
Journal of Information Assurance and Security.
ISSN 1554-1010 Volume 7 (2012) pp.137-146
c©MIR Labs, www.mirlabs.net/jias/index.html

A SLA-based interface for Secure Authentication
Negotiation in Cloud

Massimiliano Rak1, Loredana Liccardo2 and Rocco Aversa3

1 Dipartimento di Ingegneria dell’Informazione
Second University of Naples, Italy

{massimiliano.rak, loredana.liccardo, rocco.aversa}@unina2.it

Abstract: Cloud Computing is a new computing paradigm.
Among the incredible number of challenges in this field two
of them are considered of great relevance: SLA management
and Security management. A Service Level Agreement (SLA)
is an agreement between a Service Provider and a Customer
that aims at offering a simple and clear way to build up an a-
greement between the final users and the service provider in
order to establish what is effectively granted in terms of qual-
ity. Cloud Computing assumes that everything from hardware
to application layers are delegated to the network, accessed in
a self-service way and following a pay-per-use business model.
Security issues are related to the delegation to the network. The
level of trust in such context is very hard to define and is strictly
related to the problem of management of SLA in cloud applica-
tions and providers. In this paper we will try to show how it is
possible, using a cloud-oriented API derived from the mOSAIC
project, to build up an SLA-oriented cloud application which
enables the management of security features related to user au-
thentication and authorization to an Infrastructure as a Service
(IaaS) Cloud Provider. As Cloud Provider we will adopt the
PerfCloud solution, which uses GRID-based solutions for secu-
rity management and service delivery. So the proposed solution
can be used in order to build up easily a SLA-based interface
for any GRID system.
Keywords: SLA, Security, Cloud, Negotiation, GRID, Authentica-
tion

I. Introduction

Following the NIST definition, Cloud computing is ”a mod-
el for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal
management effort or service provider interaction.[...]”.
In recent years a lot of effort was spent both in academic
and in business world exploring the effect of such paradigm
and the way in which it can be applied. Among the incred-
ible number of challenges in this field two of them are con-
sidered of great relevance: SLA management and Security
management. In Cloud the services are out of customers di-
rect control, i.e. a customer does not have a control of phys-
ical resources. For this reason, a customer, for the success of
his business, is interested in obtaining: (i) the desired func-

tionality (functional requirements), (ii) a certain availability,
reliability, performance and security of resources that means
a certain ”Quality of Service” (non-functional requirements).
This can be guaranteed by Service Level Agreement (SLA).
A Service Level Agreement (SLA) is an agreement between a
Service Provider and a Customer, that describes the Service,
documents Service Level Targets, and specifies the respon-
sibilities of the Provider and the Customer. Service Level
Agreements (SLAs) aim at offering a simple and clear way
to build up an agreement between the final users and the ser-
vice provider in order to establish what is effectively granted
in terms of quality.
Regardless of importance of the SLA in Cloud Computing,
there are few providers who provide SLA-support. The S-
LA management consists of several phases, i.e. negotiation,
monitoring.
According to the NIST definition, one of the characteristic-
s of Cloud paradigm is ”on-demand self-service”, that is ”a
consumer can provision computing capabilities, such as serv-
er time and network storage, as needed automatically without
requiring human interaction with each service’s provider”.
The main challenge is to realize an automatic SLA manage-
ment that is automating the process of negotiation and mon-
itoring.
As previously outlined, Cloud Computing assumes that ev-
erything from hardware to application layers are delegated
to the network, accessed in a self-service way and following
a pay-per-use business model; as a consequence Service lev-
el Agreements, enabling both users and provider to formalize
what is offered, assume a great importance. In section VII we
will show how many (of not all) of the most important cloud-
related projects are considering SLA management as one of
the key topic in their frameworks.
Security issues are related to the delegation to the network:
is it possible for a final user to completely trust in a cloud
provider, considering that everything is delegated to him?
The level of trust in such context is very hard to define and
is strictly related to the problem of management of SLA in
cloud applications and providers.
There are a lot of different security aspects involved in such
a context; The Cloud Security Alliance proposed fourteen d-
ifferent domain of security problems. In this paper we will
focus only on the aspect of identity management, with focus
on the mechanisms adopted to authenticate the users. Both

MIR Labs, USA



137 Rak et al.

users and providers have strict requirements on the authenti-
cation mechanisms, because it affects the trade-off between
simplicity of use, performance of access, management of the
credentials and level of trust assured by a given security au-
thentication mechanism.
In this paper we will try to show how it is possible, us-
ing a cloud-oriented API derived from the mOSAIC project
[1, 2, 3], to build up an SLA-oriented cloud application
which enables the management of security features related to
user authentication and authorization to an Infrastructure as
a Service (IaaS) Cloud Provider. As Cloud Provider we will
adopt the PerfCloud solution [4], which uses GRID-based
solutions (GSI and Globus [5]) for security management and
service delivery. So the proposed solution can be used in or-
der to build up easily a SLA-based interface for any GRID
system.
The remainder of this paper is organized as follows, nex-
t section offers a simple and semi-formal description of SLA
and security management in cloud providers using a simple
and real case study. Section III depicts a reference scenario
which describes the problem we want to solve and an anal-
ysis of the SLA-based Security management requirements.
Section IV describes more in detail the case study, summa-
rizing the technologies and frameworks adopted to solve the
problem. Section V focuses on the solution proposed and its
architecture while section VI outlines the requirements for an
application which offers a SLA-based interface for security
management. Finally, last two sections describe the related
work, conclusions and future works.

