
Journal of Information Assurance and Security. 
ISSN 1554-1010 Volume 7 (2012) pp. 102-110 
© MIR Labs, www.mirlabs.net/jias/index.html                                                                                                                 

 
 

MIR Labs, USA 
 

A New Efficient Symmetric Encryption Algorithm 
Design and Implementation 

 
  

Lo'ai Tawalbeh*, Hend Al-Hajsalem, Tasneem Abu-Qtaish and Ayat Khatatbeh 
 

* Director of the Cryptographic Hardware and Information Security Lab (CHiS),   
All authors are with: Computer Engineering Department, Jordan University of Science and Technology, 

Irbid, 22110, Jordan 
 tawalbeh@just.edu.jo, hindsaid2004@yahoo.com, ektaish@yahoo.com and ayatkh@yahoo.com 

 

 

Abstract:  
Symmetric-key encryption is used in many applications, 
including protection passwords and Internet-based 
transactions. Due to the need for algorithms to provide the 
required security to today's applications, the Advanced 
Encryption Standard (AES) competition was announced by the 
NIST. It had five finalist algorithms (MARS, RC6, Rijndael, 
Serpent, and Twofish), where then the call for the AES was the 
Rijndael. In this paper, we build “ALT”, a symmetric 
encryption algorithm that have higher security than those 
finalist algorithms by combining their strengths and avoiding 
their weaknesses, in an efficient structure to provide optimum 
security and performance. The ALT algorithm, the complete 
hardware design, and its implementation (using VHDL) are 
proposed. Experimental results (area, delay, and throughput) 
were obtained by synthesizing the design for the target FPGA 
technology. 

Keywords: secure symmetric encryption, high performance 
algorithm, FPGA implementation,  AES. 

 

I. Introduction 

Symmetric-key encryption algorithms are fundamental in 
cryptography. They are used in a large variety of applications, 
including protection of the secrecy of login passwords, ATM 
PINS, e-mail messages, video transmissions (such as 
pay-per-view movies), stored data files, and 
Internet-distributed digital content. They are also used to 
protect the integrity of banking and point-of sale transactions, 
and in many other applications. 
  The DES cipher (Data Encryption Standard) [1], was the 
current standard for symmetric (shared-key) cryptography. It 
was developed by IBM in the early 70’s. Although DES has 
provided a secure encryption algorithm for the past 25 years, 
its block-length and key-length limitations needed to be 
advanced for the new century as the data is getting longer and 
higher security levels are required in today's applications [2]. 

In response to a growing desire to replace DES, the 
National Institute of Standards and Technology (NIST) 
announced the Advanced Encryption Standard (AES) 
program in 1997 to select a symmetric-key encryption 
algorithm where it announced a formal call to build 
symmetric secure algorithms under a number of certain 

conditions. In 1998, NIST announced the acceptance of 
fifteen candidate algorithms and requested the assistance of 
the cryptographic research community in analyzing the 
candidates. Among these fifteen algorithms, only five made it 
to the finalist (MARS, RC6, Rijndael, Serpent and Twofish) 
[3], where then the call for the AES algorithm was the 
Rijndael. 

We investigated the five finalist algorithms deeply and 
found out the strength points and weaknesses of each of them. 
Then, all the main parts that helped improving the 
performance and security in these algorithms and made them 
be within the finalist algorithms are merged  in one algorithm 
in an efficient structure. This paper shows in details the 
complete structure of the new proposed algorithm (we called 
it ALT - letters combinations from the authors names), and 
how it works and maintains it’s security. Also, the hardware 
design that implements ALT, and its performance that is 
obtained by the experimental results are shown.  ALT is 
designed to meet the requirements of the AES cipher, of being 
secure enough for the current and next ten years applications, 
good performance, simplicity, and reasonable cost.  

ALT as any other symmetric-key encryption algorithm, has 
a key setup procedure which is a very crucial step in 
determining the security level of the algorithm. So, we paid 
attention to have a very efficient (and simple at the same time) 
key setup procedure. The ALT key setup is similar to the RC6 
key setup procedure. It is being used for years in RC5 and is 
used again in RC6 and there is no serious or known attacks 
registered on it till now, and it has been approved that it is 
simple, secure, and its implementation is easy either in 
software or in hardware. 

