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Abstract: Semantics-driven monitoring discovers attacks against a 
process by evaluating invariants on the process state. To increase 
the robustness and the transparency of semantics-driven 
monitoring, we propose an approach that introduces two virtual 
machines (VMs) running on the same platform. One VM runs the 
monitored process, i.e. the process to be protected, while the other 
one evaluates invariants on the process state each time a process 
invokes a system call. The evaluation of invariant exploits an 
Introspection Library that enables the monitoring VM to access the 
memory and the processor registers of the monitored VM. 
 
After describing the overall architecture of the proposed approach, 
we focus on the Introspection Library and the problems posed by 
the introspection of variables in the memory of a program running 
in a distinct VM to evaluate invariants. A first prototype 
implementation is also presented together with a set of performance 
results. 
 

Keywords: intrusion detection, virtual machine introspection, 
invariants, process self, anomalous behavior.  

1. Introduction 
Virtualization is becoming increasingly popular, because 

enterprises can reduce the total number of servers by 
migrating the real environments, hosted on physical 
machines, to virtual machines (VMs) running on a single 
server. Since a VM is an exact replica of a real machine, it 
can execute the same operating system (OS) and applications 
but several VMs can share a single physical host 
concurrently. The consolidation of multiple server 
environments onto a single platform harnesses unused 
computing power and cuts hardware and lifetime costs. 
 
While these advantages cannot be neglect, we believe that 
virtualization should also be exploited to build more robust 
systems [4, 7, 16, 28, 29]. As an example, the Virtual 
Machine Monitor (VMM), i.e. the software that runs, 
confines, and manages the VMs, exports a control interface 
that enables a monitoring VM to analyze the current state of 
other VMs through Virtual Machine Introspection (VMI) 
[6]. The introspection capability leverages the fact that a VM 
completely encapsulates the state of the corresponding 
physical host, so that a monitoring VM can analyze in full 
detail a host running inside another VM. As an example, the 
monitoring VM can search for specific values in the memory 
of another VM or inspect the content of the VCPU registers. 
In this way, a monitoring VM can analyze and compare the 

data obtained through VMI against those returned by 
invocations to the OS of a monitored VM. Any discrepancy 
signals that an attacker may have altered the OS of a 
monitored VM [1]. Furthermore, by analyzing the status of 
the VCPU of a monitored VM, the monitoring VM can 
access register values to retrieve the parameters of a process 
system call and check their correctness. 
 
This paper proposes a semantics-driven approach to discover 
attacks against a process P based upon the evaluation of 
invariants on the state of P each time P invokes a system 
call. This approach requires two tools: a static tool that 
analyses P program to pair each system call with an 
invariant, and a run-time tool that intercepts the system calls 
that P issues and evaluates the corresponding invariants. 
Each invariant is paired with a system call invocation and it 
constrains the values of the process variables and of the 
parameters of the system call. The model underlying the 
definition of our framework is focused on those attacks that 
modify the behavior of a process as expressed in the source 
code, such as those that inject and execute malicious code. 
In this paper we focus on the run-time tool, which is 
implemented by two VMs: a Monitored VM (Mon-VM), 
which runs P, and a monitoring Introspection VM (I-VM). 
The I-VM runs an Assertion Checker that evaluates 
invariants on the state of P. The Assertion Checker accesses 
the values of P variables and the processor registers of the 
Mon-VM through an Introspection Library, which has a 
low-level access to each component allocated to the Mon-
VM, such as the main memory. Every time P issues a system 
call, the Mon-VM transfers control to the I-VM, which: 
 

(i) retrieves the value of the processor registers of 
the Mon-VM that store the system call number 
and parameters;  

(ii) determines the invariant paired with the system 
call that P has issued;  

(iii) retrieves the values of P variables that the 
invariant  refers to;  

(iv) evaluates the invariant and kills P if the invariant 
is false, because this signals a successful attack 
against P. 

 
Our framework does not require any modification to the 
source code of P, which is statically analyzed to compute the 
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invariants paired with each system call invocation. Instead, 
the system call handler of the Mon-VM kernel has been 
hijacked to transfer control to the I-VM every time P issues a 
system call. In this way, the monitoring is both fully 
transparent to P and highly robust. In fact, any process P is 
not aware of being monitored and the monitoring is 
implemented by a VM that is separated from the one that 
executes P. The current version of the run-time tool is not 
fully transparent because a module in the Mon-VM kernel 
traps the system calls and notifies them to the I-VM. The 
integrity of this module is periodically checked by the I-VM 
through VMI. Furthermore, our solution does not introduce 
any additional hardware units.  
 