II. SLA and Security: Problem Formalization

Building an agreement between users and provider on secu-
rity features is a complex task, because it involves two oppo-
site trade-offs, as shown in figure 1, both users and providers
request that the partner respect some security features, more-
over both offer some security grants. Each actor aims at of-
fering as few grants as possible but will like to obtain as fea-
ture as possible.
As an example an user will like to have as much security
features as possible from the provider, like the privacy on its
data or high availability, but he will like to have an access
as simple as possible, without complex authentication pro-
cedures. On the other side the provider will like to grant as
less as possible (as an example do not grant that none access
your data, so in case of intrusion they do not have to pat for
penalties, or limited availability) but, on the other side will
like to request as strong authentication procedure as possible
in order to be protected against intrusions.
The role of Service Level Agreement is to offer a clear way to
agree between Users and providers about what is offered and
granted by each actor. As a consequence it is needed to build
up a way to clarify the security features offered and granted
by each partner involved in the agreement. As a matter of
fact it is very hard to identify such templates in a general
way, so the common solution is the development of custom
templates for each new architecture and system.
Adoption of Service level Agreements (from now on SLA)
for management of security features is an open problem in
the cloud environment as previously outlined (moreover a
deeper analysis of related work will be provided in section

VII), in order to offer a clear approach and definition of this
problem in this paper we will focus on a real case study:
the building of an SLA-based interface for an IaaS Cloud
provider.
The provider is built using the PerfCloud [4] framework,
which is based on the integration of GRID and Cloud, fol-
lowing the cloudgrid [6] approach. It is out of the scope a
detailed analysis of such solution, but it is interesting to point
out that it uses the GSI framework for management of user
authentication and authorization, this implies that the solu-
tion proposed can be used for any GRID system.

III. SLA-based Security management: Our
Reference Scenario

In this section, we present a reference scenario, depicted in
figure 2, which is the basis for describing the problem (dis-
cussed in the previous section) and that we want to solve.
We will provide an analysis of the SLA-based Security man-
agement requirements, tackling the problem. As shown, we
consider a Cloud Provider that offers an Infrastructure as a
Service (IaaS). In particular, the provider offers different set
of services (from 1 to 5 in picture), applying different secu-
rity policies. Some service set are offered adopting several
policies (in the picture the service set 1) others are offered
only following a given policy. This means that the provider
can offer:

• different services, accessible with different security lev-
els.

• a same service, accessible with different security levels.

Suppose a user wants access to a Cloud service. The user,
after the registration with the cloud provider, obtains a set of
credentials, which he will use to invoke a service. Specifical-
ly, consider a user wishes access to a certain set of services
(in picture service Set X).
To solve the problem, the Cloud Provider must employ a SLA
management system. This system will allow:

• a user to negotiate, with the cloud provider, the service
and the relative security level. Once an agreement be-
tween a user and a cloud provider is reached, we can
define a negotiation’s outcome as a SLA agreement.

• a cloud provider to enforce a SLA agreement.

• to manage a SLA, keeping track of its status; for exam-
ple, by exploiting this functionality, a user can check the
status of his SLA request, while the provider can easily
detect the SLA active.

To realize this system, the Cloud Provider offers a set of S-
LA templates which contains a description of the service set
offered, the credentials requested to the user and the policy
applied. In order to manage the SLA-based access to ser-
vices, the final user submits to the system the SLA template
of his interest, and the Cloud provider, once checked its ap-
plicability, can reach or no a SLA agreement with this user,
concluding the negotiation. In fact, this is a simple negotia-
tion based on a single round ”offer, accept” the according the
WS-Agreement protocol, which will be outlined in section



(a) The Matching problem (b) The role of SLA

Figure. 1: The security agreement problem and the role of SLA

Figure. 2: SLA-based interface for security management in cloud environment



139 Rak et al.

IV. Then, the cloud provider, to perform the enforcemen-
t of a SLA agreement, exploits an authorization system to
enable/disable access of a user to cloud service sets. Once
a user negotiation is terminated, the provider configures as
a consequence this authorization system in order to accep-
t such a user. Users are granted that the services (and re-
sources) accessed are protected by the provider following a
known policy. Providers are granted that users have the right
credentials (the services are protected by the given policy)
and are able to audit the agreement acquired, knowing when
each user has requested a more secure service.
In section V and VI we propose an architectural solution to
solve this problem. In particular we present a SLA manage-
ment solution which is Cloud Provider independent.
Moreover, knowing that more secure services often have
greater costs in term of performance and resource consump-
tion, it is possible to manage a trade-off between the resource
usage, the security offered (and eventually the global cost of
the service).

IV. The Case Study: SLA interface towards
PerfCloud

In section III we described the problem of building an S-
LA interface towards an IaaS Cloud provider focusing on a
reference scenario. In the following, we provide a detailed
description of the approach used to address such problem in
the context of a given specific solution: the PerfCloud frame-
work on which we build an IaaS Cloud Provider. The solu-
tion we propose founds on the adoption of two main frame-
works: GSI, that is the security module in Globus and many
other GRID toolkits, and mOSAIC, which is a framework
for Cloud application development. Moreover, we adopt a
WS-Agreement specification to build up a SLA management
system. In the following subsections we briefly summarize
the main concepts of such solutions.

