
Journal of Information Assurance and Security.

ISSN 1554-1010 Volume 9 (2014) pp. 244-254

© MIR Labs, www.mirlabs.net/jias/index.html

MIR Labs, USA

Modified Advanced Feedback Encryption Standard

Version-1 (MAFES-1)

Surajit Bhowmik
1
, Debdeep Basu

2
, Ankita Bose

3
, Saptarshi Chatterjee

3
 and Asoke Nath

5

1,2,3,4 and 5Department of Computer Science

St. Xavier’s College (Autonomous)

Kolkata, India

bhowmik1994@gmail.com1,debdeepbasucal@hotmail.com2, ankkitabose@hotmail.com3, sapishere.chatterjee@gmail.com4,

asokejoy1@gmail.com5

Abstract: Nath et al had recently published Advanced

Feedback Encryption Standard Version 1, AFES-1[25] where

they had combined both bit-level and byte level operations on the

plain text. In AFES-1[25], the authors had capitalized on the

strength of MWFES-3[5] by introducing a bit-shuffling operation

at the beginning of every iteration. At the beginning of every

iteration, the plain text bits of that iteration are shuffled by using

24 different shuffling functions. Now, the order in which the 24

different functions are called, changes at each iteration, and that

order is taken as a function of the key. After the initial shuffling

of the bits, the bits are converted back to bytes and MWFES-3 is

applied on the bytes. This process goes on Encryption Number

(EN) times, where EN is also taken as a function of the key. So, at

the beginning of each iteration, the bits obtained from the last

iteration are shuffled in a different way. In the present paper,

Modified Advanced Encryption Standard Version 1 (MAFES-1),

the authors have used a different key expansion algorithm which

makes the method much stronger than the previous method

(AFES-1). The method has been tested on standard plain texts

such as ASCII ‘0’, ASCII ‘1’ and the results are quite satisfactory.
This method is immune to any classical form of attacks.

Keywords: MWFES-I,MWFES-2,MWFES-3, AFES-1,

Encryption, Encryption Number, Decryption.

I. Introduction

Due to the tremendous development in internet
technologies it is essential to encrypt any kind of confidential
message before sending the message from one computer to
another computer. Data security is an extremely important
issue and many algorithms have been developed which are
almost impossible to break. The intention of the trespasser is
to break the cipher and to retrieve unauthorized information. It
is the job of the cryptographers to restrict the trespassers from
achieving unauthorized access. Nath et al had recently
proposed MWFES-1[1], Modified MWFES-1[2], MWFES-
2[3], Modified MWFES-2[4], MWFES-3[5], AFES-1[25].

In MWFES-1, the plain text character is added with the
corresponding key character, the forward feedback and
backward feedback and then the total sum (modulo 256) is

taken as the corresponding cipher text character. The cipher
text character is taken as the forward feedback value for the
next byte (in case of forward operation) or backward feedback
value for the previous byte(in case of backward operation).
Forward and Backward operations are carried out on all the
bytes starting from their respective ends.

In MWFES-2, the process is a little more general. Instead
of propagating the feedback to the next byte (in case of
forward feedback) and to the previous byte (in case of
backward feedback) the feedback is propagated to the nth byte
where n is the ‘skip factor’. In MWFES-2 the forward skip is
kept equal to the backward skip (equal to n) and the initial
forward feedback value and the backward feedback value was
kept 0.

In MWFES-3, the authors introduced several changes in
the algorithm. The plain text is broken into blocks and the
encryption method is applied on each block separately. Each
block has different Forward Skip (FS), Backward Skip (BS),
initial Forward Feedback (FF) and initial Backward Feedback
(BF) which are determined from the keypad counterpart of the
block. These four important variables would decide the nature
of the cipher text. The block size is different in every round of
processing, causing these four important variables to change in
every round. The total number of rounds (encryption no), and
the block size value were also taken as a function of the key.

In AFES-1[25], the Plain Text is converted to its
corresponding bits and stored in a square matrix of size equal
to the integral square root of the number of bits. The residual
bits remain untouched. Then the bits are arranged by calling
24 different shifting functions. Now, the order of calling the
24 functions change at each iteration and that order is taken as
a function of the keypad. After this is done the authors convert
the bits back to bytes and then apply MWFES-3[5] on those
bytes. This entire process happens encryption_no (EN) times.
Thorough tests were conducted on some standard plain text
files and it was found that it is absolutely impossible for any
intruder to extract any plain text from the generated encrypted
text using any brute force method. The results show that the

Modified Advanced Feedback Encryption Standard Version-1 (MAFES-1) 245

present method is free from any kind of plain text attack or
differential attack.

In the present method, Modified Advanced Feedback
Encryption Standard (MAFES-1), the authors have kept the
same encryption algorithm as that of AFES-1[25] but have
improved the key generation algorithm. This change has
improved the security of the method to a huge extent. The key
expansion algorithm has been described in section II C. The
present method is an extremely strong method as all
controlling parameters change at every round. The present
method may be applied in any Corporate sector, Defense
sector, Government sector etc. The entire encryption and
decryption software have been developed using MATLAB.

II. Algorithm For MAFES-1

In the present section the encryption algorithm, key generation

algorithm as well as decryption algorithm will be discussed.

A. Algorithm For Function Encryption()

Step 1: Start

Step 2: Input PlainText,User Provided Seed and CipherText

filenames

Step 3: length=length(pt) /*pt is the PlainText*/

Step 4: seed[]=Stores content of seed given by User
Step 5: n=16

Step 6: If n*n<length, the go to Step 7,otherwise go to Step 8

Step 7: n=n+1 and go to Step 6

Step 8: key[]=Call key_generation(seed[],n)

Step 9: encryption_no=key[fix((n*n)/2)]

Step 10: encryption_no=mod(encryption_no,64)

Step 11: if encryption_no=0 then encryption_no=1

Step 12: e=1

Step 13: If e<=encryption_no then go to Step 14 otherwise go

to Step 64

Step 14: Initialisesum,ff[length],bf[length],ct[length] with
zeros /*ct=CipherText,ff=Forward Feedbacks,bf=Backward

Feedbacks*/.

