|x1, . . . , xℓ) := PY |XL
1 ,L(y|x1, . . . , xℓ, ℓ). (3)

Example 1 (AND Attack) In the AND attack, the output al-
phabet is Y = {0, 1}, and the probability distribution is giv-
en by

P (ℓ)(1|x1, . . . , xℓ) =

{
1, if xi = 1, i ∈ S;
0, otherwise.

(4)

1It is readily shown that for a large n and a given ϵ > 0, Pr[|S| <
ℓ|L = ℓ] ≤ ϵ.

2The attack model in [8] corresponds to the AND attack with PL(k) =
1.
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Figure. 1: System model
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Example 2 (Averaging Attack) In the averaging attack
(e.g., [10]), the output symbol is given by the arithmetic av-
erage of the ℓ inputs by regarding inputs 0 and 1 as real num-
bers, so the output alphabet is expressed as

Y = {0, 1} ∪
k∪

ℓ=0

ℓ−1∪
m=1

{m

ℓ

}
, (5)

where the probability distribution of this attack is given by

P (ℓ)(mℓ |x1, . . . , xℓ) =

{
1, if |{i|xi = 1, i ∈ S}| = m;
0, otherwise,

(6)
for m = 1, . . . , ℓ. 2

Example 3 (Erasure Attack) Let the output alphabet for
the erasure attack be Y = {0, 1, e} (e is an erased symbol).
Then the probability distribution of this attack is given by

P (ℓ)(a|x1, . . . , xℓ) =

{
1, if |{i|xi = 1, i ∈ S}| = aℓ;
0, otherwise,

(7)
for a = 0, 1 and is expressed as

P (ℓ)(e|x1, . . . , xℓ)

=

{
1, if 1 ≤ |{i|xi = 1, i ∈ S}| ≤ ℓ− 1;
0, otherwise.

(8)

2

Assume that the attack model (with the transition probabil-
ities P (ℓ)(y|·) and the output alphabet Y) is known to the
decoder. When the decoder receives y ∈ Y , it tries to esti-
mate all the colluders in S by using

g : Yn →
k∪

ℓ=1

U ℓ. (9)

For a set of colluders S = {i1, . . . , iℓ}, if the output of the
decoder satisfies g(y) ̸= S, we call this event undetected.
The average error probability of detecting colluders of size ℓ,

P
(n)
e|ℓ , is defined by

P
(n)
e|ℓ =

1

M ℓ

×
∑

(i1,...,iℓ)∈Uℓ

Pr
[
g(y) ̸= (i1, . . . , iℓ)| S = {i1, . . . , iℓ}

]
. (10)

Taking average over the size ℓ of colluders, the average de-
coding error probability P

(n)
e is given by

P (n)
e =

k∑
ℓ=1

PL(ℓ)P
(n)
e|ℓ . (11)

Figure 1 shows the system model.
Definition 1 A rate R is said to be achievable if there exists
a sequence of (n,M) codes such that for every ϵ > 0,

R ≤ logM

n
+ ϵ,

P (n)
e ≤ ϵ,

for all sufficiently large n. 2

Definition 2 The capacity of the fingerprinting codes, denot-
ed by Ck, is defined as the supremum of all achievable rates.
2

Moulin defined the capacity for a given set of colluders [11],
[12]. The definition of this paper is slightly different from
the one in [11] and [12].

C. Assumed Attack Model

Assume that codeword symbols of each user Xj ∈ Xj , ij ∈
S(ℓ), j = 1, . . . , k, are independently generated for each
other by a probability distribution Q(xi) = PXi(xi). Since
the codeword symbols are mutually independent,

PX(V )(x(V )) =
∏
i∈V

Q(xi), (12)

is satisfied for an arbitrary subset V ⊆ S. The join-
t entropies H(ℓ)(X(V ), Y ) and H(ℓ)(X(V ), Y |X(V c)),
and the joint mutual information I(ℓ)(X(V );Y ) and I(ℓ)
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(X(V );Y |X(V c)) are defined with respect to the probabili-
ty distributions Q(xi) and P (ℓ)(y|x1, . . . , xℓ).
For arbitrary 1 ≤ ℓ ≤ k and V ⊆ S, H(ℓ)(X(V )) depends
only on Q(x(V )) =

