
Invariant Evaluation through Introspection for
Proving Security Properties

Fabrizio Baiardi1, Dario Maggiari1 and Daniele Sgandurra2

1Polo G. Marconi, University of Pisa

Via dei Colli, La Spezia, Italy
{baiardi, maggiari}@di.unipi.it

2Department of Informatics, University of Pisa

Largo B. Pontecorvo, 3 Pisa, Italy
daniele@di.unipi.it

Abstract: Semantics-driven monitoring discovers attacks against a
process by evaluating invariants on the process state. To increase
the robustness and the transparency of semantics-driven
monitoring, we propose an approach that introduces two virtual
machines (VMs) running on the same platform. One VM runs the
monitored process, i.e. the process to be protected, while the other
one evaluates invariants on the process state each time a process
invokes a system call. The evaluation of invariant exploits an
Introspection Library that enables the monitoring VM to access the
memory and the processor registers of the monitored VM.

After describing the overall architecture of the proposed approach,
we focus on the Introspection Library and the problems posed by
the introspection of variables in the memory of a program running
in a distinct VM to evaluate invariants. A first prototype
implementation is also presented together with a set of performance
results.

Keywords: intrusion detection, virtual machine introspection,
invariants, process self, anomalous behavior.

1. Introduction
Virtualization is becoming increasingly popular, because

enterprises can reduce the total number of servers by
migrating the real environments, hosted on physical
machines, to virtual machines (VMs) running on a single
server. Since a VM is an exact replica of a real machine, it
can execute the same operating system (OS) and applications
but several VMs can share a single physical host
concurrently. The consolidation of multiple server
environments onto a single platform harnesses unused
computing power and cuts hardware and lifetime costs.

While these advantages cannot be neglect, we believe that
virtualization should also be exploited to build more robust
systems [4, 7, 16, 28, 29]. As an example, the Virtual
Machine Monitor (VMM), i.e. the software that runs,
confines, and manages the VMs, exports a control interface
that enables a monitoring VM to analyze the current state of
other VMs through Virtual Machine Introspection (VMI)
[6]. The introspection capability leverages the fact that a VM
completely encapsulates the state of the corresponding
physical host, so that a monitoring VM can analyze in full
detail a host running inside another VM. As an example, the
monitoring VM can search for specific values in the memory
of another VM or inspect the content of the VCPU registers.
In this way, a monitoring VM can analyze and compare the

data obtained through VMI against those returned by
invocations to the OS of a monitored VM. Any discrepancy
signals that an attacker may have altered the OS of a
monitored VM [1]. Furthermore, by analyzing the status of
the VCPU of a monitored VM, the monitoring VM can
access register values to retrieve the parameters of a process
system call and check their correctness.

This paper proposes a semantics-driven approach to discover
attacks against a process P based upon the evaluation of
invariants on the state of P each time P invokes a system
call. This approach requires two tools: a static tool that
analyses P program to pair each system call with an
invariant, and a run-time tool that intercepts the system calls
that P issues and evaluates the corresponding invariants.
Each invariant is paired with a system call invocation and it
constrains the values of the process variables and of the
parameters of the system call. The model underlying the
definition of our framework is focused on those attacks that
modify the behavior of a process as expressed in the source
code, such as those that inject and execute malicious code.
In this paper we focus on the run-time tool, which is
implemented by two VMs: a Monitored VM (Mon-VM),
which runs P, and a monitoring Introspection VM (I-VM).
The I-VM runs an Assertion Checker that evaluates
invariants on the state of P. The Assertion Checker accesses
the values of P variables and the processor registers of the
Mon-VM through an Introspection Library, which has a
low-level access to each component allocated to the Mon-
VM, such as the main memory. Every time P issues a system
call, the Mon-VM transfers control to the I-VM, which:

(i) retrieves the value of the processor registers of
the Mon-VM that store the system call number
and parameters;

(ii) determines the invariant paired with the system
call that P has issued;

(iii) retrieves the values of P variables that the
invariant refers to;

(iv) evaluates the invariant and kills P if the invariant
is false, because this signals a successful attack
against P.

