
Journal of Information Assurance and Security.
ISSN 1554-1010 Volume 7 (2012) pp. 111-118
c⃝ MIR Labs, www.mirlabs.net/jias/index.html

Service Oriented Integration of OpenID
Authentication in OpenStack

Rasib H. Khan1, Abu Shohel Ahmed2, and Jukka Ylitalo2

1Helsinki Institute for Information Technology (HIIT)
Department of Computer Science and Engineering, Aalto University

Espoo, Finland
rasib.khan@aalto.fi

2Ericsson Research, Ericsson
Jorvas, Finland

ahmed.shohel@ericsson.com, jukka.ylitalo@ericsson.com

Abstract: The evolution of cloud computing is driving the next
generation of Internet services. OpenStack is one of the largest
open-source cloud computing middleware development com-
munities. Currently, OpenStack supports platform specific sig-
natures and tokens for user authentication. In this paper, we
aim to introduce a cloud platform independent, user-centric,
and decentralized authentication mechanism, using OpenID
as an open-source authentication mechanism in OpenStack.
OpenID allows a decentralized framework for user authenti-
cation. It has its own advantages for web services, which in-
clude improvements in usability and seamless Single-Sign-On
experience for the users. This paper presents the OpenID-
Authentication-as-a-Service APIs in OpenStack for front-end
GUI servers, and performs the authentication in the back-end
at a single Policy Decision Point (PDP). The work includes the
architecture and implementation of the APIs in two generations
of the OpenStack architecture. Our implementation allows
users to use their OpenID Identifiers from standard OpenID
providers, and log into the Dashboard/Django-Nova graphical
interface of OpenStack. Further, we analysed the our design
and implementation using OpenID providers on the Internet
and measuring the performance against each.
Keywords: Authentication, EC2API, OpenID, OpenStack, OS-
API, Security

I. Introduction

Ian Foster et al. in [?] have defined Cloud Computing as:

”A large-scale distributed computing paradigm
that is driven by economies of scale, in which
a pool of abstracted, virtualized, dynamically-
scalable, managed computing power, storage, plat-
forms, and services are delivered on demand to ex-
ternal customers over the Internet.”

Cloud computing is a new paradigm for utilization of s-
calable resources over the internet, a relatively new cyber-
infrastructure, implying a service oriented architecture
(SOA) for computing resources. Users access cloud services

over a simple front-end interface to utilize the virtualized re-
sources.
The SOA in clouds is usually defined in a hierarchical struc-
ture. The layers of cloud computing services in SOA can
be described as: Infrastructure-as-a-Service (IaaS), Platform-
as-a-Service (PaaS), and Software-as-a-Service (SaaS).
IaaS providers, such as Amazon AWS1, provide virtual C-
PUs, storage facilities, memory, etc. according to user re-
quests. PaaS acts as an abstraction between the physical re-
sources and the service. PaaS providers, such as Google App
Engine2, supply a software platform and the application pro-
gramming interfaces (APIs), where users execute their soft-
ware components. SaaS provider, such as Salesforce.com3,
provide end users with integrated services from the provider-
s, comprising of hardware, development platforms, and ap-
plications.
The Pay-Per-Use model for cloud infra-structures has in-
troduced wide interest among users to utilize such ser-
vices. Major cloud service providers such as Amazon AWS,
Rackspace4, Salesforce, etc. have driven development of
multiple open-source cloud platforms. The most prominen-
t among the open source cloud projects are OpenStack5,
CloudStack6 , Eucalytus7, and OpenNebula8. The open-
source cloud platforms provide the ability to deploy private
IaaS clouds. Many open-source cloud platforms have com-
patible application programming interfaces (APIs) with pub-
lic clouds such as Amazon AWS EC2APIs [?], which im-
proves the flexibility and usability of the private clouds.
However, the cloud solutions available today have little flex-
ibility in their authentication system. All of the above
mentioned platforms allow user authentication, based on

1Amazon Web Services (AWS), http://aws.amazon.com
2Google App Engine, https://code.google.com/appengine
3SalesForce CRM & Cloud Computing, www.salesforce.com
4Rackspace US, http://www.rackspace.com
5OpenStack, http://www.openstack.org/
6CloudStack, http://cloud.com
7Eucalyptus, http://www.eucalyptus.com
8OpenNebula, http://opennebula.org