∏
i∈V Q(xi), so we have

H(ℓ)(X(V )) = H(X(V ))

= |V |H(X1), (13)

where H(X1) is entropy of the random variable X1. More-
over for an arbitrary 1 ≤ ℓ ≤ k and for any pairs (V1, V2)
such that V1, V2 ⊆ S, |V1| = |V2|, we have

H(X(V1)) = H(X(V2)). (14)

We give the definition of the first attack model.
Definition 3 (Attack Class A) We define the Attack Class A
by the set of (P (ℓ)(·|·),Y) satisfying the following condition-
s:

(i) Each forged symbol yj is identically and independently
distributed, i.e.,

P (ℓ)(y|xi1 , . . . ,xiℓ)

=
n∏

j=1

P (ℓ)(yj |xi1j , . . . , xiℓj). (15)

(ii) For all the pairs V1, V2 ⊆ S, |V1| = |V2| ≤ ℓ, if {xi|i ∈
V1} = {xi|i ∈ V2}, where the number of duplications
is taken into account, then

P (ℓ)(y|x(V1)) = P (ℓ)(y|x(V2)), (16)

for all y ∈ Y .

(iii) For arbitrary V ⊆ S, |V | = i, and PX(V )(x(V )) =∏
s∈V Q(xs), 1 ≤ i < j ≤ k, we have

H(i)(Y |X(V )) < H(j)(Y |X(V )). (17)

2

Intuitively, condition (i) indicates the memoryless property
of the attack, and condition (ii) indicates that this attack class
depends only on the number of colluders, not the combina-
tion of colluders. The collusion attack satisfying condition
(i) is included in the class of the strongly exchangeable col-
lusion channels [12]. The collusion attack satisfying condi-
tion (ii) is included in the class of the permutation invariant
collusion channels [12]D
It can be easily shown that the AND attack, the averaging
attack, and the erasure attack belong to the Attack Class A3.
Next we show the following lemma.
Lemma 1 Assume an attack belonging to the Attack Class
A. For an arbitrary 1 ≤ ℓ ≤ k and for all the pairs V1, V2 ⊆
S, |V1| = |V2| ≤ ℓ, we have

H(ℓ)(Y |X(V1)) = H(ℓ)(Y |X(V2)), (18)
H(ℓ)(X(V1), Y ) = H(ℓ)(X(V2), Y ), (19)
H(ℓ)(X(V1)|Y ) = H(ℓ)(X(V2)|Y ), (20)
I(ℓ)(X(V1);Y ) = I(ℓ)(X(V2);Y ), (21)

I(ℓ)(X(V1);Y |X(V c
1 )) = I(ℓ)(X(V2);Y |X(V c

2 )), (22)

3For the other attacks such as the max-min attack [7] also belong to this
attack class.

(Proof) We have Eq. (18) directly from condition (ii) of the
Attack Class A. Applying Eq. (14) for Eq. (18), we have Eq.
(19). We obtain Eq. (20) directly from Eq. (19). For Eq. (21),
if we set s = |V1| = |V2|, then

I(ℓ)(X(V1);Y ) = H(ℓ)(Y )−H(ℓ)(Y |X(V1))

= H(ℓ)(Y )−H(ℓ)(Y |X(V2))

= I(ℓ)(X(V2);Y ), (23)

yielding Eq. (21). In a similar manner, we can obtain Eq.
(22). 2

From Lemma 1, for an attack belonging to the At-
tack Class A, we have, for example, H(ℓ)(Y,X1, X2)
= H(ℓ)(Y,X2, X3) and I(ℓ)(X1, X2;Y |X3) = I(ℓ)(X2,
X3;Y |X1).
The following lemma is used to derive our main results
shown in the next section.
Lemma 2 Assume an attack belonging to the Attack Class A.
For arbitrary 3 ≤ ℓ ≤ k and 0 ≤ a ≤ s− 2 with 2 ≤ s < ℓ,
we have

1

s− a

(
H(ℓ)(Y |Xa

1 )−H(s)(Y |Xs
1)
)

