
Journal of Information Assurance and Security 4 (2009) 91-105

COTraSE
CONNECTION ORIENTED TRACEBACK IN

SWITCHED ETHERNET
Marios S. Andreou and Aad van Moorsel

∗School of Computing Science, Claremont Tower
Newcastle University, Newcastle upon Tyne, U.K. NE1 7RU

[M.S.Andreou] [Aad.vanMoorsel] @ncl.ac.uk

Abstract: Layer 2 Traceback is an important component of
end-to-end packet traceback. Whilst IP Traceback identifies
the origin network, Layer 2 Traceback extends the process to
provide a more fine-grained result. Other known proposals
have exposed the difficulties of Layer 2 Traceback in
switched ethernet. We build on our earlier “switch-SPIE”
and improve in a number of dimensions. Memory require-
ments are decreased by maintaining ‘connection records’
rather than logging all frames. Our switchport resolution
algorithm provides error detection by correlating MAC ad-
dress table values from two adjacent switches. Our solution
also takes stock of potential transformations to packet data
as this leaves the local network. We have implemented the
core algorithm and used data from available WAN traces
to demonstrate the potential memory efficiency of our
approach.

Keywords: IP Traceback, Layer 2 Traceback, switched Ether-
net traceback, network data retention, network accountabil-
ity, EU 2006/24/EC.

I. Introduction

In receiving an IP packet, the header source address is often
taken as an indication of the originating machine’s identity.
However, the Internet Protocol does not prevent creation of
packets with forged source address. Explicit generation of
these ‘spoofed’ packets requires a degree of planning and ef-
fort and so they are often associated with malevolent network
activities [1]. The most widely known of these are Denial of
Service attacks; it is obvious for instance that obscuring the
origin of an attack may prolong its effects.
Another form of ‘spoofing’ that is typically transparent to the
user results from commonly employed resource provisioning
mechanisms. In a Local Area Network (LAN), a number of
machines may share a smaller number of public IP addresses
through the use of Network Address Translation (NAT), and

Received June 10, 2009

repetitive requests for commonly accessed web pages are
minimized with a proxy web cache. This results in the source
IP address and TCP or UDP port numbers of packets being
overwritten with those chosen by a gateway router.
Systems that aim to identify a given IP packet’s originating
machine, regardless of forged or overwritten source address
are termed IP Traceback, and a great number of proposals
exist in this area (see [2] through [24]). A common short-
coming, however, is the trace result’s granularity. IP Trace-
back reveals the origin network, but not the origin host (i.e.,
at best one identifies the origin’s first hop router [25]).
A sub-domain of IP Traceback has emerged in recent years
to counter this shortcoming, with proposals for “Layer 2”
traceback (L2 Traceback). Generally, these ‘internal’ trace-
back systems extend the tracking process beyond the leaf
router, into the originating network [25, 26, 27], allow-
ing the source of packets to be identified despite possibly
spoofed MAC and IP addresses. Insights provided by our
earlier work [27] enabled the development of COTraSE, a
‘connection-oriented’ logging based traceback system for
Switched Ethernet. COTraSE decreases storage requirements
whilst maintaining the requirement of accountability for any
given packet. Uniquely, we correlate MAC address table
(MAC-table) entries from two adjacent switches to establish
causality between a MAC-address and the origin switch-port.
This “switchport resolution” allows us to identify a number
of potentially malevolent conditions as we will see.
Furthermore, COTraSE makes no assumptions about net-
work topology and provides for any potential transforma-
tions to the IP and TCP/UDP header data as this leaves
the LAN. An ideal deployment providing trace results with
the highest granularity requires logging between all network
switches, however COTraSE accommodates partial deploy-
ment by ‘pointing’ towards the origin host. We have imple-
mented the core algorithm which takes as input anonymised
WAN traces from [28, 29, 30], to enable discussion of mem-
ory requirements in Section 4.

1554-1010 $ 03.50 Dynamic Publishers, Inc.

92 Andreou and Moorsel

Known L2 Traceback approaches do not take into account
potential transformations to packet data as this exits the lo-
cal network (e.g., due to NAT). As a result, it is not possible
to service traceback requests from non local hosts, and so
the utility of such systems in real world scenarios is some-
what limited. Even if the eventual wide-spread adoption of
IPv6 renders NAT obsolete, mechanisms with similar conse-
quences (such as web-caching) will still be a necessary part
of a typical LAN deployment (especially so for larger cor-
porate/university networks). COTraSE maintains translation
logs at the exits of the local network to resolve issues arising
from NAT and similar mechanisms.
COTraSE was in part motivated by EU Directive 2006/24/EC
“on the retention of data ...” [31]. The core requirement of
this European legislation is for providers of “publicly avail-
able electronic communications services” to maintain “com-
munication records”, akin to those maintained by providers
of mobile telephony. We will see that the connection records
created by COTraSE are a good match for the “communica-
tions records” required by Directive 2006/24/EC. Moreover
we consider all work in the areas of logging based IP and
L2 Traceback as directly relevant in exposing the difficulties
faced by any implementation of this pan-European “data re-
tention” system.
A preliminary version of this paper was presented at IAS
2008 [32]. In this article we outline our L2 Traceback sys-
tem requirements and explain how COTraSE improves over
our earlier switch-SPIE [27]. We provide supplementary de-
tails of the WAN trace data used by our implementation and
expand on the calculation of COTraSE memory requirements.
We also provide additional background material to aid the
reader, including a discussion of the related Netflow system.
In particular we consider how the flow expiration mecha-
nisms adopted by Netflow differ from those of COTraSE and
how this affects L2 Traceback.
The next section presents background on switched ethernet
and related work in the area of L2 Traceback. Section 3 gives
our L2 Traceback system requirements with a brief discus-
sion of improvements made by COTraSE . Section 4 contains
the details of the COTraSE system and Section 5 provides de-
tails of its implementation. Section 6 considers deployment
issues and includes a discussion of Netflow. Finally we con-
clude in Section 7.

II. Background

Determining the source of an IP packet may require up to
three stages [26]. In stage 1, IP Traceback can reveal the
origin network and in stage 2, Layer 2 traceback reveals the
origin host. In the case of overwritten addresses as in NAT,
stage 1 is not necessary as the IP address can be assumed to
be correct and the network is identified by default. Finally,
if stage 2 reveals a ‘zombie host’ then stage 3, ‘Connection
(chain) traceback’ [33] may identify the true origin. COTraSE
is an L2 Traceback solution, thus targeting phase 2.

Generally, L2 Traceback systems combine switch identifier
sID and switchport number pNO to uniquely identify each
host on the L2 network. They borrow from IP Traceback in
their overall approach, that is, packet marking, messaging or
logging.

Switched ethernet and L2 Traceback

A switched environment means that each host gets a dedi-
cated link to the switch, and so medium access contention is
eliminated. This bears upon the design of our L2 Traceback
system in two ways, one of which positive and one negative.
The negative consequence of a dedicated link is that there
is no single vantage point from which to observe all traffic
generated by the switch’s connected hosts [34]. That is, each
(unicast) ethernet frame is ‘switched’ from ingress to egress
switchport and cannot be observed by a host on any other
switchport. Our earlier work relied on switchport mirroring
to overcome this issue [27]. In COTraSE we instead deploy
logging at a tap between switches, as we will see.
The positive consequence of providing each host with an ex-
clusive link is the need to create and maintain a MAC address
table (MAC-table). This table associates the MAC address of
each host with the switchport to which that host is connected.
Thus, to correctly forward frames switches consult the MAC-
table to determine the appropriate egress port. MAC-tables
are constructed through a ‘learning’ process. A MAC ad-
dress is reachable over the port from which traffic carrying
that address as source was most recently seen. Each address
can only be listed once; thus, if a host moves to another port
(or the source MAC is forged), the MAC-table is updated.
That is, ethernet switches submit all correctly received user
data frames to the switch’s ‘Learning process’ [35].
Each COTraSE logging node maintains local copies of the
MAC-tables from its two adjacent switches to determine the
origin switchport of received frames. Local MAC-tables are
updated from the switch MAC-table at some predetermined
rate, as we will explain.