MIR Labs, USA

Service Oriented Integration of OpenID Authentication in OpenStack 112

proprietary mechanisms, which include tokens, signatures,
etc. With the recent shift in identity solutions, from be-
ing organization centric to user centric, these platforms have
no provision for open authentication mechanisms, such as
OpenID [?, ?]. Overcoming the existing limitations and lack
of provisions, this paper presents the design for OpenID-
Authentication-as-a-Service APIs in OpenStack, including
the implementation of a prototype for the proposed architec-
ture.
We chose OpenStack for our research on cloud platform-
s, and its architecture is discussed in section II. In section
III, we provide a detailed discussion on the shortcomings of
cloud platforms, specifically OpenStack. Section IV includes
a brief description of the OpenID authentication mechanism,
followed by section V, where we present our innovative de-
sign for implementing OpenID authentication with APIs in
OpenStack. The design is applicable to the Cactus release,
as well as to the Diablo release, which was the stable version
at the time of the ongoing research. Finally, the implemented
prototype for the proposed design is discussed in section VI
of the paper.

II. Cloud Computing with OpenStack Nova

Nova, the cloud computing middleware fabric controller
from OpenStack, is a widely utilized open source project
with many contributors. It originated as a project at NASA
Ames Research Laboratory and started as open-source soft-
ware in early 2010. At the beginning of this research, Open-
Stack had released the following versions: Austin (October
2010), Bexar (February 2011), and Cactus (April 2011). The
stable release of OpenStack, Diablo, was then released in late
September 2011.
OpenStack manages computing resources: CPU, memory,
disk space, and network bandwidth. The middleware appli-
cation uses an hypervisor running in the back-end to allow
the creation of virtual machines (VMs). These VMs emulate
physical computers, and each have a CPU, memory, disk, and
network resources. The actual physical resources for the cre-
ation of the VMs are provided by virtual hosts. OpenStack
supports virtualization with KVM, UML, XEN, and HyperV,
using the QEMU emulator. In the implementation, the libvirt
[?] C/C++ library is used to communicate with the hypervi-
sor from the middleware layer.

A. Architecture Overview

The components in the OpenStack architecture are: Cloud
Controller, API Server, Auth Manager, Nova-Manage,
Scheduler, Object Store, Volume Controller, Network Con-
troller, and Compute Controller.
The Cloud Controller is the central component which rep-
resents the global state, and interacts with the other compo-
nents. The Cloud Controller interacts with the API Server
and the Auth Manager with internal method calls, with the
Object Store over HTTP, and with the Scheduler, Network
Controller and the Volume Controller, together, over the Rab-
bitMQ [?] server using Advanced Message Queuing Protocol
[?].
The API Server is an HTTP server which provides two sets
of APIs to interact with the Cloud Controller: the Amazon

EC2APIs and the OpenStack OSAPIs.
The Auth Manager provides authentication and authorization
services for OpenStack, which can interact with the Nova-
Manage client using local method calls. Nova-Manage is an
admin tool to communicate with the Auth Manager to direct-
ly interact with the OpenStack database.
The Scheduler is responsible for selecting the most suit-
able Compute Controller to host an instance, and the Com-
pute Controller subsequently provides the compute server re-
sources, according to the commands from the Scheduler. The
Object Store component is responsible for storage services.
The Volume Controller provides permanent block-level stor-
age for the compute servers, while the Network Controller
handles the virtual networks for the VMs to interact with the
public network respectively.

B. Authentication and Authorization Framework

The authentication of requests from a user, and the authoriz-
ing of resources for the request are handled by the Auth Man-
ager module. OpenStack uses a Role Based Access Control
(RBAC) [?] mechanism to enforce policies.
When a user is created, an Access Key and a Secret Key are
assigned to the user. They can be randomly generated or can
be specified by the administrator during user creation. The
credentials in the user database for each OpenStack user are
shown in table 1. These credentials are used in different ways
to authenticate a user’s incoming API requests.

Table 1: User Credentials in OpenStack
Credential Description

id Unique identifier for each user

name Usually, human readable username for a user

access key Unique, and can be randomly generated or specified dur-
ing user creation

secret key Unique, and can be randomly generated or specified dur-
ing user creation

is admin Set to ”1” if an ”admin” user is created, or ”0” otherwise

C. Application Programming Interfaces

OpenStack Nova exposes two sets of APIs: the OpenStack
API (OSAPI) and Amazon Elastic Compute Cloud API
(EC2API). The OSAPI is the list of APIs being develope-
d as OpenStack matures with time. On the other hand, the
EC2APIs are a list of comprehensive APIs, designed and de-
fined by Amazon Web Services (AWS). In all cases, Open-
Stack relies on Representational State Transfer (REST) to
handle the responses from the APIs.
REST [?] is an architecture for designing web application-
s. In typical implementations, REST relies on a stateless,
client-server, cacheable communications protocol, usually
over HTTPS. An example of a RESTful client-server inter-
action is shown in figure 1.
In OpenStack, each RESTful service API is invoked with a
corresponding URL on the API server over HTTP, which in-
cludes all the necessary parameters. The response from the
API server is sent in a predefined format, in XML or JSON,
according to the response format specified in the API call.