Step 15: Call pt= pt_Shift(key[e]).

Step 16: block_size=key[e]

Step 17: If block_size>length, then go to Step 18, otherwise

go to Step 19

Step 18: block_size=block_size-4

Step 19: If block_size<4,thenblock_size=4

Step 20: Initialise k,low and no_of_block with 1

Step 21: high=block_size

Step 22: If k>=block_size, go to Step 23,otherwise go to Step

36
Step 23: k=k-block_size

Step 24: forward_next=mod(key[low]+1,block_size)

Step 25: backward_next=mod(key[high]+1,block_size)

Step 26: If forward_next=0,thenforward_next=1

Step 27: If backward_next=0,thenbackward_next=1

Step 28: forward_feedback=key[low+1]

Step 29: backward_feedback=key[high-1]

Step 30: ff[low]=forward_feedback

Step 31: bf[high]=backward_feedback

Step 32: Call encryption_block(low,high)

Step 33: low=high+1

Step 34: high=high+block_size

Step 35: no_of_block=no_of_block+1 and go to Step 22

Step 36: i=low

Step 37: If i<=length, go to Step 38, otherwise go to Step 40

Step 38: ct[i]=pt[i]
Step 39: i=i+1 and go to Step 37

Step 40: If k>0,go to Step 41,otherwise go to Step 62

Step 41: i=length-k

Step 42: If i>=1,go to Step 43,otherwise go to Step 45

Step 43: ct[i+k]=ct[i]

Step 44: i=i-1 and go to Step 42

Step 45: j=low

Step 46: i=1

Step 47: If i<=k,go to Step 48,otherwise go to Step 51

Step 48: ct[i]=pt[j]

Step 49: j=j+1

Step 50: i=i+1 and go to Step 47
Step 51: pt[]=ct[]

Step 52: forward_next=mod((key[1]+1),256)

Step 53: backward_next=mod((key[block_size]+1),256)

Step 54: If forward_next=0,thenforward_next=1

Step 55: If backward_next=0,thenbackward_next=1

Step 56: forward_feedback=key[2]

Step 57: backward_feedback=key[block_size-1]

Step 58: Initialiseff[length] and bf[length] with zeros

Step 59: ff[1]=forward_feedback

Step 60: bf[block_size]=backward_feedback

Step 61: Call encryption_block(1,block_size)
Step 62: pt[]=ct[] /*Copying converted PlainText into

CipherText array */

Step 63: e=e+1 and go to Step 13

Step 64: End

B. Algorithm For Function Encryption_Block (low,high)

Step 1: Initialize i=low

Step 2: sum[i]=pt[i]+key[i]+ff[i]+bf[i]

Step 3: ct[i]=mod(sum[i],256);

Step 4: if i+forward_next>high go to step 5,else go to step 6

Step 5: ff[low+(i+forward_next-high)-1]=ct[i]

Step 6: ff[i+forward_next]=ct[i];
Step 7: index=high-(i-low)

Step 8: sum[index]=pt[index]+key[index]+ff[index]+bf[index]

Step 9: ct[index]=mod(sum(index),256)

Step 10: If index-backward_next<low go to step 11,else go to

step 12

Step 11: bf[high-(low-(index-backward_next))+1]=ct[index]

Step 12: Return control to the calling function

C. Algorithm For Function Key_Generation(seed[],n):

From the user defined secret_key (seed), the program
will generation enlarged keypad. The requirement of this

keypad is that it must be a square matrix having dimensions

equal to the nearest greater perfect square of the Plain Text

length.

Bhowmik et al. 246

The keypad is an 1-D array at first where we apply

‘Fold’ to the keypad. The folding concept cleaves the existing

key string from the middle and the two halves are made to

collapse on one another in order to produce a new set of

characters which are appended with to the existing key string.

The characters of the keypad are taken modulo 256 and then
the keypad is converted into a 2-D matrix. Now, another

variable called ‘Randomization Number’ is calculated from

the generated matrix by adding the diagonal values and then

bringing it down to 0-255 by modular operation with 256.

The generated 2-D matrix is permuted by calling the

24 shifting and shuffling functions. All of these functions have

been discussed in section II R (a). These functions are called

“Randomization Number” of times in an order which is to be

provided by whoever is implementing the algorithm. Security

can be further enhanced by permuting the order in which the

functions are called. The final key was thus developed using
various properties of the seed as well as intrinsic properties of

the keypad which is then used by the encryption and

decryption methods to find out the different required

parameters at each stage of the individual processes.

1)Key generation method:

Step-1: Step 1: l = length of the seed

Step-2: if l>n*n then go to Step-12

Step-3: i=1

Step-4: j=l

Step-5: if i<j && l<n*n then go to Step-6 otherwise go to

Step-11

Step-6: l=l+1;

Step-7: key[l]=mod([key[i]+key[j]],256)

Step-8: i=i+1;

Step-9: j=j-1;

Step-10: Go to Step-5
Step-11: Go to Step-2

Step-12: Copy the keypad into a 2-D array.
Step-13: Add all the diagonal terms and store the sum in

‘randomization_number’
Step-14: Call the shifting and shuffling functions according to

the order provided by the organization implementing
the method ‘randomization_number’ number of times

Step-15: Convert the 2-D array to a 1-D key string

 Return ‘key’ array to the calling function

D. Algorithm For Function Decryption()

Step 1: Start

Step 2: Input the CipherText,User Provided Seed and

decrypted PlainText(Output) filenames.

Step 3: len=length(CipherText)

Step 4: seed[]=User Provided Key

Step 5: n=16

Step 6: Is (n*n)<len?

Step 7: If Step 6=True,then n=n+1 and go to Step 6.
Step 8: If Step 6=False,then go to Step 9

Step 9: key=Call key_generation(seed,n)

Step 10: encryption_no=key[fix((n*n)/2)]

Step 11: e=encryption_no

Step 12: block_size=key[e]

Step 13: Is block_size>len?

Step 14: If Step 12=True,then block_size=block_size-4 and go

to Step 13.
Step 15: If Step 12=False,then go to Step 16.

Step 16: Is block_size<4?