Link-Layer Traceback in Ethernet Networks [26]

‘Tagged Frame Traceback’ (TRACK) [26] is unique in using
a hybrid approach, with both packet marking and logging el-
ements. Tags are applied to ethernet frames by an in switch
process. Each tag includes a keyed-Hash Message Authen-
tication Code over the first 32 bytes of IP data carried by its
frame. A separate process in the ‘Analysis and Collection
Host’ removes and logs the tags with links to a sorted ‘host
table’ (each host is sID + pNO).
This very interesting proposal trivialises a core process of
other known solutions: establishing causality between a
given frame and the originating switchport (pNO). TRACK
assumes an in switch process, and we agree that this is
the best vantage point for establishing pNO. However,
implementing traceback ‘in switch’ assumes functionality

Connection Oriented Traceback in Switched Ethernet 93

that is (typically) not available.

Layer-2 Extension to Hash-Based IP Traceback [25]

Hazeyama et al [25] are the first to adapt the Source Path
Isolation Engine (SPIE) for switched ethernet. SPIE is a log-
ging IP Traceback system where a ‘Data Generation Agent’
(DGA) logs a hashed digest of each packet forwarded by a
router [3, 36] using bloom filters to achieve significant mem-
ory efficiency.
In [25] the authors deploy their extended DGA (xDGA),
within gateway routers. For each received frame, sID is in-
ferred from the frame destination MAC address (i.e., that of
the recipient router interface). By maintaining a local copy of
each switch MAC address table (MAC-table) and given sID,
the appropriate MAC-table is used to obtain the port number
pNO based on the frame source MAC address. The sID and
pNO are included in the digest input.
Using a single bloom filter for all packets makes traceback
request processing expensive. More significantly, a specific
topology is required where all hosts are separated from the
network ‘edge’ by only a single switch, as otherwise sID
cannot be inferred from destination MAC addresses.

Logging Based IP Traceback in Switched Ethernets [27]

Our earlier work [27] is a second adaptation of SPIE for
switched ethernet, where we addressed difficulties encoun-
tered by the proposal above. We log at each switch with a
tap-box running our switch-DGA, which receives traffic from
‘port mirroring’. Switch-DGA uses a bloom filter array, with
an element for each switch port. The hash output is stored in
the bloom filter representing the origin port, established from
the local switch MAC-table. When querying archived bloom
filters the given array index reveals the source pNO.
A major problem encountered was that though the switch
could reliably mirror traffic with little affect to the ‘primary’
switching functions, the port and host receiving mirrored
traffic were quickly overwhelmed. More significantly, we
also realised that none of the known approaches to L2 Trace-
back (including our own) considered the effects of NAT and
other such processes, as mentioned earlier.

III. Requirements and Contributions

COTraSE is a logging based Layer 2 traceback system de-
signed for switched ethernet networks. Through switch-SPIE
we improved over other L2 Traceback solutions by providing
L2 Traceback independent of the topology of the switched
Ethernet network. With COTraSE we further improve on
switch-SPIE in terms of memory usage, by removing the log-
ging bottleneck from the switches, by abandoning bloom fil-
ters (and its associated false positives) without incurring ex-
cessive storage costs, and by accounting for NATs and simi-
lar devices in our solution. We discuss these contributions in

this section.
The generic requirements for any L2 Traceback system are
as follows:

1. Identifies the origin switch ID and port number
{sID, pNO} of any given packet originating within the
deployment network (within a bounded traceback win-
dow)

2. Requires no changes to existing network infrastructure
or protocols.

3. Traceback enabling procedures (i.e. logging) should be
considerate of user privacy.

4. The traceback result must be reliable.

5. Supports partial deployment and be applicable to any
network topology.

6. Memory requirements at packet logs must be realistic.

With regards to identifying sID and pNO, COTraSE assumes
that the source MAC address of all frames may be spoofed
and so cannot be taken “at face value”. COTraSE also allows
for tracing despite “legitimate” spoofing, such as when Net-
work Address Translation (NAT) is employed. This ability
of COTraSE to traceback regardless of any legitimate spoof-
ing is also relevant to requirement 2 by removing the conflict
between logging based L2 Traceback systems and widely im-
plemented mechanisms such as NAT.
COTraSE protects user privacy through encryption of logged
data. This was also the case in switch-SPIE, where encryp-
tion additionally served the purpose of decreasing memory
requirements. COTraSE does not rely on encryption to de-
crease memory requirements and instead adopts a “connec-
tion oriented” approach to logging. That is, the use of en-
cryption is entirely for the preservation of user privacy. It
could even be argued that the use of encryption in COTraSE
is “overkill” as the data logged is drawn only from the head-
ers of the Data-link, Network and Transport layers, with the
payload not processed at all. In situations where performance
of logging nodes is an issue then connection records may
be stored in cleartext, avoiding costly cryptographic hashing
routines.
Requirement 4, reliability of the trace result, is an area where
COTraSE makes significant contributions. We feel that this is
important in light of the intended use of data retained un-
der EU directive 2006/24/EC. It must not be trivial to cre-
ate traffic that implicates an innocent third party. COTraSE
does not rely on bloom filters to decrease memory require-
ments and so false positives are eliminated alltogether. Fur-
thermore, our switchport resolution algorithm (attributing a
frame to a source switchport based on the source MAC ad-
dress) makes use of two switch MAC tables to make condi-
tions more adverse for an attacker. Finally, COTraSE does not
rely on switchport mirroring to overcome the switched ether-
net traffic visibility issue. The unreliability of port mirroring

94 Andreou and Moorsel

with increasing load was demonstrated by our experiments
[27].
COTraSE offers increased support for partial deployment. In
switch-SPIE we logged data from access ports, whilst switch
link ports were not monitored at all. However, this is reversed
in COTraSE where we exclusively log at switch link ports. An
ideal deployment requires logging between every network
switch. Only the logging node adjacent to a given frame’s
origin switch can provide us with the unique {sID, pNO} to
identify the origin host. However, given that we monitor link
ports, a frame will be processed by all logging nodes en route
to the gateway router. Thus, all logging nodes will ‘point’ to-
wards the instigating origin within the local network. Thus,
even in a partial deployment COTraSE can aid in identifying
this host.
Finally, a decrease in memory requirements is another con-
tribution of COTraSE. The aforementioned EU Directive
2006/24/EC requires that network data be retained for “peri-
ods of not less than six months and not more than two years”.
This is a much larger “traceback window” than that consid-
ered by any known L2 Traceback systems; in switch-SPIE
for instance we discussed memory requirements in terms of
minutes, not months. Thus, the efficiency of logging is a cru-
cial factor in the real world utility of L2 Traceback systems.
However, we will see that also using COTraSE it is more re-
alistic to think in minutes than in days or months.

IV. COTraSE

The main idea behind COTraSE is that the series of pack-
ets exchanged to complete one interaction between peer net-
work processes, will all have the same source and destination
Data-link (MAC), Network (IP) and Transport layer (TCP or
UDP) addresses. This data can therefore be used as a con-
nection identifier (conId) for a given communication. (The
term connection-oriented in COTraSE refers to this idea.) In
so doing, memory requirements are decreased, attributing
frames to connections and logging representative ‘connec-
tion records’ (conRecs) for each interval rather than explic-
itly logging all frames. It should be noted that a similar ap-
proach is used in router-deployed NetFlow [37], but NetFlow
is tailored to performance management, and can therefore not
be used directly for traceback. We will examine the differ-
ences between NetFlow and COTraSE in Section VI-A. Note
furthermore that one can group packets in ‘connections’ even
in the absence of TCP or UDP at the transport layer, as we
will see in Section IV-A.
An overview of the COTraSE system is given in Figure
1. As can be seen, a conRec log is deployed between
ethernet switches, processing traffic from the switch link
ports. That is, rather than switchport mirroring as in switch-
SPIE [27], COTraSE logs between switches with a passive
‘tap’. This may be achieved using dedicated hardware, or
with an inexpensive ethernet hub placed between the two
switches. Though all ethernet frames are processed and un-

switch
s1

Gateway
router

L2 network
boundary

conRec Log 1conRec Log N

Connection Records

<<conId, time, sID, pNO, flags>>

hash{srcMAC,dstMAC,srcIP,dstIP,srcPort,dstPort}

(...)
switch

s2

(hosts)

(...)

transRec Log

<<conId_orig, conId_mod, time>>
Translation Records

Figure. 1: COTraSE - conRec and transRec Logs

dergo “switchport resolution” (see Section IV-B), only a sub-
set are eventually logged as connection records. In addition,
a separate process at the network edge maintains ‘transla-
tion records’ (transRecs), addressing the issue of legitimate
spoofing (as in NAT). Note that depending on the length of
the COTraSE purge interval (Section IV-A) there may be a
number of conRec logs for each connection, but only a sin-
gle transRec log is required and placed at the gateway router.