113 Khan et al.

Client

Client

GET http://www.server.com/Service1

<?xml version="1.0" ?>
<Service1Response> uvw </Service1Response>

GET http://www.server.com/Service2?
Param1=X&Param2=Y

<?xml version="1.0" ?>
<Service2Response> xyz </Service2Response>

Server

Service1

Service2

Figure. 1: RESTful Client-Server Interaction

III. Problem Area

Identity management in web services is experiencing a
paradigm shift, from organization centric, to user centric au-
thentication mechanisms. User centric identity allows both
scalability, and flexibility in application to multiple service
points over the Internet [?]. Additionally, these user centric
frameworks aim to provide Single-Sign-On (SSO) mechanis-
m for its users, and thus, provide a certain leverage to intro-
duce login federation, which greatly improves the usability
for any service architecture.
OpenStack services can be utilized via API tools, such as
euca-tools EC2API client [?] and the python-nova OSAPI
client [?]. However, a graphical interface provides better
usability, especially for users without much knowledge of
API tools and commands. Thus, the web GUI has become
a widely deployed front-end for delivering cloud services,
both to administrators and users. The Dashboard/Django-
Nova framework provides a suitable GUI for users. Howev-
er, there are certain limitations in what the fronts-end GUI for
OpenStack make available in the context of authentication of
users.
OpenStack encourages the use of its APIs (EC2API [?] or
OSAPI [?]) for implementing front-end GUI services. Open-
Stack performs authentication, based on access and secret
keys. The weakness in this implementation is that, the user-
s are required to be authenticated in a separate authentica-
tion framework in the front-end, with a username/password
pair (valid up to Cactus release). Once authenticated, the
front-end GUI server then uses the Admin credentials to re-
trieve the user’s credentials. This way, the backend Open-
Stack server never participates to the front-end user authen-
tication. Basically, OpenStack does not support federated
identity management properties that are available today in
OpenID [?, ?], Shibboleth [?], SAML [?], etc [?].
In standard federated login architectures, the Policy Admin-
istration Point (PAP) and the Policy Decision Point (PDP) are
logically located at a single point in the architecture. There
can be multiple Policy Enforcement Points (PEPs), which
communicate with the PDP [?, ?]. However, as the front-
end GUI server becomes a separate security domain in Open-
Stack, the front-end needs to maintain separate user creden-
tials, due to an absence of a federated login architecture. The
absence of a centralized authentication architecture causes
the problem of multiple PAPs and PDPs. For the above men-
tioned reasons, we see that there should be complete trust (s-
ingle security domain) between front-end GUI and back-end
cloud platform. This also means that the front-end GUI can

not simply be a dumb web server, but has to be more tightly
coupled to the back-end in terms of security, and also, with
its separate user management system.

IV. Authentication with OpenID

OpenID is a well known open source authentication mecha-
nism. It provides decentralized user centric identity manage-
ment for web services, and allows seamless SSO authentica-
tion. The current version of OpenID is 2.0 [?, ?]. Previously,
OpenID 1.0 only supported stateful authentication. Howev-
er, OpenID 2.0 supports both stateful and stateless OpenID
authentication. The sequence of a stateless OpenID authen-
tication is shown in figure 2.
The User-Agent (UA) first requests a page over HTTP from a
web service point, and the web server returns the page to the
UA. The user then submits his OpenID Identifier. The web
server acts as a Relay Point (RP). It normalizes the Identifi-
er, and performs the discovery process, using Yadis discov-
ery protocol [?] (XRI Resolution protocol [?] was used in
OpenID 1.0, but is avoided in OpenID 2.0). The RP receives
the meta-information from the OpenID Provider (OP) to redi-
rect the UA to the OP endpoint URL. The RP then sends an
HTTP 302 Redirection response to the UA, with mul-
tiple parameters.
After the UA is redirected to the OP endpoint URL, the OP
can use any method to authenticate the user (such as user-
name/password, certificates, smart-cards, generic bootstrap-
ping architecture based device authentication, etc). After au-
thentication, the OP returns the UA back to the RP, and pass-
es a long string in the HTTP GET request line, also called
the assertion URL. The RP verifies the signature in the asser-
tion URL, and sets up a key association using Diffie-Hellman
(D-H) key exchange [?]. Then, the RP verifies the response
for the specific openid.identity.
Once the parameters are all successfully verified, referred to
as the ”assertion”, the RP links the openid.claimed id
with the identity of a local user in its own server and allows
the user to login to the service point.
In a ”stateful” OpenID authentication, the D-H key exchange
[?] occurs in the initial discovery phase at the RP. The shared
key is stored in a key database at the RP. The UA is then
redirected to the OP. After authentication at the OP and when