Our framework does not require any modification to the
source code of P, which is statically analyzed to compute the

Journal of Information Assurance and Security 4 (2009) 124-132

Received June 10, 2009 1554-1010 $ 03.50 Dynamic Publishers, Inc.

invariants paired with each system call invocation. Instead,
the system call handler of the Mon-VM kernel has been
hijacked to transfer control to the I-VM every time P issues a
system call. In this way, the monitoring is both fully
transparent to P and highly robust. In fact, any process P is
not aware of being monitored and the monitoring is
implemented by a VM that is separated from the one that
executes P. The current version of the run-time tool is not
fully transparent because a module in the Mon-VM kernel
traps the system calls and notifies them to the I-VM. The
integrity of this module is periodically checked by the I-VM
through VMI. Furthermore, our solution does not introduce
any additional hardware units.

The rest of the paper is organized as follows. Section 2
briefly outlines some features of Xen memory management,
which we have exploited to implement the current prototype.
Section 3 describes the overall architecture of the run-time
tool, the Introspection Library and the Assertion Checker.
Section 3 evaluates the overhead of the current prototype.
Section 4 discusses related works. Finally, Sect. 5 draws
some conclusions and outline future developments.

2. Xen Memory Management
This section recalls some features of Xen memory
management that influences the overall architecture of the
run-time tool.

Besides robustness, a main goal of our framework is fully
transparency, so that the monitoring of an application should
not require any updates to the application itself or to the
underlying OS. Transparency also increases robustness
because the monitoring cannot be avoided even by attacking
the underlying OS. The basic technologies we adopted to
achieve transparency and robustness are virtualization and
introspection. Virtualization introduces the virtual machine
monitor (VMM), which is a thin software layer that runs on
top of a physical machine and that creates, manages and
monitors virtual machines (VMs). Each VM is an execution
environment that emulates, at software, the behavior of the
underlying physical machine. Virtual machine introspection
(VMI) extends the VMM so that a privileged VM can
analyze any data structure of any other VM in full detail.
VMI does not require any hardware support and it offers full
system visibility because the VMM can access every VM
component, such as the main memory or the processor's
registers. According to these considerations, the run-time
tool is built around two VMs: the monitored VM (Mon-
VM), which executes P, and the introspection VM (I-VM),
which monitors P through VMI. The Mon-VM transfers
control to the I-VM each time P reaches an invocation i of a
system call. The I-VM evaluates A(P, i), i.e. the invariant
paired with i of P, through VMI. Assertions can involve each
component of the Mon-VM, for example any program
variable. A further benefit of this solution is that the tools
that implement the checks run at the user-level on the I-VM
and this strongly simplifies their implementation with respect
to a kernel-level solution.

Xen [3] is the virtualization technology that has been chosen,
mainly because of its high performance and complete
integration with the Linux kernel. Xen is an open source
VMM (or hypervisor) that supports the virtualization of
machine hardware resources and their dynamic sharing
among OSes running inside several VMs, or Domains in
Xen terminology. Xen adopts a para-virtualized approach
because the guest OSes have to be modified to run on top of
the VMM. However, by exploiting the hardware support for
virtualization Xen can also execute unmodified guest OSes.
Xen provides isolated execution for each Domain,
preventing failures or malicious activities in one Domain
from impacting other ones. Domain0 is a privileged VM
because it can directly access hardware resources and
configure and create other Domains to run guest OSes. In the
following, we will use the term VM instead of user Domain
and privileged VM instead of Domain0.

A first consequence of the para-virtualized approach is that
each time a guest OS updates the memory mapping of a
process, Xen has to intercept the operation to prevent a VM
from interfering with another one. To deal with memory
virtualization, one the most complex task for a hardware-
level VMM, Xen considers three distinct issues:

(i) physical memory management, e.g. how to avoid
memory fragmentation;

(ii) virtual memory management, e.g. how to
minimize the overhead introduced when a VM is
scheduled;

(iii) page table (PT) management, e.g. how to validate
each memory access to satisfy the isolation
requirement among VMs.