Step 17: If Step 16=True,then block_size=4

Step 18: If Step 16=False,then go to Step 20.

Step 19: remainder=mod(len,block_size);

Step 20: initialise the array ct_temp[block_size] with all zeros;

Step 21: initialise the array key_temp[block_size] with all

zeros;

Step 22: Is remainder<>0?

Step 23: If Step 22=True, then go to Step 24,else go to Step 44.

Step 24: t=1

Step 25: ct_temp[t]=ct[t]
Step 26: key_temp[t]=key[t]

Step 27: If t>block_size,go to step 28,else t=t+1 and go to

Step 25.

Step 28: forward_next=key_temp[1]

Step 29: backward_next=key_temp[block_size]

Step 30: forward_feedback=key_temp[2]

Step 31: backward_feedback=key_temp[block_size-1]

Step32: pt=Call

decryption_block(ct_temp,key_tempforward_next,backward_

next,forward_feedback,backward_feedback,block_size)

Step 33: j=len-remainder+1
Step 34: i=1

Step 35: pt_main[j]=pt[i]

Step 36: j=j+1

Step 37: If i>remainder,then go to Step 38,else i=i+1 and go to

Step 35.

Step 38: i=1

Step 39: ct[i]=pt[i]

Step 40: If i>block_size,then go to Step 41 else i=i+1 go to

Step 39.

Step 41: i=remainder+1

Step 42: ct[i-remainder]=ct[i]

Step 43: If i>len,then go to Step 44,else i=i+1 and go to Step
42.

Step 44: begin=1

Step 45: tot_div=floor(len/block_size)

Step 46: i=1

Step 47: set all elements of ct_temp[block_size] by zero

Step 48: set all key_temp[block_size] with all zeros

Step 49: j=1

Step 50: t=begin

Step 51: ct_temp[j]=ct[t]

Step 52: key_temp[j]=key[t]

Step 53: j=j+1
Step 54: If t>begin+block_size-1 then go to Step 55 else

t=t+1 , go to Step 51.

Step 55: forward_next=key_temp[1]

Step 56: backward_next=key_temp[block_size]

Step 57: forward_feedback=key_temp[2]

Modified Advanced Feedback Encryption Standard Version-1 (MAFES-1) 247

Step 58: backward_feedback=key_temp[block_size-1]

Step59: pt=Call

decryption_block(ct_temp,key_temp,forward_next,backward_

next,forward_feedback,bacward_feedback,block_size)

Step 60: j=1

Step 61: k=begin
Step 62: pt_main[k]=pt[j]

Step 63: j=j+1

Step 64: If k>begin+block_size-1,then go to Step 65,else

k=k+1 and go to Step 62.

Step 65: begin=begin+block_size

Step 66: If i>tot_div,then go to Step 67,else i=i+1 and go to

Step 46.

Step 67: ct[]=pt_main[]

Step 68: ct=Call ct_shift(pt_main[],key[e])

Step 69: If e<1,then go to Step 70,else e=e-1 and go to Step 12.

Step 70: Write contents of pt_main into output file.
Step 71: End.

E. Algorithm For Function

Decryption_Block(ct[],key[],forward_next,backward_next,ff[]

,bf[],block_size)

Step-1: forward_next=forward_next+1

Step-2: forward_next=mod(forward_next,block_size)

Step-3: if forward_next=0 then forward_next=1 otherwise go

to Step-4
Step-4: backward_next=backward_next+1

Step-5: backward_next=mod(backward_next,block_size)

Step-6: if backward_next=0 then backward_next=1 otherwise

go to Step-7

Step-7: (u,v)= Call

generateList(block_size,forward_next,backward_next

);

Step-8: initialise the array pt[block_size] with all zeros

Step-9: k=2*block_size

Step-10: if k > block_size+1 then go to Step-45 otherwise go

to Step-11
Step-11: (i,j)=Call

whatIsIn(u[k],block_size,forward_next,backward_ne

xt,v[])

Step-12: if i!=j then go to Step-13 otherwise Step-25

Step-13: if i=0 then go to Step-14 otherwise Step-15

Step-14: pos_i=0

Step-15: if v[Call oldPosition(i,block_size)]=u[k] then go to

Step-16 otherwise go to Step-17

Step-16: pos_i=Call oldPosition(i,block_size)

Step-17: pos_i=Call lastPosition(i,block_size)

Step-18: if j=0 the go to Step-19 otherwise go to Step-20
Step-19: pos_j=0

Step-20: if v(Call oldPosition(j,block_size))=u[k] then go to

Step-21 otherwise go to Step-22

Step-21: pos_j=Call oldPosition(j,block_size)

Step-22: pos_j=Call lastPosition(j,block_size)

Step-23: sub1=Call isChanged(i,pos_i)

Step-24: sub2=Call isChanged(j,pos_j) go to Step-27

Step-25: sub1=Call isChanged(i,oldPosition(i,block_size))

Step-26: sub2=Call isChanged(i,lastPosition(i,block_size))

Step-27: check1=ct[u[k]]-sub1-sub2-key[u[k]]

Step-28: if i=0 and j=0 then go to Step-29 otherwise go to

Step-34

Step-29: if u[k]=block_size then go to Step-30 otherwise Step-

31

Step-30: check=check1-bf

Step-31: if u[k]=1 then go to Step-32 otherwise go to Step-33
Step-32: check=check1-ff go to Step-39

Step-33: check=check1 go to Step-39

Step-34: if u[k]=block_size and (Call

conditionCheck(u[k],i,j,block_size,v)=1) then go to

Step-35 otherwise go to Step-36

Step-35: check=check1-bf

Step-36: if u[k]=1 and (Call

conditionCheck(u[k],i,j,block_size,v)=2) then go to

Step-37 otherwise go to Step-38

Step-37: check=check1-ff

Step-38: check=check1

Step-39: if (check < 0) then go to Step-40 otherwise go to
Step-42

Step-40: check=check+256

Step-41: go to Step-39

Step-42: check=mod(check,256)

Step-43: pt[u[k]]=check

Step-44: k=k+1 and go to Step-10

Step-45: return pt[] to the calling function

F. Algorithm For Function Conditioncheck

(number,i,j,block_size,v[])