HTTP User Request

HTTP Response

Supply OpenID Discover OP Endpoint
Retrive Meta-Info

HTTP 302 Redirection

Redirect to OP

Authenticate User

HTTP 302 Redirection

Redirect to RP Verify Signature
 Setup D-H Key
 Verify ParamsOpenID : Local User

Login

User
 Web
Server (RP)

 OpenID
Provider (OP)

Figure. 2: Stateless OpenID Authentication Mechanism

Service Oriented Integration of OpenID Authentication in OpenStack 114

the user is redirected back to the RP, there is no D-H key
exchange. Instead, the stored key from the previous step is
retrieved from the database.

V. OpenID in OpenStack

Implementing OpenID at the front-end GUI server as a sim-
ple RP is not the target. To apply OpenID authentication
mechanism in OpenStack, we needed to combine a dual-PDP
scenario into a single-silo formation.The following section-
s discuss the design considerations, and the solution archi-
tecture, followed by the usability and a detailed analysis of
our solution. The design is applicable to OpenStack, till the
Cactus release, which was the stable version at the time of
the ongoing research. Later, it was extended to the second
generation of the OpenStack architecture, the Diablo release,
which introduced KeyStone, a separate OpenStack Identity
Server [?].

A. Design Considerations

As shown in figure 3, integrating OpenID in OpenStack
would have been a simple task. However, the design would
have had multiple flaws according to basic security practices,
including a dual-PDP scenario, mentioned in section III.
In an architecture to integrate OpenID with OpenStack, the
front-end GUI should be a ”dumb” server, only processing
the views for the user. There should not be any require-
ment for the GUI server to maintain any user credentials for
authentication. Furthermore, even though the views on the
GUI are based on responses from the API server, the ini-
tial authentication on the front-end should be granted by the
Auth Manager in the back-end server. Additionally, as the
HTTP User-Agent only interacts with the front-end server,
the back-end OpenStack server should not have any direct
communication with the User-Agent.
Therefore, the process of authentication of a user in the front-
end should be realized as a service from the back-end serv-
er. Thus, we converged on a solution based upon OpenID-
Authentication-as-a-Service for OpenStack. Furthermore,
in our design, all interaction between the front-end and the
back-end is stateless, as required by the RESTful API server
[?, ?].
Additionally, the design should meet all of the specification-
s of OpenID [?, ?], and ensure all security requirements for
OpenID in all phases of interaction. This would allow inter-

OP

GUI Server OpenStack Server

Public Internet

1. Service Request

2. Authenticate
with OP

3. Verify
Authentication 4. Authentication

Granted

5. API Calls

6. Authenticate
API Requests

Figure. 3: Incorrect Architecture for OpenID Integration

operability between all OpenID providers, thus greatly im-
proving the usability for the users.
Finally, the requirements at the front-end server to imple-
ment OpenID authentication in OpenStack should be simple,
and secured. Also, we need to maintain a modular and dis-
tributed structure to comply with the current architecture and
scalability of OpenStack.

B. Implementing OpenID as a Service

OpenID authentication at an RP involves two phases: (a) OP
endpoint URL discovery and retrieving meta-information,
and (b) Verifying an authentication assertion URL re-
ceived from an OP. Therefore, we divided the OpenID-
Authentication-as-a-Service operation in OpenStack into t-
wo phases, each invoked with a separate API. The functions
of the two APIs have been defined as:

• Authentication Request API: This API is invoked in
the initial phase by the front-end server. It executes an
OpenID authentication request, and performs the first
phase in the process.

• Authentication Verification API: This API is invoked
in the second phase by the front-end server. It executes
the authentication verification for the OpenID authenti-
cation assertion URL received from the OP.