A. Connection Record Logs

Each connection record (conRec) consists of connection
identifier (conId), timing and origin information. The origin
host on the layer 2 network is identified by the unique pair-
ing of switch identifier sID and switchport number pNO.
To derive the connection identifier (conId) for each received
frame, we use a cryptographic hash function over the data-
link, network and transport layer addresses (MAC, IP,
TCP/UDP data). Together, these addresses uniquely identify
a specific communication between two peer processes.
For each frame received at a conRec log, conId is com-
puted and used to make a new working record (wRec). After
switchport resolution (explained in Section IV-B), each wRec
becomes ‘active’ only if there is no existing active wRec with
the same connection identifier. This means that at a given
time only one active wRec will exist for each unique com-
munication between peer network processes.
The active wRecs are cleared at the end of each ‘purge in-
terval’. To make this precise, let the set of active working
records {AwRecs} represents all currently ongoing commu-
nications. At the end of each purge interval, for every ac-
tive w ∈ {AwRecs} a new connection record is created and
moved to permanent storage. In the next purge interval, the
first frame for each connection will become the new active
wRec and a new set of active working records is populated
and maintained until the next purge interval.
A conceptual overview of this process is given in Figure 2,
which depicts the progression from ethernet frame to con-
nection record, for 12 frames of the same connection. The

Connection Oriented Traceback in Switched Ethernet 95

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

X X X X X X X

1 3 6 108

0t

conRec B conRec C conRec D conRec E

0t 1t 2t 3t 4t 5t 6t

1t 2t 3t 4t 5t 6t

ethernet

frames

s
ta

te
s
ta

te
wRecs

active

wRecs

conRecs

purge interval t

(time)(time)

(time)(time)

conRec A

Figure. 2: conRecs from 12 frames of the same connection

horizontal axis shows time expressed in terms of purge inter-
vals of length t. During the first interval 0t ↔ 1t two frames
are received and a wRec created for both. However, only the
wRec of frame 1 becomes active whilst the wRec of frame 2
is discarded (shown as X). After the first purge interval has
elapsed (1t) the information contained within active wRec 1
is used to create conRec A. At the end of the depicted time
period (6t) a total of five connection records are required to
represent the 12 frames.
When processing traceback requests, COTraSE can provide
the purge interval of length t during which a given frame was
processed (if at all). There is an inherent space/time tradeoff
in setting the length of the active connections purge interval.
A larger interval means that more frames are represented by
a single connection record, thus decreasing memory require-
ments. However this also means that identifying the time the
packet was sent becomes less precise, since it can only be
done with a precision equal to the length of the purge inter-
val. We will examine the bounds of the purge interval in our
discussion of timing parameters in Section IV-C.
For non TCP/UDP traffic and in the absence of Transport
layer port numbers, deriving the conId requires us to find
a different means of grouping consecutive frames from the
same communication. Source and destination MAC ad-
dresses are used in conjunction with any other available data.
The grouping of consecutive frames is protocol dependent
and we give two characteristic examples as it would be im-
possible to provide an exhaustive list. For ARP one can use
the Sender and Target Protocol Address together
with the Opcode, whilst for ICMP the IP source and desti-
nation addresses are available, and used in conjunction with
ICMP Type and Code. We have been unable to identify
a networking protocol for which some means of grouping is
not possible. However, even in such a case the logging pro-
cedures will degenerate to no worse than an explicit frame

log, which is the de facto modus operandi of all other known
logging L2 Traceback systems.

B. Switchport Resolution

The conRecs themselves do not provide the unique switch
port from which the frames originated. After all, the source
MAC address may be spoofed. To establish the origin sID
and pNO of a conRec , we maintain local copies of the
switch MAC address table. This process of ‘switchport res-
olution’ is deferred until the next local MAC-table update.
This is when the conRec log’s local MAC-tables are synchro-
nised with the adjacent switch MAC-tables. It is possible
that the local MAC-tables do not yet contain an entry for the
source address of a recently received frame, such as when a
new host joins the network. Its likelihood is reduced by de-
ferring switchport resolution until after the local MAC-tables
are updated as the switch MAC tables will contain an entry
for all recently ‘seen’ source MAC addresses [34, 35].

9
switch

s2

external link port

access port

(...)

1 2 3 4

5 6 7 8

9 10
switch

s1

(hosts)

1 2 3 4

5 6 7 8

10

conRec Log

(...)

internal link port

external link port

Figure. 3: COTraSE classifies all switchports as one of ac-
cess, internal link or external link

Since we use a tap between two switches, we have the oppor-
tunity to correlate the MAC-table values from both adjacent
switches to determine {sID, pNO}. We make use of this

96 Andreou and Moorsel

fact to identify errors and possible malicious behaviour, in
addition to determining the origin switchport. Each switch-
port is either an access port, providing network access to end
hosts, or a link port which leads to another switch or router,
and each link port is either an internal and external link. This
is shown in Figure 3, where ports {s1, 10} and {s2, 9} are
the internal link ports for the shown conRec log, whilst ports
{s1, 9} and {s2, 10} are the external link ports. Of course
this is relative to a specific connection record log; at the
next conRec log beyond switch s2 (not shown), port {s2, 10}
would be an internal link port and port {s2, 9} would be an
external link port.
This classification of ports is configured at each conRec log,
allowing the return of MAC-table lookups to be classed as
one of: null, external link (ext link), internal link (int link),
access port (axs port).

Table 1: Summary of possible switchport resolution out-
comes at a given conRec log

Case Switch 1 Switch 2 Flags

1 null null 01

2 null axs port 00

3 null int link 11

4 null ext link 00

5 ext link axs port 10

6 ext link int link 00

7 ext link ext link 10

8 int link axs port 00

9 int link int link 10

10 axs port axs port 10

Table 1 lists all possible outcomes of switchport resolution.
The 2-bit flags are used to convey the outcome of switch-
port resolution. Flag 00 indicates ‘normal’ switchport reso-
lution, that is, a single axs port or ext link is returned. This
is shown as cases 2, 8 and 4, 6 respectively. For instance, one
legitimate combination is for the (local) MAC-table of switch
s1 to report an int link whilst the MAC-table for switch s2
gives an axs port (case 8). Flag 01 means a port mapping
was not available for an address, corresponding to case 1.
This does not necessarily imply an error; if MAC addresses
are consistently not learnt by switch MAC-tables, then this
may indicate an oversubscribed switch [34].
The codes 10 and 11 signal ‘erroneous’ switchport resolu-
tion. In Figure 4 and Table 1 cases 5, 7, 9 and 10 produce
10 and case 3 produces code 11. The former indicates that
we cannot ‘choose’ between conflicting or equivalent values.
For instance, two ext links or two int links would mean that
the same MAC address was ‘seen’ as a source address from
two opposing directions. This is impossible as switched Eth-
ernet does not permit cycles[34]. Flag 11, produced in case
3 means there is insufficient information as only an int link
is returned.
The actual resolution of the switch port pair {sID, pNO} is

lookup
srcMAC in
local tables

> 1 entry? both links
[yes] 1 ext_link

 1 int_link?

[yes]

axs_port?
both

axs_port?

return
(both)

sID1,pNO1
sID2, pNO2
CODE: 10

[no] [no]

[no]

return
(int_link)
sID, pNO
CODE: 11

return null
CODE: 01

[yes]

return
(ext_link)
sID, pNO
CODE: 00

return
(axs_port)
sID, pNO
CODE: 00

ext_link?