ALT used in its basic encryption step (core), a very strong 
core similar to the one proposed in Mars algorithm. This core 
consists of eight forward and eight backward rounds, the 
strength of this core comes from its structure and the use of  a 
function called Efunction   which performs multiple 
manipulations on different portions of the algorithm, and uses 
two sub keys in its architecture. Also the manipulation on 
each portion of the data is independent of the other which 
provides a good confusion and resistibility against differential 
attacks.  



A New Efficient Symmetric Encryption Algorithm Design and Implementation 

 

103 

To add extra security to ALT, we embedded a linear 
transformation function (based on the one in Serpent 
algorithm) to its core. This function consists of simple and 
straight forward transformations; such as Xoring, addition, 
shifting, and rotation operations. In addition to its simplicity 
and good performance on modern processors, the linear 
transformation function is found to have bounds on the 
probabilities of linear and differential attacks. More over, and 
to provide good diffusion on the data with least cost, a Pseudo 
Hadamard Transformation (PHT) is used in ALT (based on 
the Twofish algorithm). PHT is a simple addition operation 
that has huge impact on diffusing the data. 

On the other hand , ALT used a non-linear transformation 
on data, this non-linearity is achieved using S-box’s .S-box 
represents a table of constant values that is used in a form 
which is seems to be random, and these values are used to 
provide more diffusion on data. In ALT, we used variable data 
to determine which S-box value to use in each state, hence 
increasing the ambiguity of the encrypted data. 

This paper shows in details the complete hardware 
structure of ALT and how it works and maintains it’s security. 
The ALT design is described using VHDL hardware 
description language. Then the VHDL model was simulated 
using  Mentor Graphics tools (ModelSim) for functional 
correctness. Finally, experimental results (area, delay, and 
throughput) were obtained by synthesizing the design for the 
target FPGA technology and compared with other algorithms.  

Finally, ALT is supposed to be simple, secure, and efficient 
symmetric-key encryption algorithm. As for any new 
proposed encryption algorithm, we tried to perform a lot of  
theoretical study and testing to prove its feasibility and 
resistibility to attacks. We hope that ALT will do the purpose 
it was built for and provides high security level and proves its 
effectiveness on the current machines and be flexible to go 
with the coming future developments, and we believe that this 
only can happen if ALT is adopted and put in use. 

The rest of the paper is organized as follows: Section 2 
briefly reviews the five finalist algorithms made it to the AES 
competition. Section 3 presents the design principles and 
choices of ALT.  The proposed algorithm in details and its 
main building components are presented in Section 4. The 
ALT implementation experimental results details are shown 
in Section 5. Section 6 concludes this work. 

II. Literature Review 

This section provides brief description for the five candidates 
that NIST selected for further analysis. Those are:  MARS, 
RC6, Rijndael, Serpent, and Twofish. No significant security 
vulnerabilities were found for these candidates during the 
analysis, and each of these algorithms constitutes potentially 
superior technology. 

The first candidate was MARS [4]. It is a 128-bit block size 
symmetric-key algorithm  with variable key size, ranging 
from 128 to over 400 bits. It was designed to meet and exceed 
the requirements for a standard for symmetric-key encryption 
in the next few decades. The main theme behind the design of 
MARS is to get the best security/performance tradeoff by 
utilizing the strongest techniques available today for 
designing block ciphers. As a result, MARS provides a very 

high level of security, combined with much better 
performance than other existing ciphers.  

The second cipher algorithm was RC6 [7]. The design of 
RC6 began with a consideration of RC5 as a potential 
candidate for an AES submission. Modifications were then 
made to meet the AES requirements, to increase security, and 
to improve performance. While no practical attack on RC5 
has been found, the studies provide some interesting 
theoretical attacks, generally based on the fact that the 
"rotation amounts" in RC5 do not depend on all of the bits in 
a register. RC6 was designed to thwart such attacks, and 
indeed to thwart all known attacks, providing a cipher that 
can offer the security required for the lifespan of the AES. 

The third candidate was Rijndael [9] which was chosen to 
be the Advanced Encryption Standard (AES) by the U.S. 
government. It is expected to be used worldwide and analyzed 
extensively, as was the case with its predecessor, the Data 
Encryption Standard (DES). It became effective as a standard 
May 26, 2002. As of 2006, AES is one of the most popular 
algorithms used in symmetric key cryptography. The 
algorithm has 128-bit plain text and 128, 192 and 256 bits 
keys. Its key setup is fast, and its memory requirements are 
low which allows it to perform well in memory-constrained 
environments. The straightforward design and the 
conservative choice of operations should facilitate its further 
analysis, and the operations should be relatively easy to 
defend against certain attacks on physical implementations. 