As shown in figure 4, the user requests for an OpenID based
authentication to the front-end GUI server. The GUI server
then invokes the initial authentication request API on the API
Server in the back end. The back-end server responds to the
request with all the necessary OpenID parameters required
for the redirection. The GUI server parses the information,
and sends a HTTP 302 Redirection to the UA, i.e in
this case, the web browser.
The UA redirects to the OP, where it is authenticated. Upon
successful authentication, the OP sends the UA to the front-
end GUI server.
At this point, the front-end invokes the second authentication
verfication API on the back-end API server. The back-end
communicates with the OP, and completes all the processes
for verification. Once verified, the authentication is grant-
ed by Auth Manager. Based on the authenticated user in-
formation, the front-end then allows the user to log into the
managerial interface.

C. Design Analysis

HTTPS can be used to secure interaction with the UA. Addi-
tionally, it is required to protect the integrity of the assertion
messages relayed from the OP through the UA, and includes
nonce checking, and signature verification.
All RESTful requests to the API Server include signatures
with a pre-shared secret between the GUI server and Open-
Stack. Thus, unless the front-end server is vulnerable to a
compromise by an attacker, the connection to the back-end
can be considered as an integrity protected channel. Using
SSL between the front-end and the API Server is a common
practice for confidentiality in RESTful services. Security
technologies such as IPSec [?] are intended for network level
host-to-host security, rather than application-to-application
security, and hence is not a recommended security solution

115 Khan et al.

OP

GUI Server OpenStack Server

Public Internet

1. OpenID
Authentication

3. Authenticate
with OP

4b. Verify
Authentication

5. Authentication
Granted

2. Authentication
Request

4a. Verification
 Request

Figure. 4: OpenID Authentication in OpenStack

for the RESTful API Server. However, HTTPS support in the
OpenStack API Server has not been implemented yet, and re-
mains as a future task.
The verification of the assertion URL by OpenStack serv-
er and the OP occurs in the back-end. However, the back-
end communication with the OP cannot be considered hid-
den from an attacker. An attacker can sniff packets from the
network to intercept the communication between OpenStack
and the OP. Hence, this communication takes place over an
encrypted channel with the D-H shared key between Open-
Stack and the OP.
However, there is still scope for an attacker to manipulate the
information. Based on security issues of OpenID, the solu-
tion can be vulnerable to Discovery Tampering, Adversary
Relay Proxy, and DoS attacks.
Session management between the UA and the GUI front-
end is another area where the security should be improved.
Services on OpenStack are RESTful services, and no ses-
sion information is stored, while the front-end is a session-
based service point for the UA. It is contradictory with the
design principles of RESTful services to maintain such ses-
sion based security. Therefore, OpenStack needs to trust the
front-end GUI to manage the user session.

D. Usability of OpenID in OpenStack

A lot of discussions on the usability of OpenID have occurred
so far. OpenID is the most widely used open standard for
authentication, with many OP providers, such as Google9,
Yahoo10, MyOpenID11, and LiveJournal12.
Integrating OpenID in OpenStack will provide a decentral-
ized user centric authentication delegation for using Open-
Stack services, where the users will have control over his or
her own identity management and authentication. Thus, us-
ability will improve, as OpenID aims for a single user versus
multiple service points applicability, and allows users to have
a seamless SSO experience. This would allow providers to
introduce a federated login architecture, and also reduce the
IT maintenance cost by management of user credentials at
third-party OPs.
Standard OpenID implementation also includes using the
Provider Authentication Policy Extension (PAPE), to allow

9Google OpenID Services, http://code.google.com/apis/identitytoolkit/
10Yahoo OpenID Services, http://openid.yahoo.com
11MyOpenID OpenID Services, https://www.myopenid.com
12LiveJournal OpenID Services, http://www.livejournal.com

a flexible authentication framework. PAPE allows an RP to
specify different requirements to be implemented at an OP
during authentication. Thus, OpenID could utilize PAPE to
implement a requirement based security in OpenStack.
Additionally, users will have flexibility in the authentication
mechanism, as OPs allow different authentication mecha-
nisms for their users. Most OPs support username/password,
and client certificate based authentication for users. Apart
from that, Leicher et al. in [?] describe a trusted computing
environment using OpenID, A. S. Ahmed in [?] presents a
3GPP standard authentication mechanism for smart phones,
and Watanabe et al. in [?] illustrate a cellular subscriber ID
and OpenID federated authentication architecture. Ericsson
Labs also provides an Identity Management service, which
uses the 3GPP standard Generic Bootstrapping Architecture
[?, ?] based device authentication services with OpenID.