[no]

one is
int_link

[no]

[yes]
[no]

[yes]

[no]

[yes]

[yes]

(One MAC-table entry) (Two MAC-table entries)

1

3

2
4

5

6

7

9

10

8

null?
[no]

[yes]

Figure. 4: The switchport resolution algorithm

based on Table 1 and follows the algorithm depicted in Figure
4. The algorithm uses the 2-bit flag to signal the outcome of
MAC-table lookups (corresponding to the Flags column in
Table 1). The numbered cases in Figure 4 match the cases
in Table 1. The switchport resolution algorithm of Figure 4
returns the flag as well as the origin {sID, pNO}.
When both switches return a non-null value (cases 5 to 10),
switchport resolution determines which of the two should be
used as the {sID, pNO} identifier. An axs port gives a spe-
cific network access point and so is always chosen if avail-
able. If both tables return links, then an ext link is preferred
over an int link, as in the former case neither adjacent switch
was the origin.
Note that the switchport resolution algorithm also returns a
{sID, pNO} identifier for the erroneous cases (with flag not
equal to 00). It is then up to the integrated conRec Log and
switchport algorithm to take the correct action. This is de-
picted in Figure 5. It depicts the complete interaction be-
tween switchport resolution and the conRec Log algorithm.
At the start, when a frame is received the connection identi-
fier is computed and a new working record created, according
to Section IV-A. Periodically, the local copies of the MAC
tables are synchronised with the adjacent switch MAC-tables
(see Section IV-C for a discussion of the MAC table update
frequency). The MAC table update triggers the switchport
resolution algorithm, shown as a shaded activity box.
Depending on the outcome of switchport resolution each
given working record may be dropped or made active, and
in some cases the wRec becomes a conRec immediately, as
can be seen in Figure 5. This last case is indicative of an
error as uniquely COTraSE uses switchport resolution to de-
tect potential sender spoofing activity. The wRecs with flags
other than 00 are never made ‘active’, as was seen in Figure

Connection Oriented Traceback in Switched Ethernet 97

Receive
frame

existing
wRec?

compute
conId

do nothing
(drop wRec)

new wRec

wait next
 MAC-table

update

switchport

resolution

flag
1X?

flag
11?

ALERT!
2 conRec
+flags 10

ALERT!
conRec

+flags 11

[no]

[yes]

[yes]

active wRec
+flags 00
('normal')

[yes]

same
sID-pNO?

[no]

[no]

[yes]

flag
01?

[no]

[yes] ALERT!
conRec

+flags 01

[no]

Figure. 5: Activity diagram showing the conRec Log algo-
rithm

5. Depending on available information one or more conRecs
are immediately created, with the flag indicating their status.

C. Timing Parameters

We consider two timing parameters that need to be set. First,
we discuss the frequency of MAC table updates, and then we
discuss the length of the purge interval.
MAC table update frequency. The MAC-table update time
dictates when the local MAC-tables maintained at the con-
Rec logs are refreshed from their corresponding ‘master’ ta-
bles on each of the two adjacent switches. As was shown
in Figure 5 once an ethernet frame is received, its resulting
working record is buffered to undergo switchport resolution
only after the MAC-table update. Thus, we must ensure that
the update time is less than the MAC address table ‘aging
time’.
All switch MAC-tables “age out” entries for efficiency, but
also to ensure that hosts which move to different parts of
the network are not permanently prevented from receiving
frames [35]. That is, if the MAC-table update time is too
large it is possible to lose the MAC address mapping from
the switch MAC-tables so that only null is returned by the
switchport resolution process (case 1 in Figure 4 and Table
1).
IEEE suggests an aging time of between 10 and 1, 000, 000

seconds [35], with a suggested standard of 300 seconds.
However, since unprocessed wRecs are buffered until the
next MAC-table update, the logging process’s memory util-
isation (“working” memory - RAM) becomes an important
and practical concern. With this in mind we choose a MAC-
table update time of 5 seconds, which stays well within the
suggested minimum aging time. This creates a worst case re-

Table 2: Summary - Skitter [38] mean RTT for all active
servers on 3 arbitrary days

Day Participating Mean RTT
skitter nodes for 99% of packets (ms)

02 Mar 2002 13 2050
02 May 2003 23 4709
02 Mar 2004 21 3941

RTT for 99% of packets over 3 days: 3566

quirement of ≈ 300Mbytes of RAM on a full duplex 1Gbit/s
link to buffer unprocessed wRecs , as we will see in our dis-
cussion of memory requirements in Section V.
Purge interval length. The second timing parameter we
consider is the active working records purge interval. This
is the time after which the set of active working records is
cleared and a corresponding set of connection records created
and archived. As mentioned, the purge interval (purgeInt)
is governed by an inherent time/space tradeoff. A larger
purgeInt means a smaller proportion of frames become con-
Recs overall with each conRec representing a larger time in-
terval. As can be seen in Figure 6, with a purgeInt of 1t, con-
Rec A ‘represents’ frames 1 and 2. If however the purgeInt
were set to 2t, then conRec A would have represented frames
1, 2, 3, 4 and 5.
However, when replying positively to traceback requests
(i.e., “yes I saw that frame”) COTraSE will express the time
that the given frame was processed in terms of purge in-
tervals. Thus, whilst a larger purge interval decreases con-
Rec storage requirements, it also decreases time precision of
traceback replies. The purge interval must therefore be no
greater than is acceptable for the purpose of traceback re-
quest processing. However, it must also be no smaller than
the time we expect between processing a given frame and that
frame reaching its intended destination as we explain below.
Traceback requests provide the time when a given frame to
be traced was observed, either at the destination or at some
suitable vantage point within the network (e.g., at an Intru-
sion Detection System). Based on this time we must search
the connection record logs for those conRecs , if any, that
represent the requested frame. As an example, consider Fig-
ure 6, where frame 1 is received and processed at the conRec
log at time 0t+ δ, where 0 ≤ δ < t. Frame 1 reaches its des-
tination at time (0t+δ)+χ and so χ represents the ‘delivery
time’. If we ensure that t ≥ χ then frame 1 will be delivered
during the current or next purge interval (i.e., 0t ↔ 1t or
1t ↔ 2t respectively). If we assume that the delivery time is
half the round trip time (RTT), we obtain that with a purge
interval of t ≥ RTT

2 the conRec for time (0t + δ) + χ or
the previous one ‘represent’ the tracked frame. The purge in-
terval must be greater than half the expected round trip time
(RTT) or equivalently the time we expect a frame to take in
being delivered to its intended recipient.
To evaluate the impact of the chose purgeInt , we sampled
data from the Skitter “Macroscopic Topology Project” [38]
for 3 arbitrarily chosen days that are each one year apart.

98 Andreou and Moorsel

Each data set shows the RTT for packets sent from a num-
ber of skitter nodes that were active on that day. For each
node, we use the RTT distribution by continent, that is, the
RTT from the given skitter node to servers around the globe
(Africa, Asia, North America, South America, Middle East,
Europe, Oceania).
We conservatively estimated that (at the 99th percentile) the
round trip time is ≈ 3.5 seconds, as summarised in Table 2.
For instance for data from 02 May 2003 and for each of the
23 available measurements we took the worst case (largest)
round trip time at the 99th percentile and then calculated a
mean value for all servers. Thus we feel that a choice of 10
seconds as the lowest bound on the purge interval is suffi-
cient for t ≥ χ. Of course as 10s is the lower bound, it also
produces the greatest number of connection records and so
represents the worst case in terms of memory utility. We use
this value in our implementation of the conRec log so that
our discussion of memory requirements given later realisti-
cally portrays this worst case scenario.

1

1

1

0t

conRec B

0t 1t 2t 3t

1t 2t 3t

ethernet

frames

wRecs

active

wRecs

conRecs

purge interval t

(time)

conRec A

2 3 4 5

2 3 4

X X X
3

6 7

6 7

X

6

conRec C

(time)

(0t + !) + "" < t

s
ta

te

0t + !