A. PerfCloud: the cloudgrid approach

As Cloud Provider we adopt PerfCloud, which is based on
the integration of GRID and Cloud, following the cloudgrid
approach. It is out of the scope of this paper a detailed de-
scription of such solution which can be found in [4, 6].
The basic configuration of PerfCloud founds on Cloud on
GRID approach: using a GRID middleware (Globus GT4) it
offers cloud oriented services, such as delivery and manage-
ment of virtual machines (start, stop, sleep, ..).
This approach is shared with other common projects, like
Nimbus [7].
The Globus middleware offers the basis for building a Ser-
vice oriented interface and the components for configuring
and manage the security of the system in terms of authenti-
cation and authorization (through GSI as will be outlined in
in the following).
In [8] the authors outlines how management of cloud ser-
vices implies the needing of ad-hoc consideration related to
the security configuration, due to the presence of new actors
(Cloud and GRID users must have different access rights,
as an example). Such actors implies the needing of adop-
tion of authentication and authorization mechanisms able to
apply complex policies, which are clearly proposed in [8].

Adoption of such technical solution (i.e. an RBAC-style au-
thorization mechanisms like XACML or Shibboleth) can be
introduced in a GRID environment and have an acceptable
trade-off, as shown in [9].
The actors identified and their respective roles (and so rights
of access) can be summarized as follows:

• System Administrator: can manage the physical ma-
chines from hardware up to the operating system level.
He is responsible for installing, configuring and starting
the GRID platform and its Certification Authority, for
managing GRID identities and accounts, for updating
the security policies on the system;

• Grid User: can create and use GRID resources;

• Cloud Administrator: is a GRID User with addition-
al rights. He can supervise the cloud environment cre-
ating/maintaining new Virtual Clusters and managing
Cloud User rights. In particular, he can enable/disable
a Cloud User for the access to one or several Virtual
Clusters;

• Cloud User: is a GRID user with additional rights. He
can turn on/off, access, use, configure Virtual Clusters
previously assigned to him by the Cloud Administrator.

Moreover, PerfCloud architecture enable us to configure the
globus container in order to restrict the access to users not on-
ly on the basis of their credentials (i.e. if they have or not a
valid certificate) and respect to their role (which is defined
using the XACML authorization engine), but even in the
way in which he effectively secures the message exchange
with the cloud provider (as an example without cryptogra-
phy, using SSL or using application level cryptography like
SecureMessage or SecureConversation. This last
configuration enable to offer different security levels, even if
with an higher cost (as outlined in [9]).
Following the problem model outlined in section II we can
assume the following needings for both the side of the SLA
agreement:

• Provider have a different set of services for each user
role (i.e. a service set for Cloud administrators, a service
set for Cloud Users, . . . ). Each service set is protected
with different policies of access. Each service set has
an associated Service Level Agreement template which
describe the credentials and authentication roles needed
by each different user.

• User must have a valid certificate in order to access
the PerfCloud environment. When the user need SLA-
protected services he must negotiate with the SLA sys-
tem his role in the system and the security level he need.

It is important to point out that more restrictive security poli-
cies (as an example adoption of Transport security layer) of-
fer grants to final users about the confidentiality of access to
his resources (the virtual machines) and offer grants of cor-
rect usage to the system provider.

B. Security configuration in GSI

Globus (GT4) and Globus security Infrastructure (GSI) offer
a flexible mechanism to enforce authentication and autho-
rization. This is based on the adoption of security description



A SLA-based interface for Secure Authentication Negotiation in Cloud 140

files that describe both authentication requirements, along
with authorization policy decision points where role-based
access control policies are evaluated [10]. The authorization
decision can be performed by standard GSI components or
by external authorization service as XACML [11], PerMIS
[12] or gridShib [13].
In particular, GT4 uses the concept of security descriptors
as standard method for configuring the security requirements
and policies of clients and services. GT4 provides four dif-
ferent type of security descriptors:

• Container security descriptor specifies the container
level security requirements that need to be enforced, i.e.,
the authentication and authorization mechanisms adopt-
ed to let a user access services and resources in the con-
tainer;

• Service security descriptor specifies the service lev-
el security requirements that need to be enforced, i.e.,
the authentication and authorization mechanisms adopt-
ed to let a user access a given service;

• Resource security descriptor specifies the resource
level security requirements that need to be enforced, i.e.,
the authentication and authorization mechanisms adopt-
ed to let a user access a given resource;

• Client security descriptor are adopted into the GT4
clients to specify the security mechanisms to be adopted
on service invocations.

Container, service and resource security descriptors have dif-
ferent priority levels. The most restrictive policy is applied at
the resource level, and overrides the others. Service and con-
tainer security descriptors are configured as XML files, de-
fined in the deployment descriptor and locally stored. On the
other hand, resource security descriptors can only be dynam-
ically created, either programmatically or from a descriptor
file. GT4 offers APIs to define the security descriptor into
the client code or as an XML file.
The typical structure of an XML file containing the config-
uration of a security descriptor of container, service or re-
source type, contains two main elements: auth-method and
authz, as in the following:

Listing 1: Example of XML based Security Descriptor
<securityConfig xmlns="http://www.globus.org">

<auth-method>
<GSISecureConversation>

<protection-level>
<integrity/>

</protection-level>
</GSISecureConversation>

</auth-method>
</method>

<authz value="pdp1:org.foo.PDP1 pdp2:org.
foo.PDP2
foo1:org.foo.authzMechanism bar1:org.

bar.barMechanism"/>

</securityConfig>

As for authentication, GT4 uses digital certificates to au-
thenticate and delegate users. Furthermore, GSI allows
to enable security at transport level and at message level.