Step 1: if i*j!=0, go to step 2, else go to step 2,else go to step 3
Step 2: flag=0

Step 3: if i!=0 go to Step 4,else go to step 8

Step 4: if v[Call oldPosition(i,block_size)]==number, go to

step 5, else go to step 6

Step 5: pos=Call oldPosition(i,block_size)

Step 6: pos=Call lastPosition(i,block_size)

Step 8: if v[Call oldPosition(j,block_size)]==number, go to

step 9,else go to step 10

Step 9: pos=Call oldPosition(j,block_size)

Step 10: pos=Call lastPosition(j,length)

Step 11: flag1=mod(pos,2)

Step 12: if flag1=0, go to step 13,else go to step 14
Step 13: flag=2

Step 14: flag=flag1

Step 15: Return flag to the calling function

G. Algorithm For Function Is_Changed

(number,position,forward_next,backward_next,block_size,u[],

v[],ct[],ff[],bf[])

Step-1: is number==0?

Step-2: if Step 1=TRUE,then go to sub=0 else go to Step 3

Step-3: if position=Call lastPosition(number,block_size) then
sub=ct[number] else go to Step 4

Step-4: [i,j]=Call

whatIsInBetween(number,length,v,next1,next2)

Step-5: if i <>j then go to step 6, else go to step 24

Step-6: if i=0 then set position_i=0 else go to step 7

Bhowmik et al. 248

Step-7: if v[Call lastPosition(i,block_size)]=number then set

position_i=Call lastPosition(i,block_size) else go to

Step-8

Step-8: set position_i=Call oldPosition(i,block_size)

Step-9: if j==0 then set position_j=0,else go to step 10

Step-10: if v[Call lastPosition(i,block_size)]=number, set
position_j=Call lastPosition(j,block_size),else go to

step 11

Step-11: set position_j=Call oldPosition(j,block_size)

Step-12: sub1=ct[number]-

isChanged(i,position_i,next1,next2,block_size,u,v,ct,

ff,bf)-

isChanged(j,position_j,next1,next2,block_size,u,v,ct,

ff,bf)

Step-13: [a,b]=CallwhatIsIn(number,block_size,next1,next2,v)

Step-14: if a=0 and b=0 then go to step 15,else go to step 18

Step-15: if number=block_size,set sub=sub1+bf else go to step

16
Step-16: if number=1 then set sub=sub1+ff else go to step 17

Step-17: sub=sub1

Step-18: flag= Call conditionCheck(number,a,b,block_size,v)

Step-19: if number=block_size and position=Call

oldPosition(number) and flag<>1 then go to Step 20,

else go to Step-21

Step-20: sub=sub1+bf

Step-21: Step 21: if number=1 and position=Call

oldPosition(number) and flag!=2 then go to Step 22,

else go to step 23

Step-22: sub=sub1+ff
Step-23: sub=sub1

Step-24: sub1=ct[number]-

isChanged(i,oldPosition(i),next1,next2,block_size,u,v

,ct,ff,bf)-

isChanged(i,lastPosition(i),next1,next2,block_size,u,

v,ct,ff,bf)

Step-25: [a,b]=whatIsIn(number,block_size,next1,next2,v)

Step-26: if a=0 and b=0 then go to step 27,else go to step 30

Step-27: if number==block_size then set sub=sub1+bf else go

to step 28

Step-28: if number==1 then set sub=sub1+ff,else go to step 29

Step-29: sub=sub1
Step-30: flag=Call conditionCheck(number,a,b,block_size,v)

Step-31: if number==block_size and position==Call

oldPosition(number,block_size) and flag!=1 go to

Step-32, else go to Step-33

Step-32: sub=sub1+bf

Step-33: if number==1 and position==Call

oldPosition(number,block_size) and flag<>2 then go

to Step 34, else go to step 35

Step-34: sub=sub1+ff

Step-35: sub=sub1
Step-36: Return sub to the calling function

H. Algorithm For Function What_Is_In
(number,block_size,forward_next,backward_next,v[])

Step-1: if number+backward_next<=block_size, then go to

Step-2,otherwise Step-3

Step-2: i=number+backward_next

Step-3: i=number+backward_next-block_size,

Step-4: if number-forward_next>=1 then go to Step-

5,otherwise go to Step-6
Step-5: j=number-forward_next

Step-6: j=number-forward_next+block_size,

Step-7: lastPos_number=Call lastPosition (number, block_size)

Step-8: if(i=j and i!=0) then go to Step-9,otherwise go to Step-

13

Step-9: if(Call lastPosition(i,block_size)>lastPos_number)

then go to Step-10,otherwise go to Step-11

Step-10: i=0

Step-11: if(Call oldPos(i,block_size)>lastPos_number) then go

to Step-12,otherwise go to Step-23

Step-12: j=0

Step-13: if(i!=0) then go to Step-14 otherwise go to Step-18
Step-14: if(Call lastPosition(i,block_size)>lastPos_number

and v(Call lastPosition(i,block_size))=number) then go to

Step-15,otherwise go to Step-16

Step-15: i=0

Step-16: if(Call oldPos(i,block_size,)>lastPos_number and

v(Call oldPos(i,block_size,))=number) then go to Step-

17,otherwise go to Step-18

Step-17: i=0

Step-18: if(j!=0) then go to Step-19 otherwise go to Step-23

Step-19: if(Call lastPosition(j,block_size,)>lastPos_number

and v(Call lastPosition(j,block_size,))=number) then go to
Step-20,otherwise go to Step-21

Step-20: j=0

Step-21: if(Call oldPos(j,block_size)>lastPos_number and

v(Call oldPos(j,block_size))=number) then go to Step-

22,otherwise go to Step-23

Step-22: j=0
Step-23: Return i and j to the calling function

I. Algorithm For Function What_Is_In_Between

(number,block_size,forward_next,backward_next,v[])

Step-1: (i,j)= Call

whatIsIn(number,block_size,,forward_next,backward_next,v[])