VI. Prototype Implementation

We initially started working with the Bexar release. After
a successful implementation with Bexar, we then integrated
our solution with Cactus, the third release, which came out in
April 2011. However, Diablo was released in October 2011,
with a new architecture, which included Keystone, an Iden-
tity Server. Our design was then adapted and integrated with
the OpenStack Diablo release of Keystone. Additionally, the
implementation also included support for OSAPI from the
Diablo release.

A. Integration with the Bexar/Cactus Architecture

In our design, we introduced the Nova-OpenID Controller
module in the OpenStack architecture. The added module is
responsible for all operations related to OpenID authentica-
tion in the back-end. It has an internal HTTP interface with
the Cloud Controller, and a public interface to interact with
the OP on the public internet. The implementation also in-
cluded extension of the Nova-Admin tool. The admin can
use the added functionality in Nova-Admin to add/modify
OpenID information for existing OpenStack users.
The architecture of OpenStack, including the added modules
for the prototype is shown in figure 5. We designed the two
APIs according to the specification of EC2APIs on Open-
Stack API server. Furthermore, we implemented the invoca-
tion of the APIs from the Dashboard/Django-Nova web GUI
for OpenStack. In our current implementation, we have a
one-to-one mapping of existing OpenStack users to the num-
ber of enabled OpenID Identifiers a user can use. The imple-
mentation was tested successfully against standard OpenID
providers on the Internet.
As shown in figure 6, the user provides the OpenID Identi-
fier on the GUI, and subsequently, the front-end invokes the
OpenidAuthReq API. The response contains the required pa-
rameters for redirecting the UA to the OP. After user authen-
tication is completed, the UA returns to the front-end, and
invokes the OpenidAuthVerify API. The back-end then veri-
fies the assertion URL, links an existing OpenStack user to
the verified OpenID Identifier, and returns a success or a fail-
ure. The front-end GUI then uses the information to allow or
deny login to the user.

Service Oriented Integration of OpenID Authentication in OpenStack 116

Internet

Public ClientsAdmin Client

API Server

Cloud ControllerAuth Manager

Object Store

Volume ControllerNetwork ControllerSchedulerCompute Controller

Nova-Manage Euca2ools
Nova Api

Client

OpenStack
API

EC2
API

Method Call

Method Call

REST

Method Call

HTTP

AMQP

Compute Controller
Compute Controller

XML/JSON

Nova OpenID
Controller

HTTP

Django-
Nova

HTTP

OpenID Provider

Dashboard

Figure. 5: Prototype Architecture for OpenID in OpenStack
in Bexar/Cactus

B. Integration with the Diablo Architecture

Diablo, the fourth release of OpenStack, was released in Oc-
tober 2011. However, beginning with the Diablo release, the
authentication framework design utilizes a new architecture.
It includes the KeyStone project [?] as the identity authenti-
cation module.
As shown in figure 7, we added the OpenID module in the
keystone server, the centralized Identity management server
for OpenStack. This integration point simplifies the archi-
tecture, and retains the organization format of OpenStack,
with Keystone being responsible for all authentication pro-
cessing. Additionally, the same token is being generated,
as to all other authentication mechanisms in Keystone. The
OpenID module exposes two APIs for OpenID authentica-

Submit <openid_url> "OpenidAuthReq" API

Invoke API
- Yadis discovery
- OP-metadata
- Redirection URL

User-Agent GUI Server
OpenID
Provider

OpenStack
API Server

Redirection Parameters

Parse XML
302 HTTP Redirection

Redirection

User Authentication at OpenID Provider Website

302 HTTP Redirection (openid_auth_response)

"OpenidAuthVerify" API

Invoke API
- D-H key assoc
- Verify
- Link OpenID -> User
- RetSUCCESS/FAILURE

Parse XML
Allow/Deny Login

User Details OR Error

Figure. 6: Signalling Sequence for OpenID Authentication
in OpenStack Bexar/Cactus

tion, similar to the ones in the previous architecture. Hence,
all authentication requests are received and processed at the
Keystone API server.
After authentication process is completed successfully, Key-
stone returns an authentication token to the dashboard user
as a security credential. After that, all service requests made
by the client application to the OpenStack API Server in-
clude the authentication token. Once the API Server receives
a request, it validates the token against Keystone. Upon a
successful verification, the API Server replies with a service
executed response. An authenticated token provides federa-
tion within all OpenStack components.
The signalling sequence among the different entities, when
a user wants to use OpenID authentication in OpenStack is
shown in figure 8. Initially, the user submits an OpenID
URL on the front end GUI server. The GUI server calls the
OpenidAuthReq API exposed from the Keystone sever. Key-
stone then performs discovery on OpenID URL to discover
all meta data rested to the URL. After that, Keystone send-
s a browser redirection message against the submitted URL
for the OP. The browser redirects to the OP, where the us-
er performs authentication using any standard method. After
successful authentication at the OP, the UA is sent back to the
GUI server. The GUI server then parses the request, and calls
the OpenIDAuthVerify API on the Keystone server. Keystone
verifies the attached assertion URL included with the API
call against the OP. Successful verification in Keystone re-
sults in a token and service profile information generated by
the Keystone Auth module. This information is sent back to
the GUI server. From this point, the GUI server will use this
token to call any OS API service.