Serpent was the fourth candidate [10]. It has a block size of 
128 bits and supports a key size of 128, 192 or 256 bits. The 
cipher is a 32-round substitution-permutation network 
operating on a block of four 32-bit words. Each round applies 
one of eight 4-bit to 4-bit S-boxes 32 times in parallel. Serpent 
was designed so that all operations can be executed in parallel 
(Serpent achieves its high performance by a design that 
makes very efficient use of parallelism), using 32 1-bit slices. 
This maximizes parallelism, but also allows use of the 
extensive cryptanalysis work performed on DES. 

The last ciphering candidate was the Twofish [11]. A 
128-bit block cipher with variable-length key up to 256 bits. 
The cipher is a 16-round Feistel network. The F function 
made up of four key-dependent 8-by-8-bit S-boxes, a fixed 
4-by-4 maximum distance separable matrix over GF(28), a 
pseudo-Hadamard transform, bitwise rotations, and a 
carefully designed key scheduling. Twofish can be optimized 
for speed, key setup, memory, code size in software, or space 
in hardware.  

 

III. Design Principles and Choices 

 
The ALT algorithm were designed according to many 
principles to maximize the efficiency, throughput, and 
security. 

An important aspect of ALT is that its components are 
designed to permit extensive analysis, and make the 
algorithm easy to use. In every step of the design, we refrained 
from using operations and structures which seemed “too hard 
to analyze”.  Since  most computers today (with some 
exceptions) use word-size of 32 bits, all the operations in ALT 



Tawalbeh et al. 

 

104 

are applied to 32-bit words. At the current state of the 
technology, this choice provides a good tradeoff between the 
ability to run the algorithm on computers which are available 
today and the ability to take advantage of larger word-size in 
future architectures. 

ALT is a Type-3 Feistel network, and has a block length of 
128 bits and word-size of 32 bits, it follows that each block 
consists of four words. Among the various network-structures 
which are capable of handling four words in a block, it seems 
that a type-3 Feistel network [13] provides the best tradeoff 
between speed, strength and suitability for analysis.  Also, the 
encryption and decryption operations in ALT are designed to 
be  symmetric, and it is secure against chosen ciphertext 
attacks as against chosen plaintext attacks.  

 
Many operations were embedded in ALT. These include 

Additions, subtractions and xors. Table look-up are also used  
to provided security as it was used before for DES and many 
other ciphers. ALT uses a single table of 512, 32-bit words, 
called the S-box [14]. In principle, a carefully chosen S-box 
can provide good resistance against linear and differential 
attacks, as well as good avalanche of data and key bits. But it 
should be mentioned that implementing the S-box lookups in 
software is relatively slow, and hence, this is another 
motivation to move for the hardware implementation.  

The Data-dependent rotations in ALT are combined with 
arithmetic operations (such as addition) to provide very 
effective resistance against linear cryptanalysis. On the other 
hand, fixed rotations are also used to place the data bits in 
certain positions. Both data dependent rotations and fixed 
rotations has fast software and hardware implementations. 
The mixed structure used in ALT  provide better resistance 
against new (yet undiscovered) cryptanalytical techniques. 
Namely, a cipher consisting of two radically different 
structures is more likely to be resilient to new attacks than a 
homogeneous cipher, since in order to take advantage of a 
weakness in one structure one has to propagate this weakness 
through the other structure.  

IV. The Proposed ALT  

 
ALT is a 128-bit block cipher with a 128-bit key length, it 
takes as input, and produces as output, four, 32-bit data words. 
The cipher itself is word oriented, in that all the internal 
operations are performed on 32-bit words. This word-based 
structure makes it is easier to perform the logical and 
arithmetic operations on hardware, such as xoring and 
shifting.  The general structure of the algorithm is shown in 

Figure 1.          

 
Figure1. The general structure of ALT 

 
It can be realized from Figure 1 that the plaintext passes 
through a number of operations starting with the 
pre-wrapping which starts with a simple xoring operation 
(similar to pre-whitening that will be discussed later in this 
section). The wrapping process provides rapid mixing and 
key avalanche to harden chosen-plaintext attacks, and to 
make it harder to “strip out” rounds of the cryptographic core 
in linear and differential attacks [15][16]. After the wrapping, 
the input plaintext goes to the 16-round encryption process. 
The 16-round is called the MAR CORE, it consists of two 
parts: the superforward round and the backward round. These 
rounds are described in details through the documentation.  
After the CORE, the plaintext passes again through the 
wrapping which is quite similar to the one above but with 
slight differences. 