≤ 1

s− (a+ 1)

(
H(ℓ)(Y |Xa+1

1 )−H(s)(Y |Xs
1)
)
. (24)

(Proof) See Subsect. V-B. 2

Throughout this paper, we assume that jointly typical set de-
coding is used. If maximum likelihood (ML) decoding is
used, the decoding error probability is always less than or e-
qual to that of jointly typical set decoding. Then at least the
rate which is achievable by jointly typical set decoding can
be achieved via ML decoding.
Next we define a subclass of the Attack Class A.
Definition 4 (Attack Class B) If an attack belongs to the
Attack Class A, and (P (ℓ)(·|·),Y) satisfies the following con-
dition, then this attack is said to be in the Attack Class B.

(iv) For an arbitrary PXj
1
(xj

1) =
∏j

s=1 Q(xs), 1 ≤ i < j ≤
k, we have

H(i)(Y |Xi
1) ≤ H(j)(Y |Xj

1). (25)

2

For an arbitrary 2 ≤ ℓ ≤ k, the AND attack and the averag-
ing attack satisfy H(ℓ)(Y |Xℓ

1) = 0. Therefore these deter-
ministic attacks belong to the Attack Class B. The interleav-
ing attack [2] also belongs to this attack class.
Applying Lemma 2 for the case of the Attack Class B, we
have the following lemma.
Lemma 3 Assume an attack belonging to the Attack Class
B. Then for arbitrary 2 ≤ ℓ ≤ k and 1 ≤ s ≤ ℓ, we have

1

s

(
H(ℓ)(Y )−H(s)(Y |Xs

1)
)
≥ 1

s
I(ℓ)(Xℓ

1;Y ). (26)

(Proof) From condition (iv) of the Attack Class B,

1

s

(
H(ℓ)(Y )−H(s)(Y |Xs

1)
)

≥ 1

s

(
H(ℓ)(Y )−H(ℓ)(Y |Xℓ

1)
)

=
1

s
I(Xℓ

1;Y ), (27)

is satisfied. 2
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III. Achievable Rates for Attack Classes A and
B

In this section, we provide an achievable rate for both the
Attack Classes A and B.
We show the following theorem.
Theorem 1 Assume an attack belongs to the Attack Class A.
Then for an arbitrary fixed k, we have

Ck ≥ sup
Q(X)

min
ℓ=2,...,k

min
s=2,...,ℓ{

1

s

(
H(ℓ)(Y )−H(s)(Y |Xs

1)
)}

, (28)

where the probability distribution of ℓ random variables
X1, X2, . . . , Xℓ is given by

PXℓ
1
(xℓ

1) =
ℓ∏

j=1

Q(xj). (29)

(Proof) See Subsect. V-C. 2

For the Attack Class B, we have the following corollary.
Corollary 1 Assume that an attack belongs to the Attack
Class B. Then for an arbitrary fixed k, we have

Ck ≥ sup
Q(X)

min
ℓ=2,...,k

{
1

ℓ
I(ℓ)(Xℓ

1;Y )

}
, (30)

where the probability distribution of ℓ random variables
X1, . . . , Xℓ is given by

PXℓ
1
(xℓ

1) =

ℓ∏
j=1

Q(xj). (31)

(Proof) For an attack belonging to the Attack Class B, the
property in Lemma 3 is valid. Thus for a given ℓ and from
Eq. (28) we have

min
s=2,...,ℓ−1

{
1

s
H(ℓ)(Y )−H(s)(Y |Xs

1)

}
≥ 1

ℓ
I(ℓ)(Xℓ

1;Y ). (32)

2

IV. Case Study for Several Attacks

In the previous section, we derive achievable rates for the
attack classes A and B. In this section, by using these results,
we show some numerical results for particular attacks such as
the AND attack, the erasure attack, and the averaging attack
described in Examples 1 – 3. Notice that these attacks belong
to the Attack Class B. Therefore from Corollary 1, the rate
presented in the right-hand side of Eq. (30) is achievable.