Nova API Server

OpenID Provider

Internet

Keystone

OpenID Module

REST
REST

Django-Nova
Dashboard UI

OpenStack
Backend

REST

HTTP

Figure. 7: Interaction Model for OpenID in OpenStack in
Diablo with Keystone

C. Prototype Evaluation

Our implementation follows all the specifications of OpenID
2.0 [?, ?]. Thus, authentication in OpenStack using OpenID
is supported for all standard OpenID providers supporting
OpenID 2.0. We verified use cases for authentication, includ-
ing SSO authentication, using OpenIDs from Google, Yahoo,
MyOpenID, and Ericsson IDM Services [?].
In our use cases, we found that the execution time varied
with the different OpenID providers. We were running the
OpenStack server back-end and the Dashboard/Django-Nova
front-end GUI server on the same machine. The server was
running the Ubuntu 10.04.2 LTS Lucid 64-bit operating sys-

User-Agent GUI server
Keystone
 Server

OpenStack
API Server

OpenID
Provider

 Submit
<openid_url> "OpenidAuthReq"

API

Invoke API
 -Yadis discovery
 - OP-metadata
 - Redirection URL

Redirection

Parse XML
HTTP 302

Redirection

User Authentication at OpenID Provider

302 HTTP Redirection

"OpenIDAuthVerify"
API

Invoke API
- D-H key assoc
- Verify
- Link OpenID->User
- Ret SUCCESS/FAILURE

Token Info
 or
 Error

access service with token

Figure. 8: Signalling Sequence for OpenID Authentication
in OpenStack via Keystone

tem, on a Tower MacPro4.1, with 8GB RAM, and a 2.27
GHz Intel(R) Xeon(R) 16 Core 64-bit processor.
We captured network packets and calculated the time dif-
ferences to evaluate the performance of our prototype. We
recorded 30 observations for each OpenID provider. The
times were calculated based on two phases. The ”Request”
phase includes the time from the User-Agent submitting the
OpenID Identifier until the User-Agent reaches the OP end-
point URL. The ”Verification” phase includes the time from
the authenticated User-Agent being redirected from the OP,
until the time when the user is logged into the Dashboard
interface.
Furthermore, we recorded another 30 measurements for each
provider, when the user is already signed in at the OP. The
user had a seamless SSO experience, without the need to re-
authenticate at the OP. The timing includes the time for the
user to submit their OpenID Identifier on the Dashboard in-
terface, and directly log in without any additional user inter-
action.
The measurements had an approximately Gaussian distribu-
tion. Thus, we calculated the mean of the readings. The
recorded measurements are shown in figure 9. The graph
shows the mean of each set of readings, along with the pop-
ulation standard deviation for each OP.
As shown in the graph, the request phase for all the OP-
s has small standard deviation compared to the verification
phase and the SSO timings. The request phase only re-
quires the Nova-OpenID Controller to discover the OP meta-
information, and thus exhibits a relatively consistent be-
haviour.
The table shows the ratio of the verification phase to the re-
quest phase for each provider. It can be seen that, except for
MyOpenID, all providers require approximately double the