To give to guest OSes the illusion of a contiguous address
space, Xen defines two distinct address spaces: Machine
memory, i.e. the total amount of physical memory of the host
that runs Xen, and Pseudo-Physical memory, i.e. the set of
addresses as seen inside a VM. Two tables implement the
mapping between the two address spaces: Machine-to-
Physical (M2P), which maps the physical memory pages into
pseudo-physical pages, and Physical-to-Machine (P2M), one
for each domain, which implements the reverse mapping.
The size of M2P is proportional to the physical memory,
whereas the size of a P2M is proportional to the memory
allocated to each VM. To minimize the performance
degradation of VM context switching due to TLB misses, the
topmost 64MB (for 32 bit architecture) of the virtual address
space of each process contains a mapping for the Xen
hypervisor itself. As far as concerns the management of PTs,
there are two possible solutions: shadow PTs or direct
management of the PTs by guest OSes. Shadow PTs require
that a guest OS implements virtual PTs that are not visible to
the MMU. In this case, to prevent interferences among VMs,
Xen traps each access to the virtual PTs and propagates their
updates to the real PTs used by the MMU. Direct
management of PTs requires that guest OS PTs are read-only
so that the OS has to invoke Xen through hypercalls to
update the mapping.

125 Baiardi, Maggiari, Sgandurra

3. Architecture of the Run-Time Tool

Our semantics-driven approach detects attacks against a
process P by evaluating invariants, e.g. assertions, that
constrain the values of P variables at each system call
invocation. System call sites are one of the most appropriate
choices for program points to check the values of the
variables, because they are the points where the monitored
system switches from user-level to kernel-level. Therefore,
this is the most critical time when an attacker may exploit
some vulnerability to gain control of the system. Invariants
are the output of a static analysis of the program source
code. To be fully integrated with the run-time tool, the static
tool is focused on the generation of an invariant for each
system call that relates values of programs variables and of
system call parameters. Then, this invariant is paired with the
PC value when P executes the system call.

As previously mentioned, the architecture of the run-time
tool is based upon the cooperation of two distinct VMs: the
Monitored VM (Mon-VM), which executes the monitored
process P, and the Introspection VM (I-VM), which verifies
the integrity of P. The I-VM runs an Assertion Checker
process that evaluates invariants on P state and accesses P
variables through VMI. Even if the Assertion Checker can
monitor several processes concurrently, for the sake of
simplicity, we assume that P is the only process that is being
monitored.

The input of the Assertion Checker is a set of invariants of
the form:

PC, {var name: addr: type}, {expr on
vars}

where:

• PC is the program counter paired with a system call;
• {var name: addr: type} is a set of variable

names, their virtual address and their type;
• {expr on vars} is a set of relations among

variables with the following structure:
o <var (OP var)* REL value >,

where OP is an arithmetic/logic operator
and REL is a relational operator, such as: a
> 10; a + b >= 0; i == 5;

o <var (OP var)* REL var >, such
as: a + b > c; c == d.

The Mon-VM kernel transfers control to the I-VM every
time P invokes a system call. Then, the I-VM freezes the
execution of the Mon-VM and the Assertion Checker
invokes the Introspection Library to retrieve the current PC
of P and the values of the variables of P that the invariant
paired with the current PC refers to. If the invariant is false,
the I-VM kills P, otherwise it resumes control of the Mon-
VM from the current PC.

By pairing an invariant with each call, we can detect non-
control-data attacks [18], [19]. Invariants can either be

deduced by monitoring the program execution [20] or
computed by applying a static tool to P source code [21].
Any non-empty assertion is the conjunction of assertions in
the following classes:

• Parameters assertions. They express data-flow
relations among parameters of distinct calls, e.g. the
file descriptor in a read call is the result of a
previous open call.

• File Assertions. To prevent symlink and race
condition attacks, they check, as an example, that
the real file-name corresponding to the file
descriptor belongs to a known directory.