The rest of the paper is organized as follows. Section 2 
briefly outlines some features of Xen memory management, 
which we have exploited to implement the current prototype. 
Section 3 describes the overall architecture of the run-time 
tool, the Introspection Library and the Assertion Checker. 
Section 3 evaluates the overhead of the current prototype. 
Section 4 discusses related works. Finally, Sect. 5 draws 
some conclusions and outline future developments. 
 
 

2. Xen Memory Management 
This section recalls some features of Xen memory 
management that influences the overall architecture of the 
run-time tool.  

 
Besides robustness, a main goal of our framework is fully 
transparency, so that the monitoring of an application should 
not require any updates to the application itself or to the 
underlying OS. Transparency also increases robustness 
because the monitoring cannot be avoided even by attacking 
the underlying OS. The basic technologies we adopted to 
achieve transparency and robustness are virtualization and 
introspection. Virtualization introduces the virtual machine 
monitor (VMM), which is a thin software layer that runs on 
top of a physical machine and that creates, manages and 
monitors virtual machines (VMs). Each VM is an execution 
environment that emulates, at software, the behavior of the 
underlying physical machine. Virtual machine introspection 
(VMI) extends the VMM so that a privileged VM can 
analyze any data structure of any other VM in full detail. 
VMI does not require any hardware support and it offers full 
system visibility because the VMM can access every VM 
component, such as the main memory or the processor's 
registers. According to these considerations, the run-time 
tool is built around two VMs: the monitored VM (Mon-
VM), which executes P, and the introspection VM (I-VM), 
which monitors P through VMI. The Mon-VM transfers 
control to the I-VM each time P reaches an invocation i of a 
system call. The I-VM evaluates A(P, i), i.e. the invariant 
paired with i of P, through VMI. Assertions can involve each 
component of the Mon-VM, for example any program 
variable. A further benefit of this solution is that the tools 
that implement the checks run at the user-level on the I-VM 
and this strongly simplifies their implementation with respect 
to a kernel-level solution.  
 

Xen [3] is the virtualization technology that has been chosen, 
mainly because of its high performance and complete 
integration with the Linux kernel. Xen is an open source 
VMM (or hypervisor) that supports the virtualization of 
machine hardware resources and their dynamic sharing 
among OSes running inside several VMs, or Domains in 
Xen terminology. Xen adopts a para-virtualized approach 
because the guest OSes have to be modified to run on top of 
the VMM. However, by exploiting the hardware support for 
virtualization Xen can also execute unmodified guest OSes. 
Xen provides isolated execution for each Domain, 
preventing failures or malicious activities in one Domain 
from impacting other ones. Domain0 is a privileged VM 
because it can directly access hardware resources and 
configure and create other Domains to run guest OSes. In the 
following, we will use the term VM instead of user Domain 
and privileged VM instead of Domain0. 
 
A first consequence of the para-virtualized approach is that 
each time a guest OS updates the memory mapping of a 
process, Xen has to intercept the operation to prevent a VM 
from interfering with another one. To deal with memory 
virtualization, one the most complex task for a hardware-
level VMM, Xen considers three distinct issues: 

(i) physical memory management, e.g. how to avoid 
memory fragmentation; 

(ii) virtual memory management, e.g. how to 
minimize the overhead introduced when a VM is 
scheduled; 

(iii) page table (PT) management, e.g. how to validate 
each memory access to satisfy the isolation 
requirement among VMs. 

 
To give to guest OSes the illusion of a contiguous address 
space, Xen defines two distinct address spaces: Machine 
memory, i.e. the total amount of physical memory of the host 
that runs Xen, and Pseudo-Physical memory, i.e. the set of 
addresses as seen inside a VM. Two tables implement the 
mapping between the two address spaces: Machine-to-
Physical (M2P), which maps the physical memory pages into 
pseudo-physical pages, and Physical-to-Machine (P2M), one 
for each domain, which implements the reverse mapping. 
The size of M2P is proportional to the physical memory, 
whereas the size of a P2M is proportional to the memory 
allocated to each VM. To minimize the performance 
degradation of VM context switching due to TLB misses, the 
topmost 64MB (for 32 bit architecture) of the virtual address 
space of each process contains a mapping for the Xen 
hypervisor itself. As far as concerns the management of PTs, 
there are two possible solutions: shadow PTs or direct 
management of the PTs by guest OSes. Shadow PTs require 
that a guest OS implements virtual PTs that are not visible to 
the MMU. In this case, to prevent interferences among VMs, 
Xen traps each access to the virtual PTs and propagates their 
updates to the real PTs used by the MMU. Direct 
management of PTs requires that guest OS PTs are read-only 
so that the OS has to invoke Xen through hypercalls to 
update the mapping. 
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3. Architecture of the Run-Time Tool 
 
Our semantics-driven approach detects attacks against a 
process P by evaluating invariants, e.g. assertions, that 
constrain the values of P variables at each system call 
invocation. System call sites are one of the most appropriate 
choices for program points to check the values of the 
variables, because they are the points where the monitored 
system switches from user-level to kernel-level. Therefore, 
this is the most critical time when an attacker may exploit 
some vulnerability to gain control of the system. Invariants 
are the output of a static analysis of the program source 
code. To be fully integrated with the run-time tool, the static 
tool is focused on the generation of an invariant for each 
system call that relates values of programs variables and of 
system call parameters. Then, this invariant is paired with the 
PC value when P executes the system call. 
 