Figure. 6: The purge interval t must be greater than the time
χ we expect a frame to take in reaching its destination

D. The Translation Record Logs

Traceback requests will specify a traced packet in the form
that this was received by the recipient. As we have seen,
where legitimate spoofing such as NAT is in place, the source
IP address, source TCP port and destination TCP port are
all subject to change at the gateway router. The translation
records are a mapping between the connection identifiers be-
fore and after any of the address fields are re-written and CO-
TraSE is the only L2 Traceback system we are aware of that
explicitly addresses this issue. Each translation record con-
tains conId orig, conId mod and a timestamp.
At the translation record (transRec) logs, the original con-
nection identifier (conId orig) is computed in the same
way as the conId at the connection record logs. That is, a
hashed digest over the concatenated source and destination

addresses from the Transport, Network and Data-link lay-
ers (TCP/UDP ports, IP and MAC addresses, respectively).
However, the modified connection identifier cannot include
any data that is not received by a given frame’s recipient.
When servicing traceback requests, we need to match the
data supplied by the trace initiator (i.e. the traced packet)
with data we have stored in our logs. For frames that leave
the local network, we expect the application, transport and
network layer data to arrive unchanged (i.e. in the same form
as when it left the local network). However we can make
no assumptions about the physical (and by extension) data
link layers employed to reach the intended destination (for
instance ADSL or DOCSIS fibre links may be used). Thus,
the source and destination MAC addresses are not included
in the computation of conId mod. The transRec logging al-
gorithm is shown in Figure 7.

Receive
frame

compute
conId_orig

drop
(do nothing)

new transRec

Existing

`active'

transRec?

[yes]

[no]

retrieve
NAT state

compute
conId_mod

Figure. 7: The Translation Record logging process

The transRec log maintains an ‘active connections’ set in
a similar manner to the conRec logs. The processing al-
gorithms however are much simpler, in anticipation of the
fact that the logging procedures at a leaf router may handle
a greater volume of traffic. As can be seen in Figure 7 no
attempt is made to perform switchport resolution as this is
done at all conRec logs en route to the leaf router and doing
it again provides no new information.
When a frame arrives at the router, the original connection
identifier (conId orig) is computed and a check made for an
existing translation record in the ‘active transRecs ’ set with
the same conId orig. If there is a match then the given frame
is no longer processed and ‘dropped’. If however there is no
existing active translation record, then a new transRec is cre-
ated. The connection’s state is retrieved (e.g., from the NAT
processes or from the web proxy) and used to compute the
modified connection identifier (conId mod). A time-stamp
is then added to this and the new transRec is placed in the
leaf router ‘active connections’. After the active connections
purge interval has elapsed (as discussed above), the active
connections set is cleared with the transRecs being archived
to storage for subsequent traceback processing.
For traceback requests from beyond the local network, tran-
sRecs are searched for conId mod. If a match is found, a lo-
cal traceback request is dispatched, and conRec logs queried
based on conId orig. Thus we ‘traceback’ packets regardless

Connection Oriented Traceback in Switched Ethernet 99

of post-send legitimate spoofing at the leaf router.

V. Memory Requirements

Memory requirements are an important concern for logging
based IP and L2 Traceback systems as they govern the ‘trace-
back window’, the time during which we can traceback a
packet after it has been logged. That is, the length of time for
which it is feasible to retain logged connection records, be-
fore the oldest conRecs are overwritten with new data. Below
we give details of the various COTraSE records encountered
so far as these are used in the discussion that follows (brack-
ets denote size in bits):

wRecs (230): conId (128), source MAC (48), sID (10),
pNO (10), timestamp (32), flags (2)
conRecs (182): conId (128), sID (10), pNO (10), times-
tamp (32), flags (2)
transRecs (288): conId orig (128), conId mod (128),
time (32)

Recall that the MAC-table update period directly impacts
the ‘working’ memory requirements (RAM). All working
records created from received frames are buffered to undergo
switchport resolution only after the MAC-table update. Tak-
ing a duplex FastEthernet link at 1Gbit/s and with average
frame size of 1000 bits, this results in ≈ 1, 000, 000 frames
per second in either direction. Assuming a hypothetical worst
case scenario where all frames belong to different connec-
tions, this would equate to ≈ 10, 000, 000 working records in
5 seconds. This scenario is of course highly unlikely and can
only arise in a sustained DoS attack targeted specifically at
COTraSE (further discussion of vulnerabilities follows sepa-
rately). None the less, even in this extreme case a conRec
log requires RAM of ≈ 300MBytes for 5 seconds worth of
wRecs , which we do not consider excessive.
Storage requirements for archived connection records will
ultimately depend on the number of conversations between
peer machines and this will of course vary between networks.
Recall that a single conRec is required for each ongoing con-
nection for each purge interval. Values for the conRec stor-
age requirements and, hence, overall memory utility are es-
timates. None the less, we have established some bounds
using ‘real world’ network traffic from available WAN traces
[28, 29, 30].
The number of connections C gives the lower bound for the
number of conRecs cR we need to store for each purge inter-
val of length t. How many conRecs we store overall depends
on the ‘traceback window’, in terms of number of purge in-
tervals. Though C is not within out control, we can tune t, as
explained earlier. A larger value of t will mean less purgeInts
occur within a given traceback window and so less conRecs
overall. As we have already seen, the lower bound for t, pro-
ducing the greatest value for cR is 10 seconds. This value
is used in our experiments so that our results represent the
worst case, in so far as the purge interval can affect cR.

In total we processed over 300, 000, 000 packets to derive an
upper bound for the number of connections C. We cannot
claim that our results represent a general case as of course C
will vary greatly. Furthermore WAN traces are not generally
representative of LAN traffic, which is the primary focus for
COTraSE . However, ‘real’ LAN traffic is not easily available
and one can appreciate the associated privacy and security
concerns.
We first describe the WAN traces in more detail and explain
how these were processed to produce a ‘hex dump’ for each
minute of a given trace. This is followed by a description of
our implementation of the conRec algorithm.

A. The WAN trace data

Table 3 summarises the trace data used in our analysis.
Source ‘OC12’[28] provides data from an OC12 link at the
AMPATH Internet Exchange in Miami. We arbitrarily down-
loaded the data for 09 Jan 2007, with a total of 12 one hour
traces taken at 3-hourly intervals from 0900 until 0000 of 10
Jan. Source ‘OC48’ [29] is an OC48 peering link for a large
ISP at NASA Ames Internet Exchange. The data we use is
for six 5 minute periods: two on each of 14 Aug 2002 (0900),
15 Jan 2003 (0959) and 24 Apr 2003 (0000).

Table 3: Trace data summary
Source Traces Total

Frames

OC12[28] 12 ∗ 60mins 136, 503, 068

OC48[29] 6 ∗ 5mins 114, 181, 288

WIDE[30] 6 ∗ 15mins 89, 357, 967

All data was available in the form of libpcap [39] cap-
ture files and all traces are anonymised (e.g., IP addresses
are changed) to preserve the privacy of network users. The
OC48 and OC12 traces are captured separately in each di-
rection of the monitored link; thus, the six traces for OC48
are in actuality either direction at 3 given times. Finally,
source ‘WIDE’[30] is a 100Mbit/s Ethernet transit link from
the WIDE research network in Tokyo to its upstream car-
rying mainly trans-Pacific traffic. This source provides 15
minute traces and we used data for the same day (and times)
as OC12. The WIDE capture files represent both directions
of the monitored link.
Despite the WIDE data being duplex and the OC48 and
OC12 simplex, we processed all trace files in the same way
and treated the simplex traces as independent captures. Split-
ting the OC12 trace into two simplex traces would be diffi-
cult. However merging the simplex OC48 and WIDE traces
was possible using the mergecap tool, available as part of
the wireshark [40] network protocol analyser. In any case
we decided that this was not necessary. Given the difference
in both link speed and capture length for each given trace, it is
not possible to directly compare the number of conRecs cre-
ated even if all traces were either duplex or simplex. Further-

100 Andreou and Moorsel

more, the conRec algorithm treats each direction of a given
communication independently. A different connection iden-
tifier is derived for frames flowing from A → B than that
derived for frames flowing B → A. Thus, whether these are
processed from a single file (in a duplex capture) or from two
files (simplex) does not bear upon the total number of con-
nection records created in the given time. As we will see our
analysis compares the number of conRecs as a ratio of the to-
tal number of frames, to allow a direct comparison between
the results for each source.
Each .pcap file was passed through the tcpdump utility
to produce a text file complete with a ‘hex dump’ of each
packet’s data. An example is given in Figure 8 which shows
data from an OC48 trace.

start of IP header

Cisco HDLC Frame summary

IP source address

Destination TCP port

ICMP type and code ASCII

 2 2002-08-14 17:00:00.000859 237.222.145.251 -> 0.61.219.228 UDP Source
 port: 14310 Destination port: 39012

0000 0f 00 08 00 45 00 00 40 f9 2a 00 00 33 11 2b 38 E..@.*..3.+8
0010 ed de 91 fb 00 3d db e4 37 e6 98 64 00 2c 00 00 =..7..d.,..