time in the verification phase compared to the request phase.
The verification phase includes setting up a D-H shared key,
and encryption and decryption of all information while veri-
fying the assertion URL. Thus, Nova-OpenID Controller re-
quires more time in the second phase. A higher standard de-
viation in the readings is understandable because of the vary-
ing processing times both at the Nova-OpenID Controller
and at the OP end.
The time measurements for the providers show that My-
OpenID takes the least time in all cases. This is because
MyOpenID uses only a basic HTTP connection and is thus
faster, but unsecured.
For all OPs, the SSO timing is greater than the summation
of the authentication and the verification phase timings. The
first two measurements did not include the user interaction
while performing authentication at the OP. However, in the
measurements for SSO, the User-Agent requires time for the
extra processing needed to authenticate itself to the OP with
the cookies stored in the device. The SSO timings for all
OPs display the highest standard deviation. This is because
the timing includes processing delays at the User-Agent (to
retrieve the cookies), at the OP, and at Nova-OpenID Con-
troller. As because these three entities have varying per-
formance, the recorded timing intervals had a comparatively
high variance.
Furthermore, we measured the internal timing inside the
code, for the OpenID component alone, to evaluate its per-
formance against external OPs. We recorded the duration
of time for both the openid auth req and openid auth verify
API handlers. We recorded 30 measurements for each of
the OPs for each operation. The recorded measurements are
shown in figure 10. The graph shows the average duration of
time between the request and the response for the authenti-
cation request and the authentication verification along with
the standard deviation for each of the OPs.
The graph in figure 10 for the internal timing measurements
shows a similar pattern to the external measurements in fig-
ure 9. The standard deviations for all the OPs were also
consistent. However, figure 10 does not show the timing
for the verification phase to be twice the time required for
the request phase as in figure 9. Additionally, the sum of

Figure. 9: Time Measurements for OpenID Authentication

Service Oriented Integration of OpenID Authentication in OpenStack 118

Figure. 10: Time Measurements for Processing API Calls

the internal timings on figure 10 is much lower compared to
the external timing in figure 9 for all the OPs. This is be-
cause the external measurements include the time required
for the API Server to process the variables and generate
the response XML for the API call, the time required for
Dashboard/Django-Nova front-end to process the data and
generate the HTML view, and primarily, the time required
for the authentication process at the OP end point.
However, the performance of the prototype and the timing
measurements depend largely on the hardware configuration
of the server. Additionally, OpenStack does not incorporate
any efficiency improvement mechanisms at present, and the
design and architecture of the whole system is still evolving.

VII. Conclusion

To improve usability, OpenStack proposes to utilize its API
functions to provide a GUI for its users. For initial authen-
tication, the front-end is required to incorporate a separate
username/password validation. Additionally, the Keystone
module, from the OpenStack Diablo release, handles all au-
thentication related operations for an OpenStack backend
server.
In this paper, we introduced a flexible user-centric decentral-
ized authentication service for the front-end, using OpenID
as an open-source authentication platform. A traditional
OpenID authentication implementation executes the process
at the front-end server. However, this introduces a dual PDP
scenario, which is not a recommended practice for web ser-
vices. In our design, OpenID authentication in the front-end
is used as a service from the back-end. As a result, we were
able to shift the dual points of decision making and perform
the authentication at a single PDP in the back-end, and uti-
lized the OpenID-Authentication-as-a-Service APIs from the
Dashboard/Django-Nova GUI. The design was successfully
implemented on OpenStack, including the new architecture
with the separate Identity management with Keystone. The
implementation of the prototype was followed by evaluation
of its performance. The results obtained illustrates that the

performance is well within acceptable limits, and is a suc-
cessful design and implementation.

VIII. Future Works

The research performed during this work revealed further
possibilities. The first objective would be to introduce greater
flexibility in the choice of authentication mechanisms for the
user. To provide a generic solution for authentication, we
aim to design a common Authentication-as-a-Service API in
OpenStack. To provide flexibility in the choice of authen-
tication on OpenStack, we suggest that other authentication
platforms, such as Shibboleth/SAML, be considered. Ad-
ditionally, we also aim to introduce open platforms for au-
thorization delegation within OpenStack. OAuth is such an
open source authorization delegation platform, which allows
a user centric authorization delegation specification, and al-
lows two parties to securely interchange specific information
about authorized resources.

Author Biographies

Rasib H. Khan is a researcher at Helsinki In-
stitute for Information Technology, Finland, in
the EU FP7 PURSUIT project. He has com-
pleted two Master’s degrees from Royal Insti-
tute of Technology (KTH), Sweden, and Aal-

to University (formerly Helsinki University of Technology),
Finland, as an EU Erasmus Mundus Scholar. His areas of
interest include cloud computing, information security, us-
er centric identity management and future Internet technolo-
gies.

Abu Shohel Ahmed currently works at Eric-
sson Research. He is also a doctoral studen-
t at Aalto university, Finland. He completed
his Masters in Mobile Computing and Securi-
ty from Aalto University. Ahmed’s main re-

search interests include protocol security analysis, identity
and access management, and security in the cloud. He is also
interested in trend analysis of future Internet technologies.

Jukka Ylitalo received his M.Sc. degree in
2001 and Ph.D. degree in 2008 from Helsinki
University of Technology in Finland. Ylitalo’s
research themes are related to applied securi-
ty in network architectures and services. His

recent research has focused on cloud computing security.