As previously mentioned, the architecture of the run-time 
tool is based upon the cooperation of two distinct VMs: the 
Monitored VM (Mon-VM), which executes the monitored 
process P, and the Introspection VM (I-VM), which verifies 
the integrity of P. The I-VM runs an Assertion Checker 
process that evaluates invariants on P state and accesses P 
variables through VMI. Even if the Assertion Checker can 
monitor several processes concurrently, for the sake of 
simplicity, we assume that P is the only process that is being 
monitored. 
 
The input of the Assertion Checker is a set of invariants of 
the form: 
 
PC, {var name: addr: type}, {expr on 
vars} 
 
where: 
 

• PC is the program counter paired with a system call; 
• {var name: addr: type} is a set of variable 

names, their virtual address and their type; 
• {expr on vars} is a set of relations among 

variables with the following structure: 
o <var (OP var)* REL value >, 

where OP is an arithmetic/logic operator 
and REL is a relational operator, such as: a 
> 10; a + b >= 0; i == 5; 

o <var (OP var)* REL var >, such 
as: a + b > c; c == d. 

 
The Mon-VM kernel transfers control to the I-VM every 
time P invokes a system call. Then, the I-VM freezes the 
execution of the Mon-VM and the Assertion Checker 
invokes the Introspection Library to retrieve the current PC 
of P and the values of the variables of P that the invariant 
paired with the current PC refers to. If the invariant is false, 
the I-VM kills P, otherwise it resumes control of the Mon-
VM from the current PC. 
 
By pairing an invariant with each call, we can detect non-
control-data attacks [18], [19]. Invariants can either be 

deduced by monitoring the program execution [20] or 
computed by applying a static tool to P source code [21]. 
Any non-empty assertion is the conjunction of assertions in 
the following classes: 

• Parameters assertions. They express data-flow 
relations among parameters of distinct calls, e.g. the 
file descriptor in a read call is the result of a 
previous open call. 

• File Assertions. To prevent symlink and race 
condition attacks, they check, as an example, that 
the real file-name corresponding to the file 
descriptor belongs to a known directory.  

• Buffer length assertions. They check that the length 
of the string passed to a vulnerable function is not 
larger than the local buffer to hold it. 

• Conditional statements assertions. They prevent  
impossible paths [22] by relating a system call and 
the expression in the guard of a conditional 
statement. As an example, in if(uid == 0) 
then syscall1 else syscall2, we pair the 
assertion uid == 0 with syscall1, to prevent a 
normal user from executing the same call of the root 
user. They may also check that the current return 
address matches the call issued by P. 

 
 

3.1  Introspection Library 
The Introspection Library is invoked by the Assertion 
Checker whenever P issues a system call. The library 
implements two introspection functions, namely Memory 
Introspection, to access the memory of a monitored VM both 
at the user and at the kernel level, and VCPU-Context 
Introspection, to retrieve the state of the Mon-VM virtual 
processor. 
 

 
Figure 1. User-Space Address Translation 

 

3.2.1 Memory Introspection 
The implementation of memory introspection poses three  
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Figure 2. Kernel Static-Addresses Translation 

 
main problems: 

(i) distinguish among the various kinds of addresses 
introduced by Xen when virtualizing memory 
and correctly translate them; 

(ii) directly manage accesses to the PTs of both user 
processes and the kernel; 

(iii) map into the Assertion Checker address space the 
memory areas of the Mon-VM allocated either to 
a process or to the kernel. 

 
 
To implement user-space memory introspection, the library 
needs to access any physical memory location allocated to 
the Mon-VM that corresponds to a virtual address of P. To 
translate a virtual address, the Introspection Library directly 
accesses the PTs of P and then follows the pointer to walk 
the paging levels to retrieve the pairing between a virtual and 
a physical address. In the case of para-virtualization, the 
addresses in all the page levels and in the registers of a 
virtual context of a VM are machine addresses, such as the 
page directory address in the cr3 register. This implies that 
the Introspection Library has to map three pages to translate 
a virtual address into a machine address and maps the 
corresponding page using the  
xc_map_foreign_range() function, as shown in Fig. 
1. 