A. Achievable Rate against AND Attack

Koga [8] has derived a lower bound on the capacity against
the AND attack via the analysis over the Multiple Access
Channel (MAC) [1], assuming that the number of actual col-
luders is fixed to k. For an arbitrary k, it has been shown
that a lower bound on the capacity satisfies Ck ≥ 1

k . In oth-
er words, there exists code sequences of rate R = 1

k whose

decoding error probability goes to 0 asymptotically with n.
The model assumed in [8] satisfies limn→∞ PL(k) = 1,
ℓ = 1, . . . , k. So the system requires good codes against
a set of colluders S of size k, which is the maximum size
of assumed colluders. However for the practical usage, the
number of colluders ℓ is distributed, so the system may be
designed with the maximum number of colluders larger than
the expected size of colluders.
We have introduced the attack model with its colluder size
disturbed according to an unknown distribution PL(ℓ), and
we have derived an achievable rate for two attack models by
Theorem 1 and Corollary 1. If PL(L) = 1, then our model
is equal to the model in [8], so it can be seen that our model
is a generalization of the model in [8] when the attack model
is restricted to the AND attack.
Since the AND attack is a deterministic attack, H(Y |Xℓ

1) =
0 holds. Mutual information I(Xℓ

1;Y ) is expressed as

I(Xℓ
1;Y ) = H(Y )

= h(pℓ), (33)

where p denotes the probability that each codeword symbol
in C is 1, i.e., Pr[Xi = 1] = p. Substituting Eq. (33) to Eq.
(30), we have

Ck ≥ sup
Q(X)

1

k
h(pk)

=
1

k
. (34)

The maximum value in the right-hand side of Eq. (34) is
achieved when p satisfies pk = 0.5, since for 0 ≤ a ≤ 1,
h(a) is maximized when a = 0.5, and h(0.5) = 1. Therefore
we can evaluate p from p = 0.5

1
k . Thus the same achievable

rate as in [8] is obtained for the generalized attack model in
this paper.
Example 4 For k = 4, the achievable rate for the AND at-
tack is given by p = 0.5

1
4 ≃ 0.840896. 2

B. Achievable Rate against Other Attacks

We show the derived achievable rate for the erasure attack
and the averaging attack.

1) Achievable Rate against Erasure Attack

For the erasure attack, H(Y |Xℓ
1) = 0 is also satisfied as in

the case of the AND attack, so we have

I(Xℓ
1;Y ) = H(Y )

= −pℓ log pℓ − p̃ℓ log p̃ℓ

−(1− pℓ − p̃ℓ) log(1− pℓ − p̃ℓ). (35)

where p̃ = 1−p. Substituting Eq. (35) to Eq. (30), we obtain

Ck ≥ sup
Q(X)

1

k

{
−pk log pk − p̃k log p̃k

−(1− pk − p̃k) log(1− pk − p̃k)
}
. (36)

It can be easily shown that right-hand side of Eq. (36) is al-
ways greater than or equal to that of Eq. (34). Thus it can
yield a larger achievable rate for the erasure attack compared
with the AND attack. The solution of p that takes the max-
imum in right-hand side of Eq. (36) cannot be evaluated ex-
plicitly, so we show numerical results in Subsect. IV-C.
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Figure. 2: Calculation result for the AND attack (Eq. (34)),
the erasure attack (Eq. (36)), and the averaging attack (Eq.
(38)) when k = 3

2) Achievable Rate against Averaging Attack

For the averaging attack, H(Y |Xℓ
1) = 0 is also satisfied, so

we have

I(Xℓ
1;Y ) = H(Y )

= −
ℓ∑

i=0

(
ℓ

i

)
pi(1− p)ℓ−i

× log

(
ℓ

i

)
pi(1− p)ℓ−i. (37)

Substituting Eq. (37) to Eq. (30), we have

Ck ≥ sup
Q(X)

{
−1

k

k∑
i=0

(
k

i

)
pi(1− p)k−i

× log

(
k

i

)
pi(1− p)k−i

}
. (38)