Step-2: if i=j and i!=0 and j!=0 then go to Step-3,otherwise go

to Step-10
Step-3: condition=(Call lastPosition(i,block_size,)>Call

oldPos(number,block_size,) and Call

lastPosition(i,block_size,)<Call

lastPosition(number,block_size,) and v(Cal

lastPosition(i,block_size,))=number)

Step-4: if condition=0 then go to Step-5,otherwise go to Step-

6

Step-5: i=0

Step-6: condition=(Call oldPosition(j,block_size,)>Call

oldPosition(number,block_size,) and Call

oldPosition(j,block_size,)<Call
lastPosition(number,block_size,) and v(Call

oldPosition(j,block_size,))=number)

Modified Advanced Feedback Encryption Standard Version-1 (MAFES-1) 249

Step-7: if condition=0 then got to Step-8, otherwise go to

Step-9

Step-8: j=0

Step-9: go to Step-20

Step-10: if i!=0 then go to Step-11,otherwise go to Step-15

Step-11: condition1=Call lastPosition(i,block_size,)>Call
oldPosition(number,block_size,) and Call

lastPosition(i,block_size,)<Call

lastPosition(number,block_size,) and v(Call

lastPosition(i,block_size,))=number

Step-12: condition2=Call oldPosition(i,block_size,)>Call

oldPos(number,block_size,) and Call

oldPosition(i,block_size,)<Call

lastPosition(number,block_size,) and v(Call

oldPosition(i,block_size,))=number

Step-13: if condition1=0 and condition=0 then go to Step-

14,otherwise go to Step-15

Step-14: i=0
Step-15: if j!=0 then go to Step-16,otherwise go to Step-20

Step-16: condition1=Call lastPosition(j,block_size,)>Call

oldPosition(number,block_size,) and Call

lastPosition(j,block_size,)<Call

lastPosition(number,block_size,) and v(Call

lastPosition(j,block_size,))=number

Step-17: condition2=Call oldPosition(j,block_size,)>Call

oldPosition(number,block_size,) and Call

oldPosition(j,block_size,)<Call

lastPosition(number,block_size,) and v(Call

oldPosition(j,block_size,))=number
Step-18: if condition1=0 and condition=0 then go to Step-

19,otherwise go to Step-20

Step-19: j=0
Step-20: Return i and j to the calling function

J. Algorithm For Function

GenerateList(block_size,forward_next,backward_next)

Step 1:-source=1.

Step 2:- i=1.

Step 3:-u[i]=source. /*u contains the source of the Feedback

Transfers.*/

Step 4:-if (u[i]+mod(next,length)) >length,then v[i]=u[i]+

mod(next,length) – length.

Step 5:- if (u[i]+mod(next,length)) <= length, then v[i]=u[i]+
mod(next,length).

Step 6:- source=source+1;

Step 7:- if i < (2*length); then i=i+2 and go to Step 3.

Step 8:-source= length.

Step 9:- i =2.

Step 10:-u[i]=source.

Step 11:-if (u[i]-mod(next,length)) < 1,then v[i]=u[i]-

mod(next,length) + length.

Step 12:- if (u[i]-mod(next,length)) >= 1, then v[i]=u[i] -

mod(next,length).

Step 13:- source=source-1;
Step 14:- if i < (2*length); then i= i+2 and go to Step 10.
Step 15:- Return Control to calling function, also return u[]
and v[] to the calling function.

K. Algorithm For Function OldPosition(number,block_size)

Step 1:-current_pos = Call last_Position_of (number, length);

Step 2:- first_pos = 2*length - current_pos+1;
Step 3:-Return Control to calling function, and return first_pos
to the calling function.

L. Algorithm For Function LastPosition(Number,Block_Size)

Step 1:-if number <= ceil (length/2); go to Step 3

Step 2:- if number >ceil (length/2); go to Step 4

Step 3:-last_ pos = 2*length - 2*(number-1);’
Step 4:- last_pos = 2*(number-1);
Step 5:- Return Control to calling function,and return last_pos
to the calling function.

M. Algorithm For Function Pt_Shift(num)

Step 1:- seq=Call generate_sequence(num)
Step 2:-pt_bits=Call convertToBits(pt)
Step 3:-shifted_pt_bits=Bit_Rotation(pt,bits,seq[],0)
Step 4:- shifted_pt_bytes=convertToBytes(shifted_pt_bits)
Step 5:-Return shifted_pt_bytes to calling function.

N.Algorithm For Function Ct_Shift(ct[],num)
Step 1:- seq=Call generate_sequence(num)
Step 2:-ct_bits=Call convertToBits(ct)
Step 3:-shifted_ct_bits=Bit_Rotation(ct,bits,seq[],1)
Step 4:- shifted_ct_bytes=convertToBytes(shifted_pt_bits)
Step 5:-Return shifted_ct_bytes to calling function.

O. Algorithm For Function convertToBits(a[])
Step 1:- k=1
Step 2:- i=1 to length of a[] Step=1 do
Step 3:-j=8 to 1 step=-1 do
Step 4:-aux[k]=Call bitget(a[i],j)
Step 5:=k=k+1;
Step 6:-If j>1 then go to Step 4 else go to Step 7
Step 7:-If i<length of a[] then go to Step 3 else go to Step 8
Step 8:-Return aux[] to the calling function.

P. Algorithm For Function convertToBytes(a[])
Step 1:- k=1
Step 2:- i=1 to (length of a[])/8 Step=1 do
Step 3:-sum=0
Step 4:-j=7 to 0 step=-1 do
Step 5:-sum= sum+a[k]*2^j
Step 6:-k=k+1
Step 7:-If j>0 then go to Step 5 else go to Step 8
Step 8:-b[i]=sum
Step 9:-If i<(length of a[])/8 then go to Step 3 else go to Step
10
Step 10:-Return b[] to the calling function.

Q. Algorithm For Function Generate_Sequence(num)
This function simply generates a sequence array according to
the generated keypad in order to make sure that the bits are
rotated in a dynamic fashion rather than in the same way every
round, which would render the rotation of bits impractical.

R. Algorithm For Function Bit_Rotation(b[],seq[],flag)
Step 1:-len= length of b[] array
Step 2:- n=Integral part of square root of len.