 
Conversely, Xen manages static addresses in a para-
virtualized OS, such as those paired with the kernel-exported 
symbols, as pseudo-physical addresses. To this end, when 

Xen starts a VM, kernel static addresses are relocated, and 
the original addresses are managed as pseudo-physical ones. 
Hence, to translate a pseudo-physical address PPA paired 
with a kernel symbol, the Introspection Library executes the 
following steps (see Fig.2): 

• translate PPA into a machine address MA using 
the P2M table. Note that MA does not reference 
the kernel symbol because it is relocated, i.e. Xen 
adds a further level of indirection to the kernel 
pseudo-physical addresses; 

• request Xen to map the page at the base address 
of MA and retrieve from the resulting offset the 
relocated pseudo-physical address PPA2 of the 
kernel symbol; 

• access the P2M table to translate PPA2 into the 
corresponding machine address MA2; 

• request Xen to map the page at the base address 
of MA2 into the address space of the Assertion 
Checker process. This page stores the kernel data 
structure pointed to by the kernel symbol. 

 
As soon as the Introspection Library has mapped the page 
that stores the pointer to the kernel page directory, 
referenced to by the swapper_pg_dir symbol, it can 
translate pseudo-physical addresses by accessing the kernel 
PTs in the same way of a process virtual address. In this 
case, the Introspection Library maps three pages instead of 
executing the previous four steps. 
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Figure 3. Invariant Evaluation

 
 
Finally, when exploiting processor virtualization extensions, 
Xen applies the shadow PTs mechanism and both the page 
directory and PTs store pseudo-physical addresses. Each 
time a PT needs to be updated, Xen propagates the update to 
the real PT, which is known to the MMU. To this end, the 
Introspection Library exploits the Xen page_array 
structure, which stores the pairing between pseudo-physical 
frame numbers and machines frame numbers.  
 
 
To optimize the translation of variables allocated in the same 
page, the Introspection Library implements a TLB-based 
software solution to keep track of the pairing among virtual 
addresses and machine addresses for the monitored process. 
The optimization exploits a table that stores (Monitored 
Virtual Base Address, Mapped Virtual Base 
Address) pairs and where each pair records the 
association between a virtual base address of the monitored 
process and the virtual address of a machine page in the 
address space of the Assertion Checker. Before translating a 
virtual address, the Introspection Library searches this table 
for the virtual address of the page including the virtual 
address of P. If the address is found, then the page of P is 
already mapped in the memory of the Assertion Checker. 
 
 

3.2.2 VCPU-Context Introspection 
The VCPU-Context introspection enables the Assertion 
Checker to monitor, and modify, the content of any Mon-
VM register. To support the context switch between two 
VMs, Xen saves the values of the CPU registers in a Virtual 
CPU-Context paired with each VM. When a VM is going to 
be scheduled, the current values of the registers are saved 

into the VCPU context of the running VM, while the 
registers of the new VM are restored from the proper VCPU 
context. The VCPU-Context is implemented by the 
vcpu_guest_context_t data structure, which contains 
the following fields: 

• unsigned long ctrlreg[8], i.e. the control 
registers for the virtual CPU. As an example, the 
control registers can be used to access the page 
directory through the CR3 register; 

• struct cpu_user_regs user_regs, i.e. 
the user registers, such as the EIP and all the 
registers used to save the parameters of a system 
call. 

 
The Introspection Library has been implemented and tested 
on 32-bit x86 architectures both with Regular Paging and 
Physical Address Extension (PAE), in the two cases of para-
virtualized OS guest or full-virtualized VMs. 
 
 

3.3 Run-Time Invariant Evaluation 
The current run-time architecture exploits two tools: (i) a 
kernel module in the Mon-VM to hijack system calls issued 
by P and (ii) the Assertion Checker. Each time P invokes a 
system call, the kernel module traps the call and, before 
servicing it, it informs the Assertion Checker. The Assertion 
Checker evaluates any assertion paired with the current 
system call. The Assertion Checker accesses the Mon-VM 
memory and its VCPU register through the Introspection 
Library. Since the interactions between the Assertion 
Checker and the kernel module in the Mon-VM have to be 
synchronous because the state of P cannot be updated during 
assertion evaluation, the Assertion Checker freezes the 
execution of the Mon-VM and resumes it only if the 
assertions are satisfied. To accomplish this, the hijacking  
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Table 1. Traced System Calls 

kernel module and the Assertion Checker are synchronized 
through an event channel, which is a Xen data structure that 
emulates the interrupt mechanism. At startup, the Assertion 
Checker allocates a new event channel and waits for 
notifications from the kernel module: each notification 
corresponds to a system call that P wants to issue. Since just 
a few calls in the Linux kernel can be exploited to attack a 
process [23], the kernel module only hijacks the system calls 
listed in Tab. 1. 
 