0020 80 04 00 8e 4c c9 e2 e8 00 00 4b e9 a8 0e 64 09 L.....K...d.

3 2002-08-14 17:00:00.002855 69.4.145.139 -> 162.131.189.129 TCP 3951
 > 80 [ACK] Seq=725360463 Ack=1228670785 Win=17520 Len=0

0000 0f 00 08 00 45 00 00 28 8e c7 40 00 74 06 a7 46 E..(..@.t..F
0010 45 04 91 8b a2 83 bd 81 0f 6f 00 50 2b 3c 1f 4f E........o.P+<.O
0020 49 3c 07 41 50 10 44 70 ef da 00 00 I<.AP.Dp....

3739 2002-08-14 17:00:04.318081 237.222.145.251 -> 0.61.219.228 ICMP
Destination unreachable (Port unreachable)

0000 0f 00 08 00 45 00 00 38 a6 41 00 00 77 01 3a 39 E..8.A..w.:9
0010 ed de 91 fb 00 3d db e4 03 03 2c 42 00 00 00 00 =....,B....
0020 45 00 00 2c c2 bc 00 00 2f 11 65 ba 40 45 47 14 E..,..../.e.@EG.

Figure. 8: Annotated Hex dump of an OC48 .pcap file, ready
for processing by the conRec implementation

As can be seen the start of each frame is denoted by a frame
summary before three lines show the base 16 representation
of the packet’s content, with the ASCII equivalent to the right
(non printing ASCII characters are shown as ‘.’). Each two
digit hex code represents a single byte of raw network data.
For the OC48 traces the Cisco HDLC data link layer was em-
ployed. As can be seen in Figure 8, the code 0800 signals that
an IP frame follows. Code 45 follows to signal the start of the
given IP header. This represents the first two fields of the IP
header, showing the IP version as 4 and the IP header length
as 5. As these fields each occupy a nibble, they are shown
together as a single byte in the hex dump. Furthermore, this
is interpreted as the character E in the ASCII representation
of the data as can be seen.
Each trace file was processed by tcpdump in the same way
to produce an equivalent text file complete with the hex rep-
resentation. Our Java implementation of the conRec logging
algorithm takes these files as input and parses the hex byte
codes to reproduce the necessary fields for working and con-
nection records.

B. Results

The primary purpose of this investigation is to empirically
deduce a bound on the number of connections C against real
network data. Recall that the number of connections C gives
the lower bound for the number of conRecs cR we need to
store for each purge interval of length t.
For each source our code creates a conRec file for every 10
second purge interval. A separate ‘debug’ file was also gen-
erated for each trace file. The conRec and debug files were
then used to collate the total number of connection records
calculated for each minute (i.e. from each of the six purge
intervals occurring therein). Table 4 summarizes some of the
characteristics of the network data, as revealed by our pro-
cessing.
‘Bytes per packet’ was taken from the metadata associated
with each capture file as indexed at DatCat [41]. This is sig-
nificant as in our subsequent calculations we compute the
maximum number of frames based on an average frame size
of 1000 bits. As can be seen in Table 4 this is a conserva-
tive estimate, since the average packet size from the WAN
data being more than five times that at 673 bytes per packet.
The ‘packets per second’ column was populated by taking
the total number of working records created by the data from
each source, and dividing by the total capture time. For ex-
ample for OC48 we processed 136, 803, 068 packets occur-
ring over 15 minutes (processed as 30 minutes of simplex
captures), equating to 128, 868 packets per second. The ‘%
unparseable’ represents those frames that our parser classes
skipped; recall that our code only processed all TCP, UDP
and ICMP data encountered. As can be seen, IPv6, ARP
and incomplete frames (e.g. due to an error when capturing)
accounted for a very small fraction of the total number of
frames.

Table 4: Characteristics of trace data as revealed by our im-
plementation

bytes per packets per % unparseable
Source packet second !(TCP, UDP, ICMP)

OC48 563 128, 868 0.45

OC12 779 6, 320 2.76

WIDE 676 16, 548 1.07

We plotted the number of conRecs as a percentage of the to-
tal number of frames for each minute of each trace, as shown
in Figure 9, depicting result for OC48, WIDE and OC12, re-
spectively. Obviously a lower conRecs

frames ratio signals a greater
reduction in memory requirements compared to logging all
frames. We see a similarity in the plots and especially so
between Figure 9(a) and 9(b), where the number of conRecs
is roughly between 10 and 15 percent of the total number of
frames. The OC12 trace in Figure 9(c) shows even larger im-
provement, with many data points as low as 4 percent. We
conclude from these experiment that it is not unreasonable
to expect one order of magnitude memory reduction using

Connection Oriented Traceback in Switched Ethernet 101

(a) CAIDA OC48 [29]

(b) WIDE [30]

(c) CAIDA OC12 [28]

Figure. 9: conRecs as a percentage of frames for each minute
of the given trace

COTraSE compared to logging all frames.
Note that the results in Figure 9 are for a purge interval of 10
seconds. By enlarging the purge interval, storage of conRecs
can be further reduced, with a theoretical optimum when the
whole trace is treated as one single purge interval. The traces
are too large to conduct this analysis, and as we have argued
in Section IV-C, larger purge intervals reduce the accuracy of
the traceback since the time the frame was sent is reported in
terms of the purge interval.
We use conRecs

frames to approximate the worst case number of
connections for a fully loaded network. From Figure 9 we

Table 5: Predicted COTraSE memory use, with each link at
full utility

packets/s Megabytes (traceback window)
Source (≈) 1 min. 1 hour

OC12 700, 000 137 8, 201

OC48 2, 000, 000 390 23, 430

WIDE 165, 000 0.5 1, 933

take the upper bound for conRecs
frames at 15%. We assume the

given link is at full utility and that on average each packet is
≈ 1000 bits, which as we have seen is a conservatively low
estimate. In Table 5 we give the predicted memory require-
ments of a COTraSE deployment, expressed in megabytes, for
providing the given ‘traceback window’. For example, in the
OC48 case, taking 15% of 2 million packets per second, and
multiplying by 182 bits per conRec gives 390Mbytes for a 1
minute ‘traceback window’. The OC48 case is of particular
interest as the ≈ 2, 000, 000 packets/s throughput is similar to
full utility of a duplex 1Gb/s ethernet link (1000 bit frames).
As we have already stated it is not possible to derive a gen-
eral case from this data. The number of connections will
vary greatly though it is encouraging that the values we ob-
tained from this ‘real world’ data are consistently low, with
the number of conRecs an order of magnitude less than the
total number of frames.

VI. Discussion and Deployment Issues

As mentioned earlier, there are similarities between the
‘connection-oriented’ logging approach taken by COTraSE
and Cisco’s ‘NetFlow’ [37, 42]. NetFlow is deployed in
Cisco routers and some high end ‘multilayer’ switches. In
this section we briefly consider NetFlow and the associated
IPFIX standard [43, 44] and reveal elements of its operational
model that make it unsuitable for L2 Traceback. Finally we
discuss some of the deployment issues for COTraSE before
concluding.