Transport-level security means that the complete communi-
cation (all the information exchanged between a client and
a server) is encrypted. With message-level security, only
the contents of the SOAP message are encrypted. GSI of-
fers two message-level protection schemes (GSISecureMes-
sage and GSISecureConversation), and one transport-level
scheme (GSITransport).
Summarizing, four types of authentication methods are pro-
vided by GT4:

• none: no authentication is performed.

• GSISecureMessage: each individual message is en-
crypted.

• GSISecureConversation: a secure context is first estab-
lished between client and server; all the following mes-
sages can reuse that context.

• GSITransport: transport-level security is provided by
using TLS.

In addition, with GSISecureMessage, GSISecureConversa-
tion and GSITransport, the security administrator can specify
the protection levels integrity (data are signed) and privacy
(data are encrypted and signed). Clients must be configured
to adopt a compliant authentication mechanism.
As regards authorization, container, services and resources
can also be protected by different authorization mechanisms
(enforcing different Policy Decision Points - PDP) with dif-
ferent mechanisms for collecting attributes (Policy Informa-
tion Points - PIP).

C. Programming the Cloud with mOSAIC

The full mOSAIC solution includes four main modules: mO-
SAIC API, mOSAIC Framework or platform and the mOSA-
IC provisioning system and the semantic engine, in this sec-
tion we will focus on the relationship between API, Frame-
work and Provisioning system.
The role of the provisioning system is to decouple the cloud
applications from the cloud providers: mOSAIC Developers
never focus on Cloud Provider specific resources, but they
will refer to resources trough abstraction which offer unifor-
m access to them, independently from the provider and the
technologies they support. The provisioning system works
mainly at Infrastructure as a Service (IaaS) level, managing
resources like virtual machine, cloud storages, communica-
tion systems. The role of the Provisioning System in mOSA-
IC is assigned to the Cloud Agency [14].
The mOSAIC Framework is a collection of cloud compo-
nents which can be run independently and offer a clear set
of services. The mOSAIC predefined components aim at of-
fering simple and common services which can be composed
easily by mOSAIC developers in order to build up complex
applications. Example of mOSAIC components are HTTPg-
w (HTTP gateway) a component which offer an HTTP inter-
face and forwards messages on cloud queues. The mOSAIC
framework defines a very simple Platform as a Service solu-
tion which enables the execution of a complex services with
well known interfaces. The ratio of the Framework is to offer
a simple way to reuse a large set of existing technologies and
solution when building up a custom application.



141 Rak et al.

Due to the existence of mOSAIC Provisioning System
(Cloud Agency) and of the mOSAIC Framework, the role
of the API can be now well outlined: they should offer a
programming model and its implementation in a given pro-
gramming language (java and in the future python) in order
to build up applications which consume cloud resources and
easily interact with a large set of different technologies. It is
important to put in evidence that mOSAIC API are not wrap-
pers which enable transparent access to cloud provider for
well known and predefined set of resources (like other solu-
tion like jclouds or Apache Delta Cloud solutions does) but
a completely different way of thinking cloud application, in
which the resources are modeled just in terms of the function-
alities offered, not on the way in which they are accessed and
in which they internally work. As an example for a mOSAIC
application a cloud storage can be a Key Value store system,
but it never cares if after this definition there are an Amazon
S3 instance or a cluster of virtual machines running Riak.
mOSAIC Developers have access to a new set of concepts
(Cloudlet, Connector) which help in thinking cloud applica-
tions in a way which focuses on cloud resources and cloud
communications and, as a consequence, exploit at best the
scalability, elasticity, self-adaptiveness features which Cloud
paradigm offers. Problems related to quality management of
mOSAIC application are managed as a consequence, through
a dedicated Service Level Agreement (SLA) based model
and mOSAIC components devoted to quality management.

D. mOSAIC API Concepts

In mOSAIC a Cloud Application is developed as a compo-
sition of inter-connected building blocks. A Cloud ”Build-
ing Block” is any identifiable entity inside the cloud envi-
ronment. It can be the abstraction of a cloud service or of a
software component. It is controlled by user, configurable,
exhibiting a well defined behavior, implementing function-
alities and exposing them to other application components,
and whose instances run in a cloud environment consuming
cloud resources.
Simple examples of components are: a Java application
runnable in a platform as a service environment; or a vir-
tual machine, configured with its own operating system, its
web server, its application server and a configured and cus-
tomized e-commerce application on it. Components can be
developed following any programming language, paradigm
or in-process API. An instance of a cloud component is, in a
cloud environment, what an instance of an object represents
in an object oriented application.
Communication between cloud components takes place
through cloud resources (like message queues – AMPQ, or
Amazon SQS) or through non-cloud resources (like socket-
based applications).
Cloudlets are the way offered to developers by mOSAIC API
to create components. Cloudlet runs in a cloudlet container
which is managed by the mOSAIC Software platform. A
Cloudlet can have multiple instances, but it is impossible at
runtime to distinguish between the cloudlet instances. When
a message is directed to a cloudlet it can be processed by
anyone of the cloudlet instances. The number of instances
is under control of the cloudlet container and is managed
in order to grant scalability (respect to the cloudlet work-

load). Cloudlet instances are stateless, Cloudlets use cloud
resources through connectors. Connectors are an abstraction
of the access model of cloud resources (of any kind) and are
technology independent. Connectors control the cloud re-
source through technology-dependent Drivers. As an exam-
ple, a cloudlet is able to access to Key-Value store systems
through a KVstore Connector, it uses an interoperability lay-
er in order to control a Riak, or a MemBase KV driver. Fur-
ther details on the mOSAIC programming model, which is
out of the scope of this paper can be found in [2], [15], [1].