To evaluate the invariants, the Assertion Checker exploits 
the VCPU-Context introspection capability of the library to 
retrieve the current PC of P and to map the pages storing the 
variables of P into its address space to fetch their values. At 
runtime, when P issues a system call, control is hijacked and 
transferred to the I-VM, where the Assertion Checker: 

(i) reads the current PC; 
(ii) reads the current value of the variables to 

evaluate the invariant paired with PC; 
(iii) evaluates the invariant. 
 

During static analysis a set of invariants is paired with any 
address paired with a system call. Since at run-time the 
address found in the PC register is paired with the current 
system call, the Assertion Checkers needs a way to retrieve 
the PC at the system call site, since this is the address 
deduced during static analysis and paired with an invariant. 
The easiest way to do this is to retrieve the current system 
call return address (more precisely, the system call handler 
return address) because it points to the system call site PC+1. 
This address is located in the user stack. But, since the Mon-
VM is in kernel space, the ESP register points to the kernel 
stack not to the user stack. Thus, the Assertion Checker 
needs to retrieve the value of the saved ESP register in the 
kernel stack. Then,  it locates the return address in the user 
stack. 

 
In more detail, the Assertion Checker (see Fig. 3): 

1 accesses the VCPU context to read the 
kernel_sp register, which points to the top of the 
kernel stack; 

2 maps the kernel stack; 
3 reads the value of the ESP register, which points to 

the base of the user stack; 
4 maps the user stack; 

5 locates in the user stack of P the return address of 
the system call. Since the offset of the return 
address from the stack pointer depends upon the 
system call type, the Assertion Checker reads the 
EAX register to identify the system call; 

6 after reading the return address, which is paired 
with a set of invariants, the Assertion Checker maps 
the pages storing the variables paired with this 
return address; 

7 reads the value of the variables; 
8 evaluates the invariant. 

If the invariant is satisfied, the Assertion Checker resumes 
the execution of the Mon-VM, otherwise it kills P. 
 

4. Performance Results 
 

Since only the run-time tool has currently been fully 
implemented, we manually build the invariants to be 
evaluated at run-time. Furthermore, after compiling the 
source program, we manually search inside the object code 
for invocations to the libc system call wrapper routines or 
for direct invocations of system calls through the int 
$0x80 mechanism. In this way, we pair each system call 
invocation with its return address to uniquely identify both 
the invocation and the corresponding invariant. In the 
current prototype, some modifications are required to the 
source code to retrieve the run-time address of any variable 
referred to by an invariant, its name and type. This 
information is stored into the XenStore database and can be 
accessed by the Assertion Checker to retrieve the value of P 
variables. In a future version, the static tool will compute 
variable addresses by considering both the frame pointer 
(EBP register) and the debugging information in the object 
code as well. 

As far as concerns the monitoring performance, the most 
critical operation of an invariant evaluation is the time to 
access the variables. The average time to map a page of P 
into the Assertion Checker address space is about 50 μsecs. 
For each system call, at least two pages have to be mapped 
for, respectively, the kernel and the user stack. Moreover, at 
most one further page for each variable that the invariant 
refers to has to be mapped. Thus, the corresponding 

sys_exit  sys_mknod  sys_setfsgid  sys_setfsuid  sys_read 
sys_chmod  sys_lchown  sys_setresgid  sys_write  sys_vhangup 
sys_symlink  sys_mkdir  sys_open  sys_stat  sys_chown 
sys_ioctl  sys_close  sys_lseek  sys_setgid  sys_ftruncate 
sys_waitpid sys_getpid  sys_setgroups  sys_flock  sys_creat 
sys_mount  sys_setresuid  sys_brk  sys_link  sys_fchown 
sys_rename  sys_reboot  sys_unlink  sys_setuid  sys_fchmod 
sys_swapoff  sys_chdir  sys_setregid  sys_setreuid  sys_stime 
sys_delete_module sys_mlock  sys_settimeofday  sys_setdomainname  sys_truncate 
sys_setrlimit  sys_ioperm  sys_sched_setparam  sys_swapon  sys_mlockall 
sys_nice  sys_sethostname  sys_socketcall  sys_syslog  sys_rmdir 
sys_dup2  sys_nfsservctl  sys_kill  sys_setpriority  sys_adjtimex 
sys_umount  sys_sysctl  sys_sched_setscheduler  sys_quotactl  sys_exec 
sys_time     
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overhead is at least 150 μsecs, because each invariant refers 
at least one variable. By exploiting the software TLB, this 
time can be considerably reduced anytime several program 
variables are stored in the same page (see Fig. 4). In this 
way, the Assertion Checker can access the variables without 
mapping further pages of the virtual address space of P. If 
the variables are stored in the same page, each access 
requires 20 μsecs. Therefore, since the software TLB can 
also be exploited to access the kernel stack, anytime the 
Assertion Checker has to retrieve the value of just one 
variable, the overhead due to the mapping and the evaluation 
is about 60 μsecs for each system call. Taking into account 
the rate of system call invocations, the overhead of the 
execution time is lower than 10% on the average. This 
overhead can be justified because the monitoring is fully 
transparent and because of the robustness due to the 
cooperation between distinct VMs. 