ALT main components are key scheduling process, the 
pre-whitening and wrapping operations (including  the 
Linear transformations and the Pseudo-Hadamard Transform 
(PHT)), and the main operations in the  encryption core 
including the E-function. More details are provided below for 
each component.  

A. Key scheduling 

The ALT algorithm starts with running the key procedure 
because it is a “oneway” procedure, so it is difficult to infer 
supplied key from round keys. We start the schedule with the 
magic constants P32 = B7E15163 and Q32 = 9E3779B9 
(hexadecimal). The value of P32 is derived from the binary 
expansion of e - 2, where e is the base of the natural logarithm 
function. The value of Q32 is derived from the binary 
expansion of Φ - 1, where Φ is the Golden Ratio. These values 
are used to initialize the values in the s-array which will lately 
be filled up with the 48, 32-subkeys. The key scheduling 
procedure is shown below: 
 
Input: User-supplied b byte key preloaded into the c-word 
array L[0; : : : ; c  - 1] 
Number (r) of rounds 
Output: w-bit round keys S[0; : : : ; 47] 
S[0] = Pw 
for i = 1 to 47 do 
S[i] = S[i - 1] + Qw 
A = B = i = j = 0 
v = 3*max(c=4,  r=48) = 144 



A New Efficient Symmetric Encryption Algorithm Design and Implementation 

 

105 

for s = 1 to v do 
{ 
A = S[i] = (S[i] + A + B)<<<3 
B = L[j] = (L[j] + A + B)<<<(A + B) 
i = (i + 1) mod r 
j = (j + 1) mod c } 
Algorithm 1. Key scheduling procedure 
 
The dominant loop in modified RC6 key setup is the last 
for-statement loop in Algorithm 1. For b = 16 (number of 
input bytes) and r = 16 (number of rounds), the number of 
iterations in this loop is v = 3 * max(16 * 2 + 4; b=4) = 144, 
which is independent of b. So the estimates we make will be 
suitable for all key lengths of particular interest in the AES 
submission. Each iteration in the loop uses four 32-bit 
additions, one rotate to the left by three times, and one 
variable rotate to the left by r (if we consider r = (A+ B)) [7]. 
 

B. Pre-whitening and wrapping operation  

Figure 2 shows the pre-whitening and wrapping operations. 
The whitening has a role in helping to secure the data; even it 
is simple, it helps increasing the difficulty of keysearch attack 
against the cipher text.  The wrapping operation is part of the 
wrapper where it uses the "xor" operation. It xor's the first 
four key output words with the 128 bit plaintext (pair-wise 
xoring). Then, the data is swapped (shifted by one block to the 
left (32 bits)), and after that, they enter the LinearTransform 
block again. 

 
           Figure 2. Pre-whitening and wrapping 

 
The Linear Transform is simple and easy implement in a way 
that doesn’t affect the performance. It contains operations 
such as xoring, shifting and rotations. These operations are 
considered simple and fast to operate in software and 
hardware. Even though they aren’t meant to give 
cryptographic strength, they provide extra security to the 
algorithm by mixing the data together in a way that the 
operations through the cipher will not communicate and so,  
the data might not be exposed to the attacker. 

                      

 
                   Figure 3. Linear Transform 
 
These operations can be described by the following equations 
(where all thedata blocks –Xs are 32-bits):   
X0,X1,X2,X3:   (X0: least significant data block; X3: most 
significant data block) 
X0 := X0 <<< 13 
X2 := X2 <<< 3 

X1 := X1 X0 X2 

X3 := X3 X2  (X0 << 3) 
X1 := X1 <<< 1 
X3 := X3 <<< 7 

X0 := X0 X1  X3 

X2 := X2  X3  (X1 << 7) 
X0 := X0 <<< 5 
X2 := X2 <<< 22  (where <<< is Rotation ; << is shifting) 
 
After going through the LinearTransform, the output words 
are xored with the next four subkey's K4, K5, K6, and K7 
(wrapping process), and then they data swapped (shifted by 
one block to the left) and then enter the LinearTransform 
again as clearly can be seen from Figure 2. After that and 
before the data enters the encryption core, it is applied to the 
Pseudo-Hadamard Transform (PHT) operations. The PHT 
operation is considered simple and quick. It has been used in 
the TwoFish algorithm where the idea is originally was taken 
from the BlowFish algorithm. 
 