E. Security Parameters for WS-Agreement

Our SLA management solution adopts a WS-Agreement
specification, a Web Services protocol for establishing an
agreement between two parties, such as between a service
provider and consumer. The objective of the WS-Agreement
is to define an XML language and a protocol for advertis-
ing the capabilities of service providers and creating agree-
ments based on creational offers. This specification provides
a schema for defining overall structure for an agreement doc-
ument and a template. The goal of WS-Agreement is to s-
tandardize the terminology, concepts, overall agreement and
template structure. Moreover, the WS-Agreement standard
defines a state model for an agreement, because during a S-
LA management, a SLA can assume several states (This state
model will be treated in section VI).
The creation of an agreement can be initiated by the service
consumer side or by the service provider side and typically
starts with a pre-defined agreement template. In particular,
the overall process starts (optionally) with the initiator re-
trieving a template from the responder, continues with the
initiator making an offer and is concluded when the respon-
der accepts or refuses the offer. In fact, the WS-Agreement
protocol is based on a single round ”offer, accept” message
exchange: the initiator sends an obligating offer, through a
template, which the responder may accept or reject. This is
a simple negotiation. Furthermore, an agreement template is
an XML document used by the agreement responder to ad-
vertise the types of offers it is willing to accept [16].
One of the open problem in building such solution is the
missing of a standard for management of the security param-
eters to be negotiated with final users. WS-Agreement offers
a general purpose container, which is completely parameter-
independent. In order to build up this SLA application, we
had to build up a new set of parameters to be inserted in WS-
Agreement. These custom parameters can be used for any
GRID environment which adopts the GSI module (i.e. both
globus and gLite).

Listing 2: Security Description
<ws:Context>

<wsag:AgreementInitiator> /O=Grid/OU=
GlobusTest/OU=simpleCA-pc/CN=bacon </
wsag:AgreementInitiator>

</ws:Context>

<ws:Terms>
<ws:All>
<ws:ServiceDescriptionTerm ws:Name="

perfCloudVbox" ws:ServiceName="Vbox
Service in PerfCloud">

<sec:GSIAuth>
<transport>HTTP</transport>



A SLA-based interface for Secure Authentication Negotiation in Cloud 142

<WSAuth>SecureConversation</WSAuth>
<WSAuthZ>XACML</WSAuthZ>

</sec:GSIAuth>
</ws:ServiceDescriptionTerm>

</ws:All>

<wsag:GuaranteeTerm wsag:Name="
SecurityLevel">

<wsag:KPITarget>
<wsag:KPIName>SecurityLevel</

wsag:KPIName>
<wsag:CustomServiceLevel>(

Transport eq HTTP)AND(WSAuth
eq SecureConversation)AND(
WSAuthZ eq XACML)</
wsag:CustomServiceLevel>

</wsag:KPITarget>
</wsag:GuaranteeTerm>

</ws:Terms>

As shown in listing 2 these parameters of WS-Agreement p-
resented in the template (a document used by the agreemen-
t responder to advertise the types of offers it is willing to
accept) are: (1) element Context that contains information
about agreement parties. One of the elements presented in
Context is AgreementInitiator. Its value is the DN (distin-
guished name) of the user that used services Globus. (2) ele-
ment Terms that defines the content of an agreement. It con-
tains element ServiceDescriptionTerm and element Guaran-
teeTerm. ServiceDescriptionTerm encloses a description of
a service. We added element GSIAuth in which the user can
specify parameters of security. GuaranteeTerm defines the
assurance on service quality (or availability) associated with
the service described by the service definition terms. It con-
tains element KPITarget that defines service level objective
(represents the quality of service aspect of the agreement)
as an expression of a target of a key performance indicator
associated with the service. The value of element Custom-
ServiceLevel is a specific security level.

V. SLA-based Security management: Architec-
ture

The previous section (sect. IV) presented a detailed descrip-
tion of a case study while section III described the problem.
In this section we will focus on the solution proposed and
its architecture. The global architecture of the solution is
summarized in figure 3. The key choice of the solution pro-
posed in this paper is to build up a SLA management sys-
tem as an application using a cloud-based API (mOSAIC)
and using the cloud resources offered in order to run it. We
built up our application as a mOSAIC Application, modeled
as a collection of components that are able to communicate
each other through messages. Our mOSAIC application con-
sists of several components; each component has a different
well defined role. In the next section, it will be described the
architecture of our SLA management application in detail.
As shown in figure 3, our mOSAIC application is based on
components and cloud resources which run on a virtual ma-
chine hosting the mOS operating system, a lightweight linux
distribution.This application directly communicates with the
Cloud Provider.
As regards the Cloud Provider, in order to manage the dif-