 
 

Figure 4. Time to Retrieve a Variable Value 

 

5. Related Works 
 
An approach to VM introspection is proposed in [13] with 
XenAccess, a monitoring library for OSes running on Xen, 
which provides virtual memory introspection and, as 
opposed to our library, virtual disk monitoring capabilities. It 
exploits the XenControl library to access the memory of a 
VM from a distinct one and applies introspection in a way 
that is similar to our approach. XENKimono [24] detects 
security policy violations on a kernel at run-time, by 
checking the kernel from a distinct VM through virtual 
machine introspection. XenKIMONO proposes 2 strategies: 
(i) integrity checking, to detect illegal changes to kernel code 
and jump-tables (system call table, IDT, page-fault handler); 
(ii) cross-view detection to detect the malicious 
modifications to critical kernel objects.  Moreover, it 
monitors critical processes, detects suspicious activities and 
applies a white-list based detection, such as a list of 
applications that can have root access, a list of network ports 
that the applications can bind to and a list of kernel modules 
that can be loaded into the kernel. Lares [14] is a security 
tool that can actively control an application running in a 
guest VM by inserting hooks into the execution flow of the 
process. These hooks transfer control to another VM that 
checks the monitored application using introspection and 
security policies.  The guarded model [15] combines control 
flow and data flow analysis by generating and propagating 
invariants to detect mimicry attacks. This model exploits the 
control flow graph where system calls are guarded by 
invariants, which are properties about system call arguments, 

return values, input variables and the values of branch 
predicates. KernelGuard [25] is a prevention solution that 
blocks dynamic data kernel rootkit attacks by monitoring 
kernel memory accesses using VMM policies. It 
preemptively detects changes to monitored kernel data states 
and enables fine-grained inspection of memory accesses on 
dynamically changing kernel data. For each kernel data 
structure that needs to be protected, a policy is written which 
describes how the VMM should identify the data structure in 
a raw view of memory as well as the characteristics of an 
attack against that data structure. In addition, the policy 
describes the pointers within the kernel's memory that point 
to the data structure so that those can be tracked and 
protected as well. At runtime, the VMM finds the data 
structure in memory and intercepts all writes to its address in 
order to validate them and ensure they do not violate the 
policy. [10] presents an architecture model to protect host-
based intrusion detectors. It exploits the confinement 
provided by a VMM to separate the IDS from the monitored 
OS so that it cannot be subverted by intruders. With respect 
to our approach, this system provides a learning mode, such 
as the one in [5] to build a database that stores the sequences 
of invoked system calls. In the monitoring mode, an 
intrusion detection module compares data received from the 
VM against the data in the database.  Xenprobes [12] is a 
framework to probe several Xen guest kernels 
simultaneously and that allows developers to implement their 
probe handlers in user-space. [8] demonstrates a technique to 
debug guest kernels of Xen VMs through gdb. A limitation 
of this approach is that it cannot debug arbitrary devices. 
This stems from Xen architecture, because Xen guest OSes 
can only see the hardware devices that Xen emulates. PAID 
[9] is a compiler-based framework that derives system call 
patterns from an application source code. Null system calls 
are inserted into the application source code to increase the 
amount of information available at run-time.  Manitou [17]  
is a system implemented within a VMM that ensures that a 
VM can only execute authorised code by computing the hash 
of each page before executing the code it includes. Manitou 
sets the executable bit for the page only if the hash belongs 
to a list of authorised hashes. Lycosid [27] is a VMM-based 
hidden process detection and identification service. Lycosid 
uses cross-view validation to detect maliciously hidden OS 
processes by comparing the lengths of process lists obtained 
at a low (trusted) and a high (untrusted) level. If the trusted 
list is longer than the untrusted list Lycosid concludes that at 
least one process has been hidden. Lycosid introduces a new 
technique called CPU inflation that transparently placing 
patches in guest program code and, by forcing processes to 
run more frequently and more aggressively than they 
normally would, CPU inflation effectively increases the 
resolving power of Lycosid's identification techniques. The 
VIX Tools [26] are designed to allow an investigator to 
perform live analysis of a guest VM from a privileged VM. 
VIX consists of a library of common functions, and a suite 
of tools which mimic the behavior of common Unix 
command line utilities, such as ps, lsmod, netstat, 
lsof, who, top. The basic approach taken by these 
tools is to pause the target virtual machine, acquire the data 
necessary to perform the requested function using read-only 
operations, and then un-pause the target VM. Using this 
approach VIX can ensure that the state of the VM does not 
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change during the data acquisition process, and that the state 
of the VM is not modified while its execution is suspended. 