The PHT operation  involves addition of two 32 bit inputs (A 
and B) to get A' and B' as follows: 
A' = A + B mod 232 
B' = A + 2B mod 232, 
In ALT, the PHT is applied on four 32 bit blocks (A, B, C, D) 
where A and D are added together, and B is added with C in 
the same way as shown in Figure 4. The resulting equations 
are as follows: 
A' = A + D mod 232                          C' = C + B mod 232 
D' = A + 2D mod 232                        B' = C + 2B mod 232 



Tawalbeh et al. 

 

106 

                      

 
Figure 4. PHT operation used in ALT 

 
After that, the resulting four words (A', B', C', D') are sent to 
the encryption core (CORE), to start the encryption process. 
      

C. Encryption Core 

The ALT encryption core is built on top of the MARS core. It 
was modified and optimized for better performance. The 
CORE is separated into two parts: the Superforward Round 
and Backwardsuper Round. The reason it contains two parts 
is to make sure that the encryption and decryption have the 
same strength, so the first eight rounds are performed in 
“forward mode” while the last eight rounds are performed in 
“backwards mode”. The ALT core (CORE) is a type-3 Feistel 
network, and consists of sixteen rounds. In each round we use 
a keyed expansion function (E-function) which is based on a 
combination of xoring, addition, data-dependent rotations, 
and an S-box lookup. This function takes as input one data 
word (32-bits) and returns three data words as outputs. 
  

 
Figure 5. The Encryption CORE 

 

D. The E-Function 

The E-function used in ALT is shown in Figure 6.      

 
  Figure 6. The E-Function of the 16 round CORE. 
 
The E-Function takes as input one data word and uses two 
more key words to produce three output words. In this 
function we use three temporary variables, denoted below by 
L, M and R (for Left, Middle and Right). Below, we also refer 
to these variables as the three “lines” in the function. Initially, 
we set R to hold the value of the source word rotated by 13 
positions to the left, and we set M to hold the sum of the 
source word and the first key word. We then use the lowest 
nine bits of L as an index to a 512-entry S-box and set L to 
hold the value of the corresponding S-box entry. We then xor 
the source entered to R with the second key (constrained to 
contain an odd integer) and then we view the lowest nine bits 
of the output from the xoring and place it as an index to the 
same 512-entry S-box, and place the output to R. After that, R 
is rotated by 5 positions to the left (so the 5 highest bits of the 
product becomes the 5 lowest bits of R after the rotation). 
Then we xor R with L and use the five lowest bits of R as a 
rotation value between 0 and 31, and rotate M to the left by 
this value. Next, we rotate R by 5 more positions to the left 
and xor it into L. Finally, we again use the five lowest bits of 
R as a rotation amount and rotate L to the left by this amount. 
The first output word of the E-function is L the second is M 
and the third is R. 
 

E. Wwrapping operation and post whitening 

 
The wrapping operation here is considered as the same one 
discussed in the beginning of this section, with some 
modifications The wrapping does not contain the PHT 
operation so the last output here will be from the second 
LinearTransform. And the keys xoring will use the last eight 
sub keys [K40 – K47], so the post whitening is considered 
within the operation and the cipher text should be cleared 
output as we can see through Figure 7. 

 



A New Efficient Symmetric Encryption Algorithm Design and Implementation 

 

107 

 
Figure7. Wrapping and post-whitening 

 
 

F. Decryption process 

 
As we mentioned before, the ALT decryption process is 
almost the "inverse operation" of the encryption process. This 
means that the first wrapping is almost the same as the second 
wrapping to provide security against chosen ciphertext 
attacks as against chosen plaintext attacks. The decryption of 
the pre-wrapping is quite simple, where the LinearTransform 
is used in the reverse order as the subkeys will be reversed. 
The PHT decryption can be easily obtained by reversing the 
encryption operations. Appendix A provides the Psudo-code 
for encryption and decryption operations. 
       The decryption of the CORE is similar (not identical) to 
the encryption. We provide a pseudo-code for decryption and 
encryption in Appendix B. Finally the decryption to the 
post-wrapping is also as mention in the pre-wrapping; the 
LinearTransform is used in reverse order as the subkeys are 
used in reverse order too. 
 