It is readily shown that right-hand side of Eq. (38) is always
greater than or equal to that of Eq. (36). Thus the achievable
rate for the averaging attack is larger than those of the erasure
attack and the AND attack.
Note that the right-hand side of Eq. (38) is characterized by
the entropy of a binomial distribution, and it has been shown
that the entropy of a binomial distribution is Schur convex
[13] and symmetric. From this, the mutual information of
the averaging attack is symmetric with respect to p = 0.5 for
every k and takes the maximum on this point.
Remark 1 For every k, the achievable rate for the aver-
aging attack is achieved with binary random linear codes
(p = 0.5). 2

C. Numerical Examples for Several Attacks

Figures 2 – 4 show the calculation results for the AND at-
tack given in Eq. (34), the erasure attack given in Eq. (36),
and the averaging attack given in Eq. (38) with k = 3, 4, 5,
respectively. From these figures, we have the following ob-
servations:
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Figure. 3: Calculation result for the AND attack (Eq. (34)),
the erasure attack (Eq. (36)), and the averaging attack (Eq.
(38)) when k = 4
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Figure. 4: Calculation result for the AND attack (Eq. (34)),
the erasure attack (Eq. (36)), and the averaging attack (Eq.
(38)) when k = 5

(1) For the AND Attack and the Erasure Attack
The AND attack and the erasure attack attain their maximum
at p ̸= 0.5 for k > 2. For the AND attack, p which gives
the maximum value 1

k when k = 3, 4, 5 is p ≃ 0.793701,
0.840896, 0.870551, respectively. For the erasure attack,
there are two points of p that give the maximum. It is clear
that the achievable rates against the erasure attack is larger
than that against the AND attack. The difference of the rates
between these two attacks becomes negligible as k increases.
For the AND and the erasure attacks, the rate may be achiev-
able with the combination of the random coset codes or Gal-
lager’s well-known symbol mapping technique [6, Sect. 6.2].
(2) For the Averaging Attack
The averaging attack attains its maximum at p = 0.5 for ev-
ery k which is obvious from the discussion in the previous
subsection. Thus unlike the AND attack and the erasure at-
tack, it is clarified that the rate in Eq. (38) is achievable with
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an ensemble of random linear codes (p = 0.5).
Overall the achievable rates become smaller as the maximum
number of colluders k increases for all of these attacks. It is
a natural statement because it becomes difficult to detect a
collusion when the number of colluders is large.

V. Proof of Lemma 2 and Theorem 1

A. Property of Mutual Information

Before proving Lemma 2 and Theorem 1, we first show the
following lemma about a property of mutual information.
This lemma is valid for an arbitrary attack (P (ℓ)(·|·),Y).
Lemma 4 For arbitrary 2 ≤ ℓ ≤ k and Ṽ ⊆ V ⊆ S, we
have

1

|V |
I(ℓ)(X(V );Y |X(V c))

≤ 1

|Ṽ |
I(ℓ)(X(Ṽ );Y |X(Ṽ c)). (39)

2

Moreover we define a set of jointly typical sequence A
(ℓ,n)
ϵ

[5] as follows:
Definition 5 (ϵ-jointly typical sequence) For every ϵ > 0,

A(s,n)
ϵ :=

{
(xi1 , . . . ,xis ,y)

∈ (Xi1)
n × · · · × (Xis)

n × Yn,∣∣∣− 1

n
logP (s)(x(V ),y)−H(s)(X(V ), Y )

∣∣∣ ≤ ϵ,∣∣∣− 1

n
logQ(x(V ))−H(X(V ))

∣∣∣ ≤ ϵ

for all V ⊆ U, |V | ≤ s
}
, (40)

is called the set of ϵ-jointly typical sequences where
Q(x(V )) and P (s)(x(V ),y) are joint probability distribu-
tions such that

Q(x(V )) :=

|V |∏
j=1

Q(xij ), (41)

P (s)(x(V ),y) := Q(x(V )) · P (s)(y|xi1 , . . . ,xi|V |), (42)

and V = {i1, . . . , i|V |}. 2

B. Proof of Lemma 2

Denote A := s − (a + 1). To prove this lemma, we need to
show

(A+ 1)
(
H(ℓ)(Y |Xa+1

1 )−H(s)(Y |Xs
1)
)