6. Conclusion and Future Developments 

We have proposed a semantics-driven approach to monitor 
program execution that exploits the virtualization technology 
to access the process memory and evaluate an invariant for 
each system call. We believe that this is a very general and 
selective strategy to detect attacks, because it can discover 
malicious updates to data structures anytime a process 
requires a critical operation to the OS. Moreover, the 
isolation of the monitoring VM from the one that runs the 
monitored process increases the overall robustness. 

An area of future research is the automatic extraction of 
invariants from the application source code of the monitored 
process. Since we are currently focused on the run-time 
aspects of the monitoring, to evaluate both its efficacy and 
efficiency, the deduction of invariants through a static 
analysis has been formally specified through a data-flow 
framework [2]. In particular, we are interested in 
relationships among system call parameters. Moreover, we 
are currently working on a strategy that integrates static and 
dynamic information to compute the addresses of local 
variables, whose address may vary from run to run, by 
keeping track of the value of the frame pointer. 

 

References 

[1] Fabrizio Baiardi and Daniele Sgandurra. Towards High 
Assurance Networks of Virtual Machines. In 
Proceedings of the 3rd European Conference on 
Computer Network Defense (EC2ND 2007), Heraklion 
(Greece), Lecture Notes in Electrical Engineering, Vol. 
30 Siris, pp. 21-34, 2007. 

[2] Darren C. Atkinson, William G. Griswold, 
Implementation Techniques for Efficient Data-Flow 
Analysis of Large Programs, icsm, pp.52, 17th IEEE 
International Conference on Software Maintenance 
(ICSM'01), 2001. 

[3] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. 
Pratt, A.Warfield, P. Barham, and R. Neugebauer. Xen 
and the art of virtualization. In Proceedings of the 
ACM Symposium on Operating Systems Principles, 
pages  164-177, October 2003. 

[4] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and 
P. M. Chen. Revirt: enabling intrusion analysis through 
virtual-machine logging and replay. SIGOPS Oper. 
Syst. Rev., 36(SI):211–224, 2002. 

[5] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. 
Longstaff. A sense of self for Unix processes. In 
Proceedinges of the 1996 IEEE Symposium on 
Research in Security and Privacy, pages 120–128. 
IEEE Computer Society Press, 1996. 

[6] T. Garfinkel and M. Rosenblum. A virtual machine 
introspection based architecture for intrusion detection. 
In Proc. Network and Distributed Systems Security 
Symposium, February 2003. 

[7] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. 
Detecting past and present intrusions through 
vulnerability-specific predicates. SIGOPS Oper. Syst. 
Rev., 39(5):91–104, 2005. 

[8] N. A. Kamble, J. Nakajima, and A. K. Mallick. 
Evolution in kernel debugging using hardware 
virtualization with xen, In Proceedings of the 2006 
Ottawa Linux Symposium (Ottawa, Canada, July 
2006).  

[9] L. C. Lam. Program Transformation Techniques for 
Hostbased Intrusion Prevention. PhD thesis, Stony 
Brook University, December 2005. 

[10] M. Laureano, C. Maziero, and E. Jamhour. Protecting 
hostbased intrusion detectors through virtual machines. 
Comput. Netw., 51(5):1275–1283, 2007. 

[11] F. Leung, G. Neiger, D. Rodgers, A. Santoni, and R. 
Uhlig. Intel Virtualization Technology: Hardware 
support for efficient processor virtualization. Intel 
Technology Journal, 10(3):167–178, August 2006. 

[12] A.-Q. Nguyen and K. Suzaki. Xenprobes, a lightweight 
user-space probing framework for xen virtual machine. 
In USENIX Annual Technical Conference, pages 15–
28, 2007. 

[13] Payne, B.D.; de Carbone, M.D.P.; Wenke Lee, Secure 
and Flexible Monitoring of Virtual Machines, 
Computer Security Applications Conference, 2007. 
ACSAC 2007. Twenty-Third Annual, vol., no., pp.385-
397, 10-14 Dec. 2007 

[14] Bryan D. Payne, Martim Carbone, Monirul Sharif, 
Wenke Lee, Lares: An Architecture for Secure Active 
Monitoring Using Virtualization, sp, pp.233-247, 2008 
IEEE Symposium on Security and Privacy (sp 2008), 
2008 

[15] H. Sa¨ıdi. Guarded models for intrusion detection. In 
PLAS ’07: Proceedings of the 2007 workshop on 
Programming languages and analysis for security, 
pages 85–94, New York, NY, USA, 2007. ACM. 