V. ALT Security  

ALT algorithm was built based on the research we did by deep 
studying and analyzing the finalist algorithms for the AES 
competition, taking in consideration their security and 
performance. 

The design and selection of ALT operations were done 
carefully to maximize the security and performance. Starting 
with the wrapping, which helps assuring the ALT security by 
having different role than the middle 16-Rounds. The 
wrapping operations aren’t supposed to provide complete 
security against any attack, but they help in diffusing the data 
entering the structure and hardens certain cryptanalytical 
attacks. The objective of the wrapper is to make as most 
avalanche as possible to the data, and this is why we choose 
the LinearTransform. Along with the LinearTransform, the 
PHT block also affords diffusion to the data and that makes 
the wrapper a highly diffusion provider block in the ALT 
structure. 

The security in the 16-Rounds encryption CORE should be 
high against known attacks. The security of the core was 
proved within a number of studies from the IBM Corporation 
[6].The number of rounds has its role in providing high 

security level to the structure. Studies suggested 11 rounds to 
highly secure the core against known attacks, so using 16 
rounds in the ALT is perfect choice that takes in consideration 
the ecurity/performance tradeoff.  Within the rounds, the 
E-Function has its own advantage. It was built in a way where 
the output data are almost independent from each other and 
what backs them up is the use of the S-box, which in turns has 
its own advantage in security; because of its resistance to 
different attacks. And the S-boxes were among  the main 
reasons for the high security in DES. 

Another feature to make the algorithm more secure is by 
using rotations that depend on data just as we used in the 
E-function and key schedule process. With a sufficient 
number of rounds, it could provide great confusion and 
diffusion. The key schedule was chosen because of its high 
security that can be summarized in the following points: 

 
- Key expansion is identical to that of RC5 and RC6 and no 
known weaknesses. 
- No known weak keys. 
- No known related-key attacks. 
-Round keys appear to be a “random” function of the supplied 
key. 
- Bonus: key expansion is quite “oneway” which is difficult to 
infer supplied key from the round sub keys. 
-The best attack appears to be exhaustive search for the 
user-supplied encryption key [9].  

 

VI. Experimental Results   

The ALT algorithm was described in a hierarchal bottom-up 
structure and based on separate modules. This module-based 
design makes it easy for implementation, tracing and 
debugging, and scalability.  
The ALT design is described in VHDL (VHSIC Hardware 
Description Language), and then simulated using Mentor 
Graphics tools (ModelSim) for functional correctness. The 

design was synthesized  using Xilinx ISE 9.1i for Spartan3A 
FPGA chip (target device is xc3s1400an) to obtain delay and 
area results.  
 
This section shows the simulation and synthesis results 
 

A. Simulation Results 

In this section, we provide snapshots of the simulation results 
of ALT. They show the  inputs, outputs, and intermediate 
signals. 
 



Tawalbeh et al. 

 

108 

 
 
Figure10. The design signals 
 

  
                    Figure11. The simulation process 
 
 
 
 
 
 
 
 

B. Synthesis Results  

The ALT design was synthesized using Xilinx ISE 9.1i for 
Spartan3A FPGA chip (target device is xc3s1400an) to obtain 
delay and area results.  
 
The critical path delay of the ALT design was obtained to be 
22.63 ns, which means that the maximum operating 
frequency of the design is 44.18 MHz. On the other hands, the 

area was found to be 31,024 slices. Finally, the device 
utilization is summarized in Table1 
 
 
Logic 
Utilization 

Used  Availabl
e  

Utilizatio
n  

Number of 
slices: 

3102
4 

11264 %275  

Number of slice 
Flip-Flop: 

1309 22528 %5  

Number of 4 
input LUT’s: 

5569
1 

22528 %247  

Number of 
bonded IOBs 

325 502 %64  

Number of 
GCLK: 

1 24 %4  

      Table1. Device utilization summary 
 

The throughput of ALT (a measure of performance that 
represents the amount of data processed in the time unit) is 
computed as follows: 

Throughput =  Data unit (in bits) / Time  (bps),  where data 
unit = 128 bits,   

Time = number of clock cycles * clock cycle time 

Clock cycle time =  22.634  (minimum period) ns 

Number of clock cycles = 20 cycles (from simulations), then 

Time = 22.634  * 20 = 452.68     ns,    which yields to: 

Throughput = 128 / 452.68   =  0.28276  Giga    bps 

The above results give  reasonable tradeoff between security 
and delay and area. In other words, the proposed ALT is 
suitable for providing high level of security for dedicated  
applications where area is important with acceptable speed. 
And so, ALT can be embedded in special purpose hardware 
devices to provide the required level of security with high 
efficiency and throughput. 
 