ferent roles of the users and the different security policies to
be maintained we organized the PerfCloud configuration in
three different containers, each of them hosted in a different
virtual machine, running on the cluster Frontend and having
their own static IP address. The three different containers
are protected through different security policies and host a
different set of services.
In order to manage the different security roles we organized
the PerfCloud services in two main set: Cloud users and
Cloud Administration sets. Services for common GRID user-
s are, for now, out of the interests of this paper and may be
offered on the same containers or on additional ones. Cloud
Administrator Services, i.e. the ones that enable the creation
of a completely new machine and/or virtual cluster and en-
able an user to use it, are offered only in the third contain-
er, whose policy is the most restrictive ones (both Transport
and Message Security). Cloud User services (the ones which
enable a user to start/stop a virtual cluster) are offered in t-
wo different containers, configured to have no cryptography
on request messages (i.e. the lower level of security granted
by just GRID proxy certificate) or using Secure message (the
one which crypt each SOAP message). The first container of-
fers less grants to the final user, but has a minimal overhead,
the second one offers higher grants in terms of confidentiali-
ty, but has higher overhead (as shown in [9]). Details on such
configuration can be found in the already cited papers.
The approach proposed is simple: once the user has obtained
an agreement with the SLA management system, he will be
authorized to access to one or more containers, following the
agreed security requirements. The application which enables
SLA management is built in order to allow a user to negoti-
ate security features related to user authentication with cloud
provider through a WS-Agreement template. When an a-
greement between a user and a cloud provider is reached, it
contains a description of the security features and so the au-
thorization file of the right container is configured as a conse-
quence by a Cloud Provider. To reach this goal, on the cluster
Frontend runs an application which communicates with the
SLA management system. In particular this system, once an
agreement is accepted, sends to the cluster Frontend some in-
formations so then the authorization file of the right container
is configured, in order to enable/disable access of users to the
PerfCloud service sets.

VI. SLA Management Application

In this section we outline the requirements for an application
which offers a SLA-based interface for management of secu-
rity parameters. Such an application has the following main
requirements:

• the SLA application should support the negotiation of
security parameters through an agreement template.

• the SLA application should be able to acquire the tem-
plate offered by the user and assume a decision about it
(it is acceptable or not);

• the SLA application should be able to communicate
with the Cloud Provider so the provider can configure
the authorization engine following the SLA agreed with
the users.



Figure. 3: System Architecture

Figure. 4: SLA Application for security management

Figure. 5: WS-Agreement states



A SLA-based interface for Secure Authentication Negotiation in Cloud 144

• the SLA application should be able to take trace of the
SLA agreed.

The architecture is depicted in figure 4. As shown, our S-
LA management application consists of several components
and resources (offered by framework mOSAIC) as queue and
storage, following the architecture proposed in [3]. It is a
component-based application, in which each component re-
alizes a well-defined functionality. Logically, the architec-
ture consists of several core parts:

• SLAgw and SLAstore, which provides SLA manage-
ment.

• Decisor, which evaluates if the SLA is acceptable.

Communication between components will take place through
messages. In the following we propose a brief description of
the behavior of each component and how they interoperate.
The SLAgw is the component which has both the role of of-
fering the application as a Web application and implements
a REST-based interface. The SLAgw REST API, accepts es-
sentially the following methods:

• submit, with which a Customer submits the agree-
ment or template to Provider.

• check, with which a Customer requests the status of
SLA agreement.

• sign, with which a Customer accepts the agreement.

• terminate, with which a Customer requests the ter-
mination of SLA agreement.

These methods represent the mandatory operations for SLA
management protocols.
SLAstore is the component which stores an agreement or
template. It is a component that manages features such as:
the capability of taking trace of the signed SLAs and the sta-
tus of all the exchanged SLAs. In fact, as anticipated, during
a SLA management, a SLA can assume several states, de-
fined by WS-Agreement standard.
In particular, the figure 5 puts in evidence the WS-Agreement
states. With a labeled solid line we indicate a change of state
caused by a user through messages as: submit, sign, termi-
nate. With a dashed line we indicate a internal change of
state due to a system.
Decision is the component which evaluates if the SLA is ac-
ceptable according to the security features offered by a Cloud
Provider. If an agreement is reached, then this cloudlet sends
a message through a queue to the Cloud Provider. In fact,
on the Cloud Provider runs a program which reads a mes-
sage from a queue. The message contains security parame-
ters with which the configuration file in the right container is
updated.
The application behavior can be briefly summarized on the
base of the messages exchanged by the components which
have been described above and connected as in Figure 4. The
SLAgw receives the messages from the final users through it-
s SLA-oriented API. All the negotiation messages are sent
through the submit REST call, except the ones needed to ef-
fectively sign the SLA. By a web interface the user can inter-
actively send request and check responses.

Each message submitted by the SLAgw is intercepted by the
SLAstore component. A message, received by the SLAstore,
is an agreement or a template. SLAstore stores it in a local
storage along with an associated information and relative to
the state defined according to the standard WS-Agreement.
Then the component forwards this message to Decisor. Once
received the message, Decisor evaluates if the agreement or
template is acceptable according to the security features of-
fered by a Cloud Provider. In both cases (that is accepted or
rejected), its decision causes a change of the WS-Agreement
state. It communicates its decision to the SLAstore which up-
dates the state information relative to the agreement or tem-
plate. If an agreement is reached, then Decision sends a mes-
sage to the Cloud Provider. This message contains security
informations with which the Cloud Provider configures the
authorization system.