[16]   Hirano, M. and Okuda, T. and Kawai, E. and 
Yamaguchi, S., Design and Implementation of a 
Portable ID Management Framework for a Secure 
Virtual Machine Monitor, Journal of Information 
Assurance and Security, Volume 2, pages 211--216, 
2007 

[17] L. Litty and D. Lie. Manitou: a layer-below approach to 
fighting malware. In ASID ’06: Proceedings of the 1st 
workshop on Architectural and system support for 
improving software dependability, pages 6–11, New 
York, NY, USA, 2006. ACM. 

[18] S. Chen, J. Xu, E. C. Sezer, P.Gauriar, and R. K. Iyer. 
Non-control-data attacks are realistic threats. In Proc. 
of the 14th USENIX Security Symposium, pages 12–
12, Berkeley, CA, USA, 2005. USENIX Association. 

[19] S. Bhatkar and A. Chaturvedi. Sekar., R. Improving 
Attack Detection in Host-Based IDS by Learning 
Properties of System Call Arguments. Proc. of the 
IEEE Symposium on Security and Privacy, 2006. 

[20] M. Ernst, J. Perkins, P. Guo, S. McCamant, C. Pacheco, 
M. Tschantz, and C. Xiao. The Daikon system for 
dynamic detection of likely invariants. Science of 
Computer Programming, 69(1-3):35–45, 2007. 

[21] G. Ammons, R. Bod´ık, and J. R. Larus. Mining 
specifications. SIGPLAN Not., 37(1):4–16, 2002. 

131                                                                                                                                                     Baiardi, Maggiari, Sgandurra



[22] D. Wagner and D. Dean. Intrusion detection via static 
analysis. In Proc. of the 2001 IEEE Symposium on 
Security and Privacy, page 156, Washington, DC, 
USA, 2001. IEEE Computer Society. 

[23] M. Bernaschi, E. Gabrielli, and L. V. Mancini. 
Operating system enhancements to prevent the misuse 
of system calls. In Proc. of the 7th ACM conference on 
Computer and communications security, pages 174–
183, New York, NY, USA, 2000. ACM. 

[24] N. A. Quynh and Y. Takefuji. Towards a tamper-
resistant kernel rootkit detector. In SAC '07: 
Proceedings of the 2007 ACM symposium on Applied 
computing, pages 276-283, New York, NY, USA, 
2007. ACM 

[25]  J. Rhee, R. Riley, D. Xu, and X. Jiang. Defeating 
Dynamic Data Kernel Rootkit Attacks via VMM-based 
Guest-Transparent Monitoring, Proceedings of 4th 
International Conference on Availability, Reliability 
and Security (ARES 2009), Fukuoka, Japan, March 
2009 

[26] B. Hay and K. Nance. Forensics examination of volatile 
system data using virtual introspection. SIGOPS Oper. 
Syst. Rev., 42(3):74-82, 2008. 

[27] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. VMM-based hidden process detection and 
identification using Lycosid. In VEE'08: Proceedings 
of the fourth ACM SIGPLAN/SIGOPS international 

conference on Virtual execution environments, pages 
91-100, New York, NY, USA, 2008. ACM. 

[28] M. Pollitt, K. Nance, B. Hay, R. C. Dodge, P. Craiger, 
P. Burke, C. Marberry, and B. Brubaker. Virtualization 
and digital forensics: A research and education agenda. 
J. Digit. Forensic Pract., 2(2):62-73, 2008. 

[29] Jansen, Bernhard and Ramasamy, Harigovind V. and 
Schunter, Matthias and Tanner, Axel. Architecting 
dependable and secure systems using virtualization. In 
Architecting Dependable Systems V, Springer-Verlag, 
pages 124-149, 2008. 

 

Author Biographies 
Fabrizio Baiardi  graduated in Computer Science at Università di Pisa 
where is a Full Professor with Dipartimento di Informatica where he chairs 
one of the computer science degree. His main research interest in the 
computer security field is risk assessment and management of complex ICT 
infrastructures 
 
Dario Maggiari graduated in Computer Science at Università di Pisa in 
2008. Currently is a researcher in the field of virtual machines security and  
program static analysis. 
 
Daniele Sgandurra graduated in Computer Science at Università di Pisa in 
2006. He is currently a PhD student at the Department of Informatics at 
Università di Pisa, where his major research fields are virtual machines 
security, intrusion detection systems and operating systems security. 

 

 Invariant Evaluation through Introspection for Proving Security Properties                                                                            132