VII. Conclusion  

In this paper, we proposed a new symmetric encryption 
algorithm that have the same or even higher security and 
quality than the five finalist algorithms to the AES 
competition. The new algorithm is called ALT based on 
letters combinations taken from the authors names.  The ALT 
algorithm combines the strengths of the five finalists and 
avoids their weaknesses. In other words, all the main parts 
that helped improving the performance and security in these 
algorithms and made them be within the finalist algorithms 
are merged  in one algorithm in an efficient structure.  
 
This paper showed in details the complete hardware structure 
of  the ALT and how it works and maintains it’s security. The 
ALT hardware design was described using VHDL hardware 
description language. Then the VHDL model was tested using 
MentorGraphics tools (ModelSim) for functional correctness. 
Finally, experimental results (area, delay, and throughput) 
were obtained by synthesizing the design for the target FPGA 



A New Efficient Symmetric Encryption Algorithm Design and Implementation 

 

109 

technology and compared with other algorithms. The results 
showed that ALT provides high level of security at high 
throughput without increase in area and delay. This makes 
the proposed ALT is suitable for providing high level of 
security for dedicated applications taking in consideration a 
reasonable tradeoff between the area and speed. And so, ALT 
can be embedded in special purpose hardware devices to 
provide the required level of security with high efficiency and 
throughput. 

Acknowledgment 

The authors would like to thank the CHiS in Jordan 
University of Scicen and Technology, and the Scientific 
Research Support Fund at the Ministry of High Education in 
Jordan for supporting this research.  

References 

[1]  Data Encryption Standard. FIPS-PUB 46-3. USA, 1999. 
[2] L. A. Tawalbeh and Q. Abu Al-Haija. “Enhanced FPGA 

Implementations for Doubling Oriented and Jacobi- 
Quartics Elliptic Curves Cryptography”.  Journal of 
Information Assurance and Security, Vol.6, Issue 3, pp. 
167-175, Dynamic Publishers, Inc., USA, June 2011. 

[3] Status Report on The First Round of The Development of 
The Advanced Encryption Standard. Computer Security 
Division, Information Technology Laboratory, National 
Institute of Standards and Technology. USA 1999. 

[4] C. Burwick and eta. al., MARS - a candidate cipher for 
AES. IBM Corporation- USA,1999. 

[5] S. Langford and M. Hellman,  Differential-linear 
cryptanalysis. In Advances in Cryptology | Crypto '94, 
pages 17-25,  Springer, 1994. 

[6] Comments on MAR's linear analysis. The IBM MARS 
team. USA, 2000. 

[7] R. Rivest, M. Robshaw, R. Sidney, Y. Yin. The RC6 
Block Cipher. RSA Labs. USA, August,1998. 

[8]  B. Kaliski Jr and Y. Yin, On the Security of the RC5 
Encryption Algorithm. RSA Laboratories Technical 
Report, TR-602 Version 1.0. September 1998. 

[9] Rijindael, Advanced Encryption Standard. FIPS-PUB 
197. USA, 2001. 

[10]  R. Anderson, E. Biham, L. Knudsen, Serpent: A 
Proposal for the Advanced Encryption Standard- 
Cambridge Univ., England, Univ. of Bergen, Norway. 
1998. 

[11]  B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, 
N. Ferguson, Twofish: A 128-Bit Block Cipher, 
Counterpane Labs, MN, USA. June1998. 

[12]  B. Schneier, Description of a New Variable-Length Key, 
64-Bit Block Cipher (Blowfish). Fast Software 
Encryption, Cambridge Security Workshop Proceedings. 
Springer-Verlag, 1994, pp. 191-204. 

[13]  H. Heys. Information leakage of Feistel ciphers. 
Information Theory, IEEE Transactions on. Volume: 
47, Issue 1, pages: 23-35, Jan 2001. 