A. NetFlow and IPFIX

NetFlow is a general purpose traffic reporting system that
may be used to determine the composition of traffic on a
network [45]. In its simplest form, a ‘flow’ consists of
source/destination IP addresses, TCP ports and the IP proto-
col field. IPFIX defines a standard format for exported data
and the protocol by which these are delivered for analysis.
The main difference between COTraSE and NetFlow/IPFIX
lies in the expiration of flows. In NetFlow, flows are expired
if: the end of a flow can be detected (i.e. TCP ‘FIN’ or
‘RST’), when the flow has been inactive for a configurable
timeout, or due to resource constraints (e.g. memory exhaus-
tion). Longer lasting flows are also expired periodically (sug-
gested 30 minutes) to avoid ‘staleness’. In COTraSE however,
all ‘current’ flows (or ‘connections’ as per our terminology)

102 Andreou and Moorsel

are expired at the end of the current ‘active connections purge
interval’ as we have seen. We note that a similar approach is
suggested in [45], where the authors suggest a much larger
‘time-out’ than we do (their focus was on improving Net-
Flow rather than L2 Traceback).
There are some limitations of NetFlow, limiting its direct ap-
plicability to traceback.
Flows are reported after the event: Flows are reported when
they expire, or after 30 minutes (configurable). Thus, the
utility of this data by IDS or security monitoring systems in
general is debatable.
Memory constraints often force a sampling approach: The
metering process maintains state for all active flows; with a
large number of (longer lasting) flows, memory utilization
can quickly increase beyond available levels. Sampling of
traffic is suggested as a potential solution, and this is unac-
ceptable for Traceback systems in general.
The exporting process is expensive and vulnerable: Flows
are reported by the metering processes to the collection host
as they expire. Given the high frequency of this operation,
strong authentication and encryption of transferred data be-
come expensive. A ‘dedicated’ link is suggested as a poten-
tial solution,
Flow expiration of non-TCP flows is inaccurate: This is well
known, and reported in [45]. Periodically expiring all active
flows, as in COTraSE, improves accounting of non-TCP
flows and removes the requirement to examine TCP flags
when these are present.

We also note that NetFlow/IPFIX do not make provisions for
legitimate spoofing and do not specify a process for switch-
port resolution.

B. COTraSE deployment issues

Performance: Maintaining the connection identifier as a
hashed digest preserves user privacy, even when logs are
compromised. However it is also computationally expensive,
and its necessity depends on the intended use of COTraSE. As
an L2 Traceback system the privacy preserving hashed conId
is preferred. However, the EU ‘data retention’ council direc-
tive [31] mentioned earlier requires that ‘data be transmitted
upon request’. With a hashed conId , we cannot for example
extract connection data for any given source or destination
IP address. This point will be further discussed in the next
chapter.
The second ‘bottleneck’ operation is the MAC-table lookup
performed during switchport resolution. In worst case
conditions a dedicated CAM might be a necessity in order
to keep up with the packet load. This is a general problem
for all logging based L2 Traceback systems. Given that a
switch already performs a MAC-table lookup for all frames,
traceback functions would ideally be performed ‘in switch’
but such functionality is currently not made available by
ethernet switch manufacturers.

Vulnerabilities: Buffering frames until the MAC-table up-
date assumes that address mappings do not change between
receipt of a frame and the update operation. An attacker may
exploit this to spoof a tertiary host’s address. The switch
MAC-table would overwrite the mapping for the given ad-
dress to identify the attacker’s pNO as the origin. However,
if the tertiary host transmits frames after the attacker but be-
fore the MAC-table update, then switchport resolution will
mistakenly identify the tertiary host as the originator of the
attack frame.
The attacker first must discover the tertiary host’s MAC
address which requires effort due to the low visibility of
switched Ethernet. The attacker needs to predict when the
tertiary host is transmitting, but also when the MAC-table
update occurs. As was suggested in Chapter 4, the MAC-
table update time can be randomized (e.g., between 3 and 5
seconds). Furthermore, COTraSE uses the MAC-tables from
both switches to perform switchport resolution making con-
ditions even more adverse for an attacker.
Finally, an obvious attack on the COTraSE system is for an
adversary to send a large number of frames designed to
produce different conIds , to exhaust conRec log resources.
We note that under these ‘worst case’ conditions our con-
nection oriented approach will degenerate to no worse than
an explicit frame log.

Partial Deployment: It may be prohibitively expensive to
provide ‘full’ deployment with a conRec log between all net-
work switches. However, we can adapt conRec log place-
ment to the deployment network, though a partial deploy-
ment ultimately sacrifices ‘local traffic visibility’.
A frame is processed by all conRecs encountered en route
to the gateway router. However, only the conRec log adja-
cent to the frame’s origin switch will be able to provide the
‘axs port’ pNO which identifies the frame’s origin switch-
port. All other conRec logs will ‘point’ to the origin within
the network (i.e., by providing an ext link pNO) which can
at least aid in the identification of the instigating origin.

VII. Conclusion

We introduced COTraSE, a ‘connection oriented’ logging
based Layer 2 traceback system for Switched Ethernet. CO-
TraSE allows traceback of ethernet frames that are wholly lo-
cal but also for IP packets addressed to external recipients,
regardless of spoofed MAC or IP addresses and any address
translation mechanisms (e.g., NAT). Rather than explicitly
logging all traffic COTraSE attributes frames to ongoing con-
nections and logs representative connection records in dis-
crete intervals. Our switchport resolution algorithm estab-
lishes the origin switch and port for frames by correlating
MAC address entries from both adjacent switches. This al-
gorithm classifies the return of each table lookup to detect
potential errors such as MAC address ‘spoofing’. COTraSE
offered improvement over our earlier switch-SPIE system in

Connection Oriented Traceback in Switched Ethernet 103

a number of areas, most importantly increased reliability and
decreased memory requirements. We empirically demon-
strated the potential memory efficiency of a ‘connection ori-
ented’ traceback approach by simulating the conRec log al-
gorithm using data from available WAN traces. Our results
show a saving of about an order of magnitude in frame stor-
age requirements compared to exhaustive logging.

References

[1] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher. In-
ternet Denial of Service (Attack and Defense Mecha-
nisms). Prentice Hall, 2005.

[2] N. G. Duffield and M. Grossglauser. Trajectory
sampling for direct traffic observation. ACM SIG-
COMM Computer Communication Review, 30(4):271–
282, 2000.

[3] A. C. Snoeren, C. Partridge, L.A. Sanchez, C.E. Jones,
F Tchakountio, B. Schwartz, S.T. Kent, and W.T.
Strayer. Single packet ip traceback. IEEE/ACM Trans-
actions on Networking, 10(6):721–734, 2002. prelimi-
nary version presented at ACM SIGCOMM 2001.

[4] Hal Burch and Bill Cheswick. Tracing anonymous
packets to their approximate source. In 14th USENIX
Conference on System Adminimstration (LISA), 2000.

[5] S. Savage, D. Wetherall, A. Karlin, and T. Anderson.
Network support for ip traceback. IEEE/ACM Transac-
tions on Networking, 9(3):226–237, 2001.

[6] R. Stone. Centertrack: An ip overlay network for track-
ing dos floods. In IEEE Workshop on Information As-
surance and Security, 2001.

[7] S. Bellovin, M. Leech, and T. Taylor. Icmp
traceback messages - ietf internet draft.
http://www3.tools.ietf.org/html/
draft-ietf-itrace-00, 2000.

[8] A. Koyfman, T. Doeppner, and P. Klein. Using router
stamping to identify the source of ip packets. In ACM
Conference on Computer and Communications Secu-
rity CCS, 2000.

[9] D. X. Song and A. Perrig. Advanced and authenticated
marking schemes for ip traceback. In IEEE INFOCOM,
pages 878–886, 2001. Vol. 2.

[10] Kihong Park and Heejo Lee. On the effectiveness of
probabilistic packet marking for ip traceback under de-
nial of service attack. In 12th Annual Joint Conference
of the IEEE Computer and Communications Societies,
pages 338–347, 2001. volume 1.

[11] Michael T. Goodrich. Efficient packet marking for
large-scale ip traceback. In 9th ACM conference on
Computer and Communications security, pages 117–
126, 2002.

[12] A. Mankin, D. Massey, W. Chien-Lung, S.F. Wu, and
L. Zhang. On design and evaluation of intention driven
icmp traceback. In 10th International Conference on
Computer Communications and Networks, pages 159–
165, 2001.