• Buffer length assertions. They check that the length
of the string passed to a vulnerable function is not
larger than the local buffer to hold it.

• Conditional statements assertions. They prevent
impossible paths [22] by relating a system call and
the expression in the guard of a conditional
statement. As an example, in if(uid == 0)
then syscall1 else syscall2, we pair the
assertion uid == 0 with syscall1, to prevent a
normal user from executing the same call of the root
user. They may also check that the current return
address matches the call issued by P.

3.1 Introspection Library
The Introspection Library is invoked by the Assertion
Checker whenever P issues a system call. The library
implements two introspection functions, namely Memory
Introspection, to access the memory of a monitored VM both
at the user and at the kernel level, and VCPU-Context
Introspection, to retrieve the state of the Mon-VM virtual
processor.

Figure 1. User-Space Address Translation

3.2.1 Memory Introspection
The implementation of memory introspection poses three

 Invariant Evaluation through Introspection for Proving Security Properties 126

Figure 2. Kernel Static-Addresses Translation

main problems:

(i) distinguish among the various kinds of addresses
introduced by Xen when virtualizing memory
and correctly translate them;

(ii) directly manage accesses to the PTs of both user
processes and the kernel;

(iii) map into the Assertion Checker address space the
memory areas of the Mon-VM allocated either to
a process or to the kernel.

To implement user-space memory introspection, the library
needs to access any physical memory location allocated to
the Mon-VM that corresponds to a virtual address of P. To
translate a virtual address, the Introspection Library directly
accesses the PTs of P and then follows the pointer to walk
the paging levels to retrieve the pairing between a virtual and
a physical address. In the case of para-virtualization, the
addresses in all the page levels and in the registers of a
virtual context of a VM are machine addresses, such as the
page directory address in the cr3 register. This implies that
the Introspection Library has to map three pages to translate
a virtual address into a machine address and maps the
corresponding page using the
xc_map_foreign_range() function, as shown in Fig.
1.

Conversely, Xen manages static addresses in a para-
virtualized OS, such as those paired with the kernel-exported
symbols, as pseudo-physical addresses. To this end, when

Xen starts a VM, kernel static addresses are relocated, and
the original addresses are managed as pseudo-physical ones.
Hence, to translate a pseudo-physical address PPA paired
with a kernel symbol, the Introspection Library executes the
following steps (see Fig.2):

• translate PPA into a machine address MA using
the P2M table. Note that MA does not reference
the kernel symbol because it is relocated, i.e. Xen
adds a further level of indirection to the kernel
pseudo-physical addresses;

• request Xen to map the page at the base address
of MA and retrieve from the resulting offset the
relocated pseudo-physical address PPA2 of the
kernel symbol;

• access the P2M table to translate PPA2 into the
corresponding machine address MA2;

• request Xen to map the page at the base address
of MA2 into the address space of the Assertion
Checker process. This page stores the kernel data
structure pointed to by the kernel symbol.

As soon as the Introspection Library has mapped the page
that stores the pointer to the kernel page directory,
referenced to by the swapper_pg_dir symbol, it can
translate pseudo-physical addresses by accessing the kernel
PTs in the same way of a process virtual address. In this
case, the Introspection Library maps three pages instead of
executing the previous four steps.

 127 Baiardi, Maggiari, Sgandurra

Figure 3. Invariant Evaluation

Finally, when exploiting processor virtualization extensions,
Xen applies the shadow PTs mechanism and both the page
directory and PTs store pseudo-physical addresses. Each
time a PT needs to be updated, Xen propagates the update to
the real PT, which is known to the MMU. To this end, the
Introspection Library exploits the Xen page_array
structure, which stores the pairing between pseudo-physical
frame numbers and machines frame numbers.