[14]  M. H. Dawson, Stafford E. Tavares, An Expanded Set of 
{S}-Box Design Criteria Based on Information Theory 
and its Relation to Differential-Like Attacks. Lecture 

Notes on Computer Science. Springer-Verlag. CI 547: 
page 352-367. 1991 

[15]  Q.  Al-Haija and  L. A. Tawalbeh. “Efficient Algorithms 
& Architectures for Elliptic Curve Crypto-Processor 
Over GF (P) Using New Projective Coordinates 
Systems”.  Journal of Information Assurance and 
Security, Vol. 6, Issue 1, pp. 63-72. Dynamic Publishers, 
Inc., USA, 2011. 

[16] Y. Jararweh, L. A. Tawalbeh, H. Tawalbeh, and A. 
Moh'd. "Hardware Performance Evaluation of SHA-3 
Candidate Algorithms". Journal of Information 
Security. Vol 3 No.2, pp 69-76, Scientific Research 
Publisher, USA. April 2012. 

 
Appendix B.  The CORE  Encryption and Decryption 
Pseudo-code. 
 
The Encryption of the 16- Round: 
// Do 16 rounds of keyed transformation 
 for i = 0 to 15 do 
(out1; out2; out3) = E-function(D[0];K[2i + 4];K[2i + 5]) 
 D[0] = D[0] _< 13 
 D[2] = D[2] + out2 
 if i < 8 then // first 8 rounds in forward mode 
 D[1] = D[1] + out1 
 D[3] = D[3] _ out3 
 else // last 8 rounds in backwards mode 
 D[3] = D[3] + out1 
 D[1] = D[1] _ out3 , end-if 
// rotate D[ ] by one word to the right for next round 
 (D[3];D[2];D[1];D[0])   (D[0];D[3];D[2];D[1]) end-for 
 
The Decryption of the 16-Round: 
// Do 16 rounds of keyed transformation 
 for i = 15 down to 0 do 
 // rotate D[ ] by one word to the left for this round 
(D[3];D[2];D[1];D[0])   (D[2];D[1];D[0];D[3]) 
 D[0] = D[0] _> 13 
 (out1; out2; out3) = E-function(D[0];K[2i + 4];K[2i + 5]) 
 D[2] = D[2] _ out2 
  if i < 8 then // last 8 rounds in forward mode 
 D[1] = D[1] _ out1 
 D[3] = D[3] _ out3 
 else // first 8 rounds in backwards mode 
 D[3] = D[3] _ out1 
 D[1] = D[1] _ out3 end-if   end-for 
 

Author Biographies 

   Lo'ai A. Tawalbeh   
Dr. Tawalbeh is the Director of the Cryptographic 
Hardware and Information Security (CHiS) lab at 
Jordan University of Science and Technology (JUST). 
He is a full time assistant professor at the computer 
engineering department at JUST, Jordan, and part 
time professor at NewYork Institute of Technology 
(NYIT)-Amman's campus, since 2005. 
 
He got his BSc in electrical and computer eng. form 

(JUST) in 2000, and his Masters and PhD in computer engineering from Oregon 
State University (OSU) , USA in 2002 and 2004 respectively, under the 
supervision of prof. Dr. Cetin K. Koc , with GPA 4.0/4.0.  
    Dr. Tawalbeh has many research publications in many refereed international 
Journals and conferences. His research interests includes: information security, 



Tawalbeh et al. 

 

110 

hardware for cryptography and dedicated arithmetic algorithms for 
cryptographic applications, intrusion detection and computer forensics. Dr. 
Tawalbeh is a reviewer and a member of the editorial boards of many 
international journals and conferences in the area of the information security.  
 
For more details, please see his website: www.just.edu.jo/~tawalbeh 
Email: tawalbeh@just.edu.jo 

 
 
Hind Al-hajsalem  
is a researcher in computer engineering in the area of cryptography and 
information security. She holds masters degree in computer engineering.  
 
Tasneem F. Abu-Qutaish.  
Born in Doha/Qatar 15 Dec. 1984. 
Attended Primary School at SunnyBank Primary School in United Kingdom till 
1993. High School Education at Yarmouk University School in Jordan till 2002. 
B.Sc. Degree in Computer Engineering (specialization in Networking) at Jordan 
university of Science & Technology) graduated June 2007. 
Two years experience in telecommunication path. Programming skills in C#, 
Java, Oracle 10g (familiar in JDBC-oracle database programming) and VHDL. 

 
 
Ayat Khatatbeh. B.Sc. Degree in Computer Engineering (specialization in 
Networking) at Jordan university of Science & Technology) graduated June 
2007. 
 Programming skills in C#, Java, Oracle 10g (familiar in JDBC-oracle database 
programming) and VHDL. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