VII. Related Work

To the best of our knowledge not much work has been done
in the area of configuring security requirements specified
through WS-Agreement documents.
Karjoth et al. [17] introduce the concept of Service-Oriented
Assurance (SOAS). SOAS is a new paradigm defining secu-
rity as an integral part of service-oriented architectures. It
provides a framework in which services articulate their of-
fered security assurances as well as assess the security of
their sub-services. Products and services with well-specified
and verifiable assurances provide guarantees about their se-
curity properties. SOAS enables discovery of sub-services
with the right level of security. SOAS adds security provid-
ing assurances (an assurance is a statement about the proper-
ties of a component or service) as part of the SLA negotiation
process.
Smith et al. [18] present a WS-Agreement approach for a fine
grained security configuration mechanism to allow an opti-
mization of application performance based on specific secu-
rity requirements. They present an approach to optimise Grid
application performance by tuning service and job security
settings based on user supplied WS-Agreement specification.
WS-Agreement describes security requirements and capabil-
ities in addition to the traditional WS-Negotiation attributes
such as computational needs, quality-of-service (QoS) and
pricing.
Brandic et al. [19] present advanced QoS methods for meta-
negotiations and SLA-mappings in Grid workflows. They
approach the gap between existing QoS methods and Grid
workflows by proposing an architecture for Grid workflow
management with components for meta-negotiations and
SLA-mappings. Meta-negotiations are defined by means of
a document where each participant may express, for exam-
ple, the pre-requisites to be satisfied for a negotiation, the
supported negotiation protocols and document languages for
the specification of SLAs. In the pre-requisites there is the
element security that specifies the authentication and au-
thorization mechanisms that the party wants to apply before
starting the negotiation. With SLA-mappings, they eliminate
semantic inconsistencies between consumer’s and provider’s
SLA template. They present an architecture for the manage-
ment of meta-negotiation documents and SLA-mappings and
incorporate that architecture into a Grid workflow manage-



145 Rak et al.

ment tool.
Chaves et al. [20] explore Service Level Agreements for Se-
curity or just Sec-SLAs, a formal negotiated document that
defines in, specially, a quantitative way what service levels
will be delivered from the provider to the customer. In par-
ticular, a Sec-SLA is a specific SLA that deals with metrics
related to security instead of the traditional telecommunica-
tion metrics such as throughput, delay, packet loss and other
similar metrics. The authors discuss some aspects of defining
security metrics, specifically, the difficulties faced during the
security metrics definition process and the Sec-SLA moni-
toring, as well as an analysis on the Sec-SLA role in new
paradigms like cloud computing. In particular, an approach
to be used when specifying Sec-SLAs for cloud computing
and some security metrics suitable for cloud computing en-
vironments are presented.
Demchenko et al. [21] discuss a Cloud security infrastructure
which provides consistent security services in on-demand
provisioned Cloud infrastructure services. The paper refer-
s to the architectural framework for on-demand infrastruc-
ture services provisioning, being developed by authors, that
provides a basis for defining the proposed Cloud Security In-
frastructure. In this work, the authors propose an SLA man-
agement solution build using WSAG4J framework, an imple-
mentation of WS-Agreement specification, to maintain im-
portant SLA guarantees during the provisioned services and
relative to security parameters too.

VIII. Conclusions and Future Works

In this paper we have shown how it is possible to realize a
SLA-based interface towards a Cloud provider. Specifical-
ly, using a cloud-oriented API derived from the mOSAIC
project, it is possible to build up an SLA-oriented cloud ap-
plication which enables the management of security features
related to user authentication and authorization to an Infras-
tructure as a Service (IaaS) Cloud Provider. The application
which enables SLA management is built in order to allow
an user a simple negotiation of security features offered by
a cloud provider. Once the user has obtained an agreement
with the SLA management system, he will be authorized to
access to one or more service set, following the agreed secu-
rity requirements.
In the future, we will extend our work adding the mechanism
of digital signature on a SLA agreement, offering to an us-
er the possibility of signing his agreement. Moreover, using
SLA, we will add parameters on performance to offer infor-
mation on trade-off between security offered and guaranteed
performance.

Acknowledgments

This research is partially supported by FP7-ICT-2009-5-
256910 (mOSAIC).

References

[1] mOSAIC Project, “mosaic: Open source api and
platform for multiple clouds,” http://www.mosaic-
cloud.eu, 2010.

[2] I. I. M. van Sinderen F. Leymann, B. S. S. – Science,
and T. Publications, Eds., Towards a cross platform
Cloud API. Components for Cloud Federation, 2011.

[3] IEEE, Ed., User Centric Service Level Management in
mOSAIC Application, 2011.

[4] V. Casola, M. Rak, and U. Villano, “Perfcloud:
Performance-oriented integration of cloud and grid,” in
Cloud Computing, ser. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecom-
munications Engineering, D. R. Avresky, M. Diaz,
A. Bode, B. Ciciani, E. Dekel, O. Akan, P. Bellavista,
J. Cao, F. Dressler, D. Ferrari, M. Gerla, H. Kobayashi,
S. Palazzo, S. Sahni, X. S. Shen, M. Stan, J. Xiaohua,
A. Zomaya, and G. Coulson, Eds. Springer Berlin
Heidelberg, 2010, vol. 34, pp. 93–102.

[5] The Globus Security Team, “Globus toolkit version 4
grid security infrastructure: A standards perspective,”
2005, www.globus.org/toolkit/docs/4.0/security/GT4-
GSI-Overview.pdf .

[6] V. Casola, A. Cuomo, M. Rak, and U. Villano, “The
cloudgrid approach: Security analysis and perfor-
mance evaluation,” Future Generation Computer Sys-
tems, no. 0, pp. –, 2011.

[7] University of Chicago, “Nimbus project,” 2009,
http://workspace.globus.org/clouds/nimbus.html.

[8] V. Casola, R. Lettiero, M. Rak, and U. Villano, “Access
control in cloud-on-grid systems: The PerfCloud case
study,” in Computers, Privacy and Data Protection: an
Element of Choice, S. Gutwirth, Y. Poullet, P. De Hert,
and R. Leenes, Eds. Springer Netherlands, 2011, pp.
427–444.