To optimize the translation of variables allocated in the same
page, the Introspection Library implements a TLB-based
software solution to keep track of the pairing among virtual
addresses and machine addresses for the monitored process.
The optimization exploits a table that stores (Monitored
Virtual Base Address, Mapped Virtual Base
Address) pairs and where each pair records the
association between a virtual base address of the monitored
process and the virtual address of a machine page in the
address space of the Assertion Checker. Before translating a
virtual address, the Introspection Library searches this table
for the virtual address of the page including the virtual
address of P. If the address is found, then the page of P is
already mapped in the memory of the Assertion Checker.

3.2.2 VCPU-Context Introspection
The VCPU-Context introspection enables the Assertion
Checker to monitor, and modify, the content of any Mon-
VM register. To support the context switch between two
VMs, Xen saves the values of the CPU registers in a Virtual
CPU-Context paired with each VM. When a VM is going to
be scheduled, the current values of the registers are saved

into the VCPU context of the running VM, while the
registers of the new VM are restored from the proper VCPU
context. The VCPU-Context is implemented by the
vcpu_guest_context_t data structure, which contains
the following fields:

• unsigned long ctrlreg[8], i.e. the control
registers for the virtual CPU. As an example, the
control registers can be used to access the page
directory through the CR3 register;

• struct cpu_user_regs user_regs, i.e.
the user registers, such as the EIP and all the
registers used to save the parameters of a system
call.

The Introspection Library has been implemented and tested
on 32-bit x86 architectures both with Regular Paging and
Physical Address Extension (PAE), in the two cases of para-
virtualized OS guest or full-virtualized VMs.

3.3 Run-Time Invariant Evaluation
The current run-time architecture exploits two tools: (i) a
kernel module in the Mon-VM to hijack system calls issued
by P and (ii) the Assertion Checker. Each time P invokes a
system call, the kernel module traps the call and, before
servicing it, it informs the Assertion Checker. The Assertion
Checker evaluates any assertion paired with the current
system call. The Assertion Checker accesses the Mon-VM
memory and its VCPU register through the Introspection
Library. Since the interactions between the Assertion
Checker and the kernel module in the Mon-VM have to be
synchronous because the state of P cannot be updated during
assertion evaluation, the Assertion Checker freezes the
execution of the Mon-VM and resumes it only if the
assertions are satisfied. To accomplish this, the hijacking

 Invariant Evaluation through Introspection for Proving Security Properties 128

Table 1. Traced System Calls

kernel module and the Assertion Checker are synchronized
through an event channel, which is a Xen data structure that
emulates the interrupt mechanism. At startup, the Assertion
Checker allocates a new event channel and waits for
notifications from the kernel module: each notification
corresponds to a system call that P wants to issue. Since just
a few calls in the Linux kernel can be exploited to attack a
process [23], the kernel module only hijacks the system calls
listed in Tab. 1.

To evaluate the invariants, the Assertion Checker exploits
the VCPU-Context introspection capability of the library to
retrieve the current PC of P and to map the pages storing the
variables of P into its address space to fetch their values. At
runtime, when P issues a system call, control is hijacked and
transferred to the I-VM, where the Assertion Checker:

(i) reads the current PC;
(ii) reads the current value of the variables to

evaluate the invariant paired with PC;
(iii) evaluates the invariant.

During static analysis a set of invariants is paired with any
address paired with a system call. Since at run-time the
address found in the PC register is paired with the current
system call, the Assertion Checkers needs a way to retrieve
the PC at the system call site, since this is the address
deduced during static analysis and paired with an invariant.
The easiest way to do this is to retrieve the current system
call return address (more precisely, the system call handler
return address) because it points to the system call site PC+1.
This address is located in the user stack. But, since the Mon-
VM is in kernel space, the ESP register points to the kernel
stack not to the user stack. Thus, the Assertion Checker
needs to retrieve the value of the saved ESP register in the
kernel stack. Then, it locates the return address in the user
stack.

In more detail, the Assertion Checker (see Fig. 3):

1 accesses the VCPU context to read the
kernel_sp register, which points to the top of the
kernel stack;

2 maps the kernel stack;
3 reads the value of the ESP register, which points to

the base of the user stack;
4 maps the user stack;

5 locates in the user stack of P the return address of
the system call. Since the offset of the return
address from the stack pointer depends upon the
system call type, the Assertion Checker reads the
EAX register to identify the system call;

6 after reading the return address, which is paired
with a set of invariants, the Assertion Checker maps
the pages storing the variables paired with this
return address;

7 reads the value of the variables;
8 evaluates the invariant.