[13] Vadim Kuznetsov, Helena Sandström, and Andrei
Simkin. An evaluation of different ip traceback ap-
proaches. In 4th International Conference on Informa-
tion and Communications Security, pages 37–48, 2002.

[14] E. Jones, O. Le Moigne, and J. M. Robert. Ip trace-
back solutions based on time to live covert channel).
In 12th IEEE International Conference on Networks
ICON, pages 451–457, 2004. Vol. 2.

[15] A. Belenky and N. Ansari. Tracing multiple attack-
ers with deterministic packet marking (dpm). In IEEE
PACRIM Conference on Communications, Computers
and Signal Processing, pages 49–52, 2003. Vol. 1.

[16] T. Baba and S. Matsuda. Tracing network attacks to
their sources. IEEE Internet Computing, 6(2):20–26,
Mar/Apr 2002.

[17] H. C. J. Lee, Ma Miao, V. L.L. Thing, and Yi Xu. On
the issues of ip traceback for ipv6 and mobile ipv6.
In IEEE International Symposium on Computers and
Communication, pages 582–587, 2003.

[18] K. Shanmugasundaram, H. Brönnimann, and
N. Memon. Payload attribution via hierarchical
bloom filters. In 11th ACM Conference on Computer
and Communications Security, pages 31–41, 2004.

[19] T-H Lee, W-K Wu, and T-Y W. Huang. Scalable packet
digesting schemes for ip traceback. In IEEE Interna-
tional Conference on Communications, pages 1008–
1013 Vol.2, 2004.

[20] L. Zhang and Y. Guan. Topo: A topology-aware sin-
gle packet attack traceback scheme. In International
Conference on Security and Privacy in Communication
Networks, 2006.

[21] C. Gong, L. Trinh, T. Korkmaz, and K. Sarac. Sin-
gle packet ip traceback in as level partial deployment
scenario. In IEEE Global Telecommunications Confer-
ence, 2005.

[22] V. L. L. Thing, M. Sloman, and N. Dulay. Non intrusive
ip traceback for ddos attacks. In ACM Symposium on
Information, Computer and Communicat ions Security
ASIACCS, pages 371–373, 2007.

104 Andreou and Moorsel

[23] J. Li, M. Sung, J. Xu, and L. Li. Large-scale ip trace-
back in high-speed internet: Practical techniques and
theoretical foundation. In IEEE Symposium on Secu-
rity and Privacy, pages 115–129, 2004.

[24] R. Chen, J-M.Park, and R. Marchany. Track: A novel
approach for defending against distributed denial-of-
service attacks. Technical report, Virginia Polytech-
nic Institute and State University, 2005. TR-ECE-05-02
Dept. of Electrical and Computer Engineerig.

[25] H. Hazeyama, M. Oe, and Y. Kadobayashi. A layer-2
extension to hash based ip traceback. IEICE Transac-
tions on Information and Systems, E86(11):2325, 2003.

[26] M. Snow and J. Park. Link-layer traceback in switched
ethernet networks. In IEEE LANMAN, pages 182–187,
2007.

[27] Marios S. Andreou and Aad van Moorsel. Logging
based ip traceback in switched ethernets. In EUROSEC
’08: Proceedings of the 1st European workshop on sys-
tem security, pages 1–7. ACM, 2008.

[28] C. Shannon, E. Aben, K.C. Claffy, and D. An-
derson. The caida anonymized 2007 internet
traces, 2007. http://www.caida.org/data/
passive/passive_2007_dataset.xml.

[29] CAIDA OC48 Trace Project. Caida oc48 traces 2002-
08-14, 2003-01-15, 2003-04-24 (collection), 2008.
http://www.caida.org/data/passive/
index.xml#oc48.

[30] WIDE Project. Packet traces from wide backbone,
mawi working group traffic archive, 2008. http:
//mawi.wide.ad.jp/mawi/.

[31] Council European Parliament. On the retention of
data generated or processed in connection with the
provision of publicly available electronic communica-
tions services or of public communications networks.
Official Journal of the European Union, L 105:54–63,
April 2006. http://eur-lex.europa.eu/
LexUriServ/LexUriServ.do?uri=CELEX:
32006L0024:EN:NOT.

[32] M. Andreou and Aad van Moorsel. Cotrase: Connec-
tion oriented traceback in switched ethernet. In The
Fourth International Conference on Information Assur-
ance and Security, 2008.

[33] Ahmad Almulhem and Issa Traore. A survery of
connection-chains detection techniques. In IEEE
PacRim Conference on Communications, Computers
and Signal Processing, pages 219–222, 2007.

[34] Rich Seifert. The Switch Book: The Complete Guide to
LAN Switching Technology. John Wiley & Sons, Inc.,
2000.

[35] IEEE. Ieee standard for local and metropolitan area net-
works: Media access control (mac) bridges. Technical
Report 802.1D - 2004, IEEE, Feb 2004.

[36] BBN Technologies. Source path isolation engine,
2004. http://www.ir.bbn.com/projects/
SPIE/spiehome.html.

[37] B. Claise. Cisco systems netflow services export ver-
sion 9 - ietf rfc 3954, informational. http://www.
ietf.org/rfc/rfc3954.txt?number=3954,
2004.

[38] CAIDA Macroscopic Topology Project Team.
CAIDA skitter Topology Traces (collection),
2007. http://www.caida.org/tools/
measurement/skitter/.

[39] Van Jacobson, Craig Leres, and Steven McCanne. tcp-
dump, 2009. http://www.tcpdump.org/.

[40] Gerald Combs et al. Wireshark network protocol anal-
yser, 2009. http://www.wireshark.org/.

[41] Cooperative Association for Internet Data Analy-
sis CAIDA. Internet measurement data catalog, 2009.
http://www.datcat.org.

[42] CISCO Systems. Cisco ios netflow white papers.
http://www.cisco.com/en/US/products/
ps6601/prod_white_papers_list.html,
2008.

[43] J. Quittek, T. Zseby, F. Fokus, B. Claise, and S. Zander.
Requirements for ip flow information export (ipfix) -
ietf rfc 3917, informational. http://www.ietf.
org/rfc/rfc3917.txt?number=3917, 2004.

[44] B. Claise. Specification of the ip flow informa-
tion export (ipfix) protocol for the exchange of ip
traffic flow information - ietf rfc 5101, standards
track. http://www.ietf.org/rfc/rfc5101.
txt?number=5101, 2008.

[45] C. Estan, K. Keys, D. Moore, and G. Varghese. Build-
ing a better netflow. In ACM Special Interest Group on
Data Communication SIGCOMM ’04, pages 416–428,
2004.

Author Biographies

Marios Andreou was born in London on 1 June 1981. He
received a BSc. (hons) in Software Engineering from the
School of Computing Science at Newcastle University in
2004. In 2004 he conducted a placement at Hewlett-Packard
Laboratories in Bristol, UK, where he explored virtualisation
technologies for utility computing. He is currently a teaching

Connection Oriented Traceback in Switched Ethernet 105

assistant and PhD candidate at Newcastle University work-
ing in the area of network security and message traceback
systems.

Aad van Moorsel is a Reader (Associate Professor) in Dis-
tributed Systems at the University of Newcastle. Prior to
joining Newcastle he worked in industry for almost a decade,
first as a researcher at Bell Labs/Lucent Technologies in Mur-
ray Hill and then as a research manager at Hewlett-Packard
Labs in Palo Alto. There he was responsible for HP’s re-
search in web and grid services, and worked on the soft-
ware strategy of the company. Aad got his Ph.D. in Com-
puter Science from Universiteit Twente in The Netherlands
(1993) and has a Master’s degree in Mathematics from Uni-

versiteit Leiden, also in The Netherlands. After finishing his
PhD he was a postdoc at the University of Illinois at Urbana-
Champaign for two years. He has worked in a variety of
areas, from performance modeling to systems management,
web services and grid computing. He has published more
than 70 peer-reviewed conference and journal papers, re-
ceived several best-paper awards, owns three US patents and
gained various company awards. His research interest is in
creating the ‘intelligent enterprise’ through applying quanti-
tative methods and techniques (including monitoring) to in-
formation systems and technology decision making.