−A
(
H(ℓ)(Y |Xa

1 )−H(s)(Y |Xs
1)
)
≥ 0. (43)

Then we have

(A+ 1)
(
H(ℓ)(Y |Xa+1

1 )−H(s)(Y |Xs
1)
)

−A
(
H(ℓ)(Y |Xa

1 )−H(s)(Y |Xs
1)
)

= (A+ 1)H(ℓ)(Y |Xa+1
1 )

−AH(ℓ)(Y |Xa
1 )−H(s)(Y |Xs

1)

= −AI(ℓ)(Xa+1;Y |Xa
1 )

+H(ℓ)(Y |Xa+1
1 )−H(s)(Y |Xs

1)

≥ −AI(ℓ)(Xa+1;Y |Xa
1 ) +H(ℓ)(Y |Xa+1

1 )

−H(ℓ)(Y |Xs
1)

= −AI(ℓ)(Xa+1;Y |Xa
1 ) + I(ℓ)(Xs

a+2;Y |Xa+1
1 ), (44)

where the inequality follows from condition (iii) of the At-
tack Class A. Using Eq. (22), the right-hand side of Eq. (44)
is lower bounded as

−AI(ℓ)(Xa+1;Y |Xa
1 ) + I(ℓ)(Xs

a+2;Y |Xa+1
1 )

= −AI(ℓ)(X1;Y |Xa+1
2 ) + I(ℓ)(XA

1 ;Y |Xs
A+1)

= −AI(ℓ)(X1;Y |Xa+1
2 )

+

A∑
j=1

I(ℓ)(Xj ;Y |Xj−1
1 , Xs

A+1)

≥ 0, (45)

where the inequality follows from Eq. (22) and the relation

A∑
j=1

I(ℓ)(Xj ;Y |Xj−1
1 , Xs

A+1)

=
A∑

j=1

I(ℓ)(X1;Y |Xj+a+1
2 )

≥ AI(ℓ)(X1;Y |Xa+1
2 ). (46)

Thus we have Eq. (24). 2

C. Proof of Theorem 1

We give a sketch of the proof as follows:

1) Codebook Generation: For a given distribution PX , we
first generate independent 2nR i.i.d. sequences x(i), i ∈ U

at random according to PXn(x(i)) =
∏n

j=1 Q(xj(i)).
2) Codeword Assignment: For user i ∈ U , the codeword

x(i) is allocated.
3) Colluder Detection: Given a forgery y ∈ Yn generated

by a set of colluders S(ℓ∗) (ℓ∗ ≤ k), we consider the fol-
lowing detection algorithm.

(i) Set ℓ := 2. Fix ϵ > 0 sufficiently small.
(ii) Find (x(i1), . . . , x(iℓ)) which is ϵ-jointly typical

with y. If there exists a unique tuple satisfying (x(̂i1),

. . . ,x(̂iℓ),y) ∈ A
(ℓ,n)
ϵ (notice that î1 ≤ · · · ≤ îℓ), then

output Ŝ := {̂i1, . . . , îℓ} and terminate the algorithm. If
there exists such tuples more than one, declare a failure
of the detection.

(iii) If ℓ = k, then declare a failure of the detection and
terminate the algorithm. Otherwise set ℓ := ℓ + 1 and
go to step (ii).
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The detection algorithm immediately stops the algorithm
if it finds y in A

(ℓ,n)
ϵ by incrementing ℓ from 2.

4) Analysis of Probability of Detection Error: We prove the
theorem for the case k ≥ 4, ℓ∗ = 3 for simplicity. The
case for ℓ∗ ≤ k can be similarly proven.