[9] V. Casola, A. Cuomo, M. Rak, and U. Villano, “Securi-
ty and performance trade-off in perfcloud,” in Euro-Par
Workshops, ser. Lecture Notes in Computer Science,
M. R. Guarracino, F. Vivien, J. L. Träff, M. Cannatoro,
M. Danelutto, A. Hast, F. Perla, A. Knüpfer, B. D. Mar-
tino, and M. Alexander, Eds., vol. 6586. Springer,
2010, pp. 633–640.

[10] D. Ferraiolo and D.R.Kuhn, “Role-based access con-
trol,” in Proc. of the 15th National Computer Security
Conference, 1992, pp. 554–563.

[11] The OASIS technical commitee, “Xacml: ex-
tensible access control markup language,” 2005,
http://www.oasisopen.org/committees/xacml/repository/.

[12] D. W. Chadwick, G. Zhao, S. Otenko, R. Laborde,
L. Su, and T.-A. Nguyen, “Permis: a modular au-
thorization infrastructure,” Concurrency and Compu-
tation: Practice and Experience, vol. 20, no. 11, pp.
1341–1357, 2008.

[13] T. Barton, J. Basney, T. Freeman, T. Scavo, F. Sieben-
list, V. Welch, R. Ananthakrishnan, B. Baker, M. Good-
e, and K. Keahey, “Identity federation and attribute-
based authorization through the globus toolkit, shibbo-
leth, gridshib, and myproxy,” in Proc. of 5th Annual
PKI R&D Workshop, 2006.



A SLA-based interface for Secure Authentication Negotiation in Cloud 146

[14] R. Aversa, B. D. Martino, S. Venticinque, and D. Petcu,
“Agent based cloud provisioning and management, de-
sign and prototypal implementation,” in 1st Interna-
tional Conference on Cloud Computing and Services
Science (CLOSER2011), I. I. M. van Sinderen Frank
Leymann and B. Shishkov, Eds. ScitePress, 2011, pp.
184–191.

[15] IEEE, Ed., Building an Interoperability API for Sky
Computing, 2011.

[16] The Open Grid Forum, “Web ser-
vices agreement specification,” 2007,
http://ogf.org/documents/GFD.192.pdf.

[17] G. Karjoth, B. Pfitzmann, M. Schunter, and
M. Waidner, “Service-oriented assurance, com-
prehensive security by explicit assurances,” in
Quality of Protection, ser. Advances in Informa-
tion Security, D. Gollmann, F. Massacci, and
A. Yautsiukhin, Eds., vol. 23. Springer US,
2006, pp. 13–24. [Online]. Available: http :
//dx.doi.org/10.1007/978− 0− 387− 36584− 82

[18] M. Smith, M. Schmidt, N. Fallenbeck, C. Schridde, and
B. Freisleben, “Optimising security configurations with
service level agreements.”

[19] I. Brandic, D. Music, S. Dustdar, S. Venugopal, and
R. Buyya, “Advanced qos methods for grid workflows
based on meta-negotiations and sla-mappings,” 2008
Third Workshop on Workflows in Support of LargeScale
Science, 2008.

[20] S. A. de Chaves, C. B. Westphall, and F. R.
Lamin, “Sla perspective in security management
for cloud computing,” in Proceedings of the 2010
Sixth International Conference on Networking and
Services, ser. ICNS ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 212–217. [Online].
Available: http://dx.doi.org/10.1109/ICNS.2010.36

[21] Y. Demchenko, C. Ngo, C. de Laat, T. W. Wlo-
darczyk, C. Rong, and W. Ziegler, “Security
infrastructure for on-demand provisioned cloud in-
frastructure services,” in Proceedings of the 2011
IEEE Third International Conference on Cloud
Computing Technology and Science, ser. CLOUD-
COM ’11. Washington, DC, USA: IEEE Computer
Society, 2011, pp. 255–263. [Online]. Available:
http://dx.doi.org/10.1109/CloudCom.2011.42

Author Biographies

Massimiliano Rak is currently an Assistant Professor at the
Information Engineering Department of the Second Univer-
sity of Naples, Italy. He received the MSc degree in Com-
puter Science Engineering from the University of of Napoli
Federico II in 1999. He got a Ph.D. in Computer Engineering
from the Second University of Napoli in 2002. His research
activities include both theoretical and experimental issues, in
the areas of performance evaluation of computing systems,

parallel and distributed software engineering, security of in-
formation systems, and they are documented by many publi-
cations, in national and international journals and conference
proceedings.

Loredana Liccardo is a second year PhD student in Com-
puter Engineering at the Information Engineering Depart-
ment of the Second University of Naples, Italy. She received
the MSc degree in Computer Science Engineering from the
Second University of Naples in 2010. Her research interests
include Cloud Computing, SLA and securiy management in
cloud environment.

Rocco Aversa graduated in Electronic Engineering at Uni-
versity of Naples in 1989 and received his Ph.D. in Comput-
er Science in 1994. He is Associate Professor in Computer
Science at the Department of Information Engineering of the
Second University of Naples. His research interests are in
the area of parallel and distributed systems. The research
themes include: the use of the mobile agents paradigm in
the distributed computing; the design of simulation tools for
performance analysis of parallel applications running on het-
erogeneous computing architectures; the project and the de-
velopment of innovative middleware software to enhance the
Grid and Cloud computing platforms.