If the invariant is satisfied, the Assertion Checker resumes
the execution of the Mon-VM, otherwise it kills P.

4. Performance Results

Since only the run-time tool has currently been fully
implemented, we manually build the invariants to be
evaluated at run-time. Furthermore, after compiling the
source program, we manually search inside the object code
for invocations to the libc system call wrapper routines or
for direct invocations of system calls through the int
$0x80 mechanism. In this way, we pair each system call
invocation with its return address to uniquely identify both
the invocation and the corresponding invariant. In the
current prototype, some modifications are required to the
source code to retrieve the run-time address of any variable
referred to by an invariant, its name and type. This
information is stored into the XenStore database and can be
accessed by the Assertion Checker to retrieve the value of P
variables. In a future version, the static tool will compute
variable addresses by considering both the frame pointer
(EBP register) and the debugging information in the object
code as well.

As far as concerns the monitoring performance, the most
critical operation of an invariant evaluation is the time to
access the variables. The average time to map a page of P
into the Assertion Checker address space is about 50 μsecs.
For each system call, at least two pages have to be mapped
for, respectively, the kernel and the user stack. Moreover, at
most one further page for each variable that the invariant
refers to has to be mapped. Thus, the corresponding

sys_exit sys_mknod sys_setfsgid sys_setfsuid sys_read
sys_chmod sys_lchown sys_setresgid sys_write sys_vhangup
sys_symlink sys_mkdir sys_open sys_stat sys_chown
sys_ioctl sys_close sys_lseek sys_setgid sys_ftruncate
sys_waitpid sys_getpid sys_setgroups sys_flock sys_creat
sys_mount sys_setresuid sys_brk sys_link sys_fchown
sys_rename sys_reboot sys_unlink sys_setuid sys_fchmod
sys_swapoff sys_chdir sys_setregid sys_setreuid sys_stime
sys_delete_module sys_mlock sys_settimeofday sys_setdomainname sys_truncate
sys_setrlimit sys_ioperm sys_sched_setparam sys_swapon sys_mlockall
sys_nice sys_sethostname sys_socketcall sys_syslog sys_rmdir
sys_dup2 sys_nfsservctl sys_kill sys_setpriority sys_adjtimex
sys_umount sys_sysctl sys_sched_setscheduler sys_quotactl sys_exec
sys_time

129 Baiardi, Maggiari, Sgandurra

overhead is at least 150 μsecs, because each invariant refers
at least one variable. By exploiting the software TLB, this
time can be considerably reduced anytime several program
variables are stored in the same page (see Fig. 4). In this
way, the Assertion Checker can access the variables without
mapping further pages of the virtual address space of P. If
the variables are stored in the same page, each access
requires 20 μsecs. Therefore, since the software TLB can
also be exploited to access the kernel stack, anytime the
Assertion Checker has to retrieve the value of just one
variable, the overhead due to the mapping and the evaluation
is about 60 μsecs for each system call. Taking into account
the rate of system call invocations, the overhead of the
execution time is lower than 10% on the average. This
overhead can be justified because the monitoring is fully
transparent and because of the robustness due to the
cooperation between distinct VMs.