Bhowmik et al. 250

Step 3:-Array a[n][n] is filled row-major wise with the bits in
b[] array.
Step 4:-If flag=1(signifying Decryption), the seq[] array is
reversed.
Step 5:- The 24 different bit shifting and shuffling functions
are called in a sequence given by the seq[] array.
Step 6:- Jumbled bits are copied back into the b[] array.
Step 7:- b[] array is returned to the calling function.

The shifting and shuffling functions are:

1) Diagonal1_Down_Shift:- In this function, the major

diagonal is shifted one place downwards, the shifting
being cyclic.

2) Diagonal2_Down_Shift:- In this function, the second

diagonal is shifted one place downwards, the shifting
being cyclic.

3) Diagonal1_Up_Shift:- In this function, the major

diagonal is shifted one place upwards, the shifting
being cyclic.

4) Diagonal2_Up_Shift:- In this function, the second
diagonal is shifted one place upwards, the shifting
being cyclic.

5) Exchange_Diagonals_ColumnWise:- In this function,

the two diagonals in the bit matrix are exchanged
with each other column wise.

6) Exchange_Diagonals_RowWise:- In this function, the
two diagonals in the bit matrix are exchanged with
each other row wise.

7) Flip_Diagonal1:- In this function, the order of the

major diagonal elements is reversed.

8) Flip_Diagonal2:- In this function, the order of the
second diagonal elements is reversed.

9) Up_Shift_Even:- In this function, Even rows are

shifted upwards by one.

10) Down_Shift_Even:- In this function, Even rows are
shifted downwards by one.

11) Up_Shift_Odd:-In this function, Odd rows are shifted

upwards by one.

12) Down_Shift_Odd:-In this function, Odd rows are
shifted downwards by one.

13) Exchange_Even_Column:-In this function, Even

columns are exchanged with each other.

14) Exchange_Odd_Column:-In this function, Odd
columns are exchanged with each other.

15) Exchange_Even_Row:- In this function, Even rows

are exchanged with each other.

16) Exchange_Odd_Row:- In this function, Odd rows are

exchanged with each other.

17) Left_Shift_Even:- In this function, Even rows are
shifted one place to the left.

18) Left_Shift_Odd:- In this function,Odd rows are

shifted one place to the left.

19) Right_Shift_Even:- In this function,Even rows are
shifted one place to the right.

20) Right_Shift_Odd:- In this function,Odd rows are

shifted one place to the right.

21) Rotate_Even_AntiClockwise:- In this function, Even
interior circles are rotated AntiClockwise.

22) Rotate_Odd_AntiClockwise:- In this function,Odd

interior circles are rotated AntiClockwise.

23) Rotate_Even_Clockwise:- In this function,Even
interior circles are rotated Clockwise.

24) Rotate_Odd_Clockwise:- In this function,Odd interior

circles are rotated Clockwise.

III. Results And Discussions

A. Encryption Of Small Plain Texts With Given Seed

In the table given below, there are many instances where we

observe for the same seed, almost similar Plain Texts in SL.

NO 1 , 2 and 3, NO. 4 ,5 and 6, NO. 9 and 10, the Cipher

Texts are totally haphazard thus rendering the Plain Text
irretrievable. Therefore, for slightly bigger Plain Texts the

retrieval of the Plain Text becomes almost impossible for any

machine as well unless the key, i.e seed is known.

Modified Advanced Feedback Encryption Standard Version-1 (MAFES-1) 251

Table-I. Small test cases

B. Encryption Of a Paragraph With Given Seed

In the encrypted Cipher Text shown below we get a better

example of the efficiency of our algorithm since the size of

each block in every iteration of the encryption process plays

an important role in completely diffusing the Plain Text into a

seemingly random and completely incomprehensible Cipher
Text.

Table-II: Encryption of a paragraph with seed “Xaviers”

C. Graphs and Frequency Analysis Charts

The graphs given below give us a good estimate of the

randomness of the occurrence frequencies of the different

ASCII characters. In the ASCII ‘0’, ASCII ‘1’ charts we get

varied results even when we encrypt the same character over

and over again.

Figure 1. Frequency Spectral Analysis of ASCII ‘0’ for

Modified AFES Ver-1

Figure 2. Frequency Spectral Analysis of ASCII ‘1’ for

Modified AFES Ver-1

SL
.

N

O.

PLAIN

TEXT

SEED CIPHER TEXT

(Ver-1)

1 AAAAA

A

Xaviers _N†ÛH•

2 BAAAAA

Xaviers Z_Ã_v°

3 CAAAAA Xaviers _/Æ ß__

4 ABABAB Xaviers Å³+_U_

5 ACACAC Xaviers ~Œ'ôï

6 BCBCBC

B

Xaviers ,ÖV£À_ø

7 AAABAA

A

Xaviers …”³ 8Ÿµ

8 AAACAA

A

Xaviers ‰U6â? 7

9 AABAAB

A

Xaviers “Ø¸æF_>

10 AACAAC

A

Xaviers ’_5¦@_?

Plain text Cipher text

St. Xavier's has always
been known for his

cosmopolitan and

national character.

Much before the

expression "national

integration" gained

currency, St. Xavier's

had tried to foster

among its students the

spirit and practice of it.

Coming as they do

from all over India and
from various

communities, they live

in complete harmony,

understanding and

mutual respect. Thus

they are encouraged to

develop beyond local

and group affinities,

loyalties to the country

and the society at

large.