Since assigning codewords to users is symmetric, with-
out loss of generality, we assume S(ℓ∗) = {1, 2,

3}. Let E
(s)
i1,...,is

, 2 ≤ s ≤ k, be the event that
the users (x(i1), . . . ,x(is),y) are jointly typical, i.e.,
(x(i1), . . . ,x(is),y) ∈ A

(s,n)
ϵ . The average probability of

detection for error S = S(ℓ∗), denoted by P
(n)

e|ℓ∗(S), is over-
bounded as

P
(n)

e|ℓ∗(S) = Pr

(E(3)
123)

c ∪
∪

i,j∈S

E
(2)
ij ∪

∪
i∈S

∪
j≥4

E
(2)
ij

∪
∪

i,j≥4

E
(2)
ij ∪

∪
i,j∈S

∪
ℓ≥4

E
(3)
ijℓ

∪
∪
i∈S

∪
j,ℓ≥4

E
(3)
ijℓ ∪

∪
i,j,ℓ≥4

E
(3)
ijℓ

 . (47)

Note that P
(n)

e|ℓ∗(S) does not depend on k for a given ℓ∗. Tak-
ing an union over all the events, we have

P
(n)

e|ℓ∗(S) ≤ Pr[(E
(3)
123)

c] +
∑
i,j∈S

Pr[E
(2)
ij ]

+
∑
i∈S

∑
j≥4

Pr[E
(2)
ij ] +

∑
i,j≥4

Pr[E
(2)
ij ]

+
∑
i,j∈S

∑
ℓ≥4

Pr[E
(3)
ijℓ ] +

∑
i∈S

∑
j,ℓ≥4

Pr[E
(3)
ijℓ ]

+
∑

i,j,ℓ≥4

Pr[E
(3)
ijℓ ]. (48)

Next we bound each term on the right-hand side of Eq. (48).
Using the asymptotic equipartition property (AEP) and for a
sufficiently large code length, the first term can be bounded
as Pr[(E(3)

123)
c] ≤ ϵ.

The second term is upper-bounded as∑
i,j∈S

Pr[E
(2)
ij ] ≤

∑
i,j∈S

∑
(xi,xj ,y)∈A

(2,n)
ϵ

P (3)(xi,xj ,y), (49)

where P (3)(xi,xj ,y) is a marginal probability given by

P (3)(xi,xj ,y)

=
∑

x′∈{0,1}n

Q(xi)Q(xj)Q(x′)P (3)(y|xi,xj ,x
′). (50)

Due to the AEP, Eq. (49) becomes∑
i,j∈S

Pr[E
(2)
ij ] ≤ 3|A(2,n)

ϵ |2−n(H(3)(Xi,Xj ,Y )−ϵ)

≤ 2−n(H(3)(Xi,Xj ,Y )−H(2)(Xi,Xj ,Y )−3ϵ). (51)

Using Eqs. (13) and (14),

H(3)(Xi, Xj , Y )−H(2)(Xi, Xj , Y )

= H(3)(Y |X1, X2)−H(2)(Y |X1, X2), (52)

holds and from condition (iii) of the Attack Class A, we have

H(3)(Y |X1, X2) > H(2)(Y |X1, X2). (53)

Therefore it can be seen that the right-hand side of Eq. (51)
goes to 0 exponentially with n.
Let us consider the third term. This term is over-bounded as∑

i∈S

∑
j≥4

Pr[E
(2)
ij ] ≤ 3 · 2nR

∑
(xi,xj ,y)∈A

(2,n)
ϵ

P (3)(xi,xj ,y). (54)

Since xj is independent of the pair (xi,y), we have

P (3)(xi,xj ,y) = Q(xj)P
(3)(xi,y), (55)

where P (3)(xi,y) is a marginal probability calculated as in
Eq. (50). Due to the AEP, Eq. (54) is further over-bounded
as∑

i∈S

∑
j≥4

Pr[E
(2)
ij ]

≤ 2−n(H(Xj)+H(3)(Xi,Y )−H(2)(Xi,Xj ,Y )−R−3ϵ)

= 2−n(H(3)(Y |X2)−H(2)(Y |X1,X2)−R−3ϵ). (56)

Notice that the equality in Eq. (56) is due to the facts that
H(2)(Xi, Xj , Y ) = H(2)(Y |Xi, Xj)+H(Xi)+H(Xj) and
H(3)(Xi, Y ) = H(3)(Y |Xi)+H(Xi), and from an equality
in Lemma 1. Thus if4