M({Æ(ýoÈƒõãÃ®¾7_@ž‹_~Žã
Ïíƒ??£_~föë_Cùº—¨YÎi‚_v

?@_v?yWOû_ºÜ¨ÙµO_¨;ŠÆî\b

__?FÅž>_ˆ•Jv¶æ%‰'¨là²”Ç–

DöÞð¼ük_ŒûJUyÛ_ñ_ø¸Á¼õR

¿zè±ö<pG_³cãwºš_ÆS°üÀ¶LêÉ

@u_Y¡²Ì_y®E”«?+úE0_P

†«ým-'5

èç_ –

ç¢Îêþ¨¹Ü?__¨òuZam?(ÒŠÓ!¶1n

«V[,~ºO^½Œé})Ÿ¯àŸ!_P‚Š¸±¸ü

ùD_¤E5B[_6.?Â_I?Àù

\“p¨!ü5bŠ•ãü}~¹fp_‰_?”Ò_÷ùÙ
_;/œþ–žj?-

@HŽ$¸åµE_ÈzÉ„¹BÄ2_5$I__s

©ÇÂ/E?Øå…—4f¶è>

ÊØ sôA_HýOîÅ_þÃ_?Þ‚þ~àécö

z_h[»b$ªÍÜ,úçãZ.#åù¡™Ä_«TN

‚çp8?À¯ªÙxPF ¼…uÏ_%>‘ê¿

Š¾ì¡"#(mãñÀÄa{3‹÷%Øn_ˆ;¨gT

_Déý§[â‘û³¼É¤·!2°î)H_é“¸ø?Ï?ù

_œ‡

EègÉüè

°_»»(ûPâÂ_íé[_@

Bhowmik et al. 252

IV. Conclusion And Future Scope

The present method has been tested on various types of files
such as .doc, .jpg, .bmp, .exe, .com, .dbf, .wav, .avi and the
results were quite satisfactory. The encryption and decryption
methods work smoothly. In the present method the encrypted
text cannot be decrypted without knowing the exact initial
keypad. The results show that, the set of strings where there is
a difference in only one character in the plain text, the
encrypted texts are coming totally different from each other.
The present method is free from any kind of brute force attack
or known plain text attack. The present Modified AFES Ver-1
may be applied to encrypt any short message, password,
confidential key and even images and other file types as well.
One can apply this method to encrypt data in sensor networks
as well.

V. Acknowledgment

The authors are extremely grateful to the Department of
Computer Science for giving the opportunity to work on
symmetric key Cryptography. A.N sincerely expresses his
gratitude to Fr. Dr. Felix Raj, Principal of St. Xavier’s College
(Autonomous) for giving constant encouragement regarding
research in the field of cryptography.

VI. References

[1] Purnendu Mukherjee, Prabal Banerjee, AsokeNath,

“Multi Way Feedback Encryption Standard Ver-

I(MWFES-I)”, International Journal of Advanced

Computer Research(IJACR), Volume-3, Number-3,

Issue-11, September 2013, Pages:176-182.

[2] Prabal Banerjee, Purnendu Mukherjee, AsokeNath,

“Modified Multi Way FeedbackEncryptionStandard :Ver-

I (MMWFES-I)”, International Journal of Advanced

Computer Research(IJACR),Vol-3, No.1, Issue-13, Page

352-360, Dec(2013).

[3] AsokeNath, DebdeepBasu, Ankita Bose,

SaptarshiChatterjee, SurajitBhowmik,, “Multi Way

Feedback Encryption Standard Ver-2(MWFES-2),”

International Journal of Advanced Computer

Research(IJACR), Vol-3, Number-1, Issue-13, Page-

29-35, Dec(2013).

[4] SaptarshiChatterjee, DebdeepBasu, Ankita Bose,
SurajitBhowmik, AsokeNath,, “Modified Multi Way

Feedback Encryption Standard Ver-2(MMWFES-2),”

JGRCS, Vol-4, No. 12, December, 2013, Page 8-13(2013).

[5] AsokeNath,DebdeepBasu, Ankita Bose,

SaptarshiChatterjee and SurajitBhowmik “Multi Way

Feedback Encryption Standard Ver-3(MWFES-3),”

published in IEEE conference proceedings: WICT-2013

held at Hanoi in Dec 14-18(2013), page 318-325(2013).

[6] AsokeNath, Payel Pal, “Modern Encryption Standard

Ver-IV(MES-IV),” International Journal of Advanced

Computer Research(IJACR), Volume-3, Number-3,

Issue-11, September 2013, Page:216-223.

[7] AsokeNath, BidhusundarSamanta, “Modern Encryption

Standard Ver-V(MES-V),” International Journal of

Advanced Computer Research(IJACR), Volume-3,

Number-3, Issue-11, September 2013, Pages:257-264.

[8] AsokeNath,SaimaGhosh,MeheboobAlamMallik,“Symmet

ric Key Cryptography using Random Key generator”
Proceedings of International conference on security and

management(SAM ’10) held at Las Vegas, USA July 12-

15, 2010), Vol-2, Page: 239-244(2010).

[9] DriptoChatterjee, JoyshreeNath, SoumitraMondal,

SuvadeepDasgupta, AsokeNath, “Advanced Symmetric

key Cryptography using extended MSA method: DJSSA

symmetric key algorithm”, Journal of Computing, Vol 3,

Issue-2, Page 66-71,Feb(2011).

[10] DriptoChatterjee, JoyshreeNath, SuvadeepDasgupta and

AsokeNath, “A new Symmetric key Cryptography

Algorithm using extended MSA method: DJSA

symmetric key algorithm,” Proceedings of IEEE

International Conference on Communication Systems and

Network Technologies, held at SMVDU(Jammu) 03-06

June,2011, Page-89-94(2011).

[11] NeerajKhanna, JoelJames,JoyshreeNath,

SayantanChakraborty, AmlanChakrabarti, AsokeNath,

“New Symmetric key Cryptographic algorithm using

combined bit manipulation and MSA encryption

algorithm: NJJSAA symmetric key algorithm”,

Proceedings of IEEE CSNT-2011 held at

SMVDU(Jammu) 03-06 June 2011, Page 125-130(2011).

[12] DriptoChatterjee, JoyshreeNath, Sankar Das,

ShalabhAgarwal, AsokeNath, “Symmetric key

Cryptography using modified DJSSA symmetric key

algorithm”, Proceedings of International conference

Worldcomp 2011 held at Las Vegas 18-21 July 2011,

Page-306-311, Vol-1(2011).

[13] Debanjan Das, JoyshreeNath, Megholova Mukherjee,
NehaChaudhury and AsokeNath, “An Integrated

symmetric key cryptography algorithm using generalized

vernam cipher method and DJSA method: DJMNA

symmetric key algorithm”, Proceedings of IEEE

International conference: World Congress WICT-2011

held at MumbaiUniversity 11-14 Dec, 2011, Page

No.1203-1208(2011).