H(3)(Y |X2)−H(2)(Y |X1, X2) > R, (57)

then right-hand side of Eq. (56) goes to 0 exponentially with
n.
Next for the fourth term, we have∑

i,j≥4

Pr[E
(2)
ij ] ≤ 22nR

∑
(xi,xj ,y)∈A

(2,n)
ϵ

P (3)(xi,xj ,y). (58)

Since (xi,xj) and y are independent of each other, from the
AEP, Eq. (58) is further over-bounded by∑
i,j≥4

Pr[E
(2)
ij ]

≤ 2−n(H(Xi)+H(Xj)+H(3)(Y )−H(2)(Xi,Xj ,Y )−2R−4ϵ)

= 2−n(H(3)(Y )−H(2)(Y |X1,X2)−2R−4ϵ) (59)

Therefore from the equality in Lemma 1, if

1

2

(
H(3)(Y )−H(2)(Y |X1, X2)

)
> R, (60)

the right-hand side of Eq. (59) goes to 0 exponentially with
n.
For the fifth, the sixth, and the seventh terms, the analysis is
the same as the analysis for decoding error probability over
the MAC [1]. Therefore similar to the analysis given in [8],
if

min
1≤s≤ℓ∗

{
1

s
I(Xs

1 ;Y |Xℓ∗

s+1)

}
> R, (61)

these terms can be made arbitrarily small as n becomes large.

4This condition is satisfied if max{I(2)(X1;Y |X2),
I(3)(X1;Y |X2)} > R.
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From Lemma 4, substituting ℓ∗ = 3, we have

min
s=1,2,3

{
1

s
I(3)(Xs

1 ;Y |X3
s+1)

}
=

1

3
I(3)(X1, X2, X3;Y ).

(62)
Thus

1

3
I(3)(X1, X2, X3;Y ) > R, (63)

is a sufficient condition for the fifth, the sixth, and the seventh
terms converging to 0.
From the above discussions, we have the following constraint
on the rate

min

{
I(3)(X1;Y |X2, X3),

1

2
I(3)(X1, X2;Y |X3),

1

3
I(3)(X1, X2, X3;Y ),H(3)(Y |X2)−H(2)(Y |X1, X2),

1

2

(
H(3)(Y )−H(2)(Y |X1, X2)

)}
> R. (64)

From Lemmas 2 and 4, Eq. (64) is equivalent to

min

{
1

3
I(3)(X1, X2, X3;Y ),

1

2

(
H(3)(Y )−H(2)(Y |X1, X2)

)}
> R. (65)

We can see that there exists at least one sequence of codes
for all sufficiently large n achieving arbitrary small decoding
error probability if the rate satisfies Eq. (65).
Using a similar argument, we have a constraint similar to Eq.
(65) for the general case 4 ≤ ℓ∗ ≤ k:

min

{
1

ℓ∗
I(ℓ

∗)(Xℓ∗

1 ;Y ),

1

ℓ∗ − 1

(
H(ℓ∗)(Y )−H(ℓ∗−1)(Y |Xℓ∗−1

1 )
)
,

1

ℓ∗ − 2

(
H(ℓ∗)(Y )−H(ℓ∗−2)(Y |Xℓ∗−2

1 )
)
, . . . ,

1

2

(
H(ℓ∗)(Y )−H(2)(Y |X1, X2)

)}
> R. (66)

If we fix the maximum number of colluders k, Eq. (66) must
be satisfied for and for all ℓ∗ = 2, . . . , k. Therefore there
exists at least one sequence of codes for all sufficiently large
n achieving arbitrary small decoding error probability if Eq.
(28) holds. 2

VI. Conclusion

In this paper, we introduced a new attack model in which
the number of colluders is distributed according to a certain
probability distribution. We gave two classes of collusion
attacks which include known collusion attacks in the context
of multimedia fingerprinting. For these two attack classes,
we derived achievable rates when only the type of attacks
and the maximum number of colluders are known. Based
on the derived formulas, we investigated achievable rates for
the cases of some particular attacks. For the AND attack, the
derived lower bound coincides with that given by Koga [8],

although our attack model does not assume that the decoder
knows the actual number of colluders.
Although we have discussed based on jointly typical set de-
coding, it is natural to extend this argument for ML decoding
and derive random coding exponents. This remains as future
studies.
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