[14] Trisha Chatterjee, Tamodeep Das, JoyshreeNath,

ShayanDey and AsokeNath, “Symmetric key
cryptosystem using combined cryptographic algorithms-

generalized modified vernam cipher method, MSA

method and NJJSAA method: TTJSA algorithm”,

Proceedings of IEEE International conference: World

Modified Advanced Feedback Encryption Standard Version-1 (MAFES-1) 253

Congress WICT-2011 t held at MumbaiUniversity 11-14

Dec, 2011, Page No. 1179-1184(2011).

[15] Symmetric key Cryptography using two-way updated
Generalized Vernam Cipher method: TTSJA algorithm,

International Journal of Computer Applications (IJCA,

USA), Vol 42, No.1, March, Pg: 34 -39(2012).

[16] Satyaki Roy, NavajitMaitra,

JoyshreeNath,ShalabhAgarwal and AsokeNath, “Ultra

Encryption Standard(UES) Version-I: Symmetric Key

Cryptosystem using generalized modified Vernam Cipher
method, Permutation method and Columnar Transposition

method”, Proceedings of IEEE sponsored National

Conference on Recent Advances in Communication,

Control and Computing Technology -RACCCT 2012, 29-

30 March held at Surat, Page 81-88(2012).

[17] SomdipDey, JoyshreeNath, AsokeNath, “An Integrated

Symmetric Key Cryptographic Method – Amalgamation

of TTJSA Algorithm, Advanced Caeser Cipher Algorithm,
Bit Rotation and reversal Method: SJA Algorithm”,

International Journal of Modern Education and Computer

Science, (IJMECS), ISSN: 2075-0161 (Print), ISSN:

2075-017X (Online), Vol-4, No-5, Page 1-9,2012.

[18] SomdipDey, JoyshreeNath, AsokeNath, “An Advanced

Combined Symmetric Key Cryptographic Method using

Bit manipulation, Bit Reversal, Modified Caeser
Cipher(SD-REE), DJSA method, TTJSA method: SJA-I

Algorithm,” International Journal of Computer

Applications(IJCA 0975-8887, USA), Vol. 46, No.20,

Page- 46-53,May, 2012.

[19] Satyaki Roy, NavajitMaitra, JoyshreeNath,

ShalabhAgarwal and AsokeNath, “Ultra Encryption

Standard(UES) Version-IV: New Symmetric Key

Cryptosystem with bit-level columnar Transposition and
Reshuffling of Bits”, International Journal of Computer

Applications(IJCA)(0975-8887) USA Volume 51-

No.1.,Aug, Page. 28-35(2012)

[20] NeerajKhanna, DriptoChatterjee, JoyshreeNath and

AsokeNath, “Bit Level Encryption Standard(BLES) :

Version-I,” International Journal of Computer

Applications(IJCA)(0975-8887) USA Volume 52-

No.2.,Aug, Page.41-46(2012).

[21] Prabal Banerjee, AsokeNath, “Bit LevelGeneralized

Modified Vernam Cipher Methodwith Feedback”,

Proceedings of International Conference on Emerging

Trends and Technologies held at Indore, Dec 15-16,2012.

[22] Prabal Banerjee, AsokeNath, “Advanced Symmetric Key
cryptosystem using Bit andByte Level encryption

methods with Feedback”, Proceedings of International

conference Worldcomp 2013 held at Las Vegas, July

2013

[23] Ankita Bose, DebdeepBasu, SaptarshiChatterjee,

AsokeNath, SurajitBhowmik, “Bit Level Multi Way

Feedback Encryption Standard Version-1(BLMWFES-1)”,

Paper presented at IEEE conference proceedings CSNT
2014 held at Bhopal on 7-9th April, 2014.

[24] AsokeNath, SurajitBhowmik, DebdeepBasu, Ankita Bose,

SaptarshiChatterjee, “Bit Level Multi Way Feedback

Encryption Standard Version-1(BLMWFES-2)”, Paper

presented in IEEE conference proceedings

ICACCCT2014, held at Ramanathapuramon 8-10th May,

2014.

[25] DebdeepBasu, Ankita Bose, SurajitBhowmik,

SaptarshiChatterjee, AsokeNath, “Advanced Feedback

Encryption Standard Version – 1 (AFES-1)”, Paper

accepted for publication in IEEE conference International

Conference on Advances in Computing, Communications

and Informatics (ICACCI-2014)to be held at GCET,

Greater Noida, Delhi, India during September 24-27,

2014.

Short BiodataOf All The Authors

1
Surajit Bhowmik is pursuing his Bachelor Of Science

(Computer Science Honors) at St. Xavier’s,College

(Autonomous),Kolkata, India. He was born in Kolkata on

24.05.1994. He is presently involved in research work in

Cryptography.

Bhowmik et al. 254

2
Debdeep Basu after passing her B.Sc. in Computer

Science from St. Xavier’s College(Autonomous) now is

pursuing his M.Sc. in Computer Science from Benaras

Hindu University, India. He was born in Kolkata on

03.08.1993. He is presently involved in research work in
Cryptography.

3
Ankita Bose after passing her B.Sc. in Computer Science

from St. Xavier’s College(Autonomous) now is pursuing

her M.Sc. Computer Science from Benaras Hindu

University. She was born in Kolkata on 15.02.1993. She is

presently involved in research work in Cryptography.

4
Saptarshi Chatterjee after passing her B.Sc. in Computer

Science from St. Xavier’s College(Autonomous) now is

pursuing his M.Sc Computer Science at

St.Xavier’s,College(Autonomous),Kolkata. He was born in

Kolkata on 17.04.1993. He is presently involved in research
work in Cryptography.

5
Asoke Nath is the Associate Professor in Department of

Computer Science. Apart from his teaching assignment he is

involved with various research work in Cryptography,

Steganography, Green Computing, E-learning, Big Data

handling. He has presented papers and invited talk, keynote

address and tutorials in different International and National

conferences in India and in US, Vietnam etc.