Figure 4. Time to Retrieve a Variable Value

5. Related Works

An approach to VM introspection is proposed in [13] with
XenAccess, a monitoring library for OSes running on Xen,
which provides virtual memory introspection and, as
opposed to our library, virtual disk monitoring capabilities. It
exploits the XenControl library to access the memory of a
VM from a distinct one and applies introspection in a way
that is similar to our approach. XENKimono [24] detects
security policy violations on a kernel at run-time, by
checking the kernel from a distinct VM through virtual
machine introspection. XenKIMONO proposes 2 strategies:
(i) integrity checking, to detect illegal changes to kernel code
and jump-tables (system call table, IDT, page-fault handler);
(ii) cross-view detection to detect the malicious
modifications to critical kernel objects. Moreover, it
monitors critical processes, detects suspicious activities and
applies a white-list based detection, such as a list of
applications that can have root access, a list of network ports
that the applications can bind to and a list of kernel modules
that can be loaded into the kernel. Lares [14] is a security
tool that can actively control an application running in a
guest VM by inserting hooks into the execution flow of the
process. These hooks transfer control to another VM that
checks the monitored application using introspection and
security policies. The guarded model [15] combines control
flow and data flow analysis by generating and propagating
invariants to detect mimicry attacks. This model exploits the
control flow graph where system calls are guarded by
invariants, which are properties about system call arguments,

return values, input variables and the values of branch
predicates. KernelGuard [25] is a prevention solution that
blocks dynamic data kernel rootkit attacks by monitoring
kernel memory accesses using VMM policies. It
preemptively detects changes to monitored kernel data states
and enables fine-grained inspection of memory accesses on
dynamically changing kernel data. For each kernel data
structure that needs to be protected, a policy is written which
describes how the VMM should identify the data structure in
a raw view of memory as well as the characteristics of an
attack against that data structure. In addition, the policy
describes the pointers within the kernel's memory that point
to the data structure so that those can be tracked and
protected as well. At runtime, the VMM finds the data
structure in memory and intercepts all writes to its address in
order to validate them and ensure they do not violate the
policy. [10] presents an architecture model to protect host-
based intrusion detectors. It exploits the confinement
provided by a VMM to separate the IDS from the monitored
OS so that it cannot be subverted by intruders. With respect
to our approach, this system provides a learning mode, such
as the one in [5] to build a database that stores the sequences
of invoked system calls. In the monitoring mode, an
intrusion detection module compares data received from the
VM against the data in the database. Xenprobes [12] is a
framework to probe several Xen guest kernels
simultaneously and that allows developers to implement their
probe handlers in user-space. [8] demonstrates a technique to
debug guest kernels of Xen VMs through gdb. A limitation
of this approach is that it cannot debug arbitrary devices.
This stems from Xen architecture, because Xen guest OSes
can only see the hardware devices that Xen emulates. PAID
[9] is a compiler-based framework that derives system call
patterns from an application source code. Null system calls
are inserted into the application source code to increase the
amount of information available at run-time. Manitou [17]
is a system implemented within a VMM that ensures that a
VM can only execute authorised code by computing the hash
of each page before executing the code it includes. Manitou
sets the executable bit for the page only if the hash belongs
to a list of authorised hashes. Lycosid [27] is a VMM-based
hidden process detection and identification service. Lycosid
uses cross-view validation to detect maliciously hidden OS
processes by comparing the lengths of process lists obtained
at a low (trusted) and a high (untrusted) level. If the trusted
list is longer than the untrusted list Lycosid concludes that at
least one process has been hidden. Lycosid introduces a new
technique called CPU inflation that transparently placing
patches in guest program code and, by forcing processes to
run more frequently and more aggressively than they
normally would, CPU inflation effectively increases the
resolving power of Lycosid's identification techniques. The
VIX Tools [26] are designed to allow an investigator to
perform live analysis of a guest VM from a privileged VM.
VIX consists of a library of common functions, and a suite
of tools which mimic the behavior of common Unix
command line utilities, such as ps, lsmod, netstat,
lsof, who, top. The basic approach taken by these
tools is to pause the target virtual machine, acquire the data
necessary to perform the requested function using read-only
operations, and then un-pause the target VM. Using this
approach VIX can ensure that the state of the VM does not

 Invariant Evaluation through Introspection for Proving Security Properties 130

change during the data acquisition process, and that the state
of the VM is not modified while its execution is suspended.

6. Conclusion and Future Developments

We have proposed a semantics-driven approach to monitor
program execution that exploits the virtualization technology
to access the process memory and evaluate an invariant for
each system call. We believe that this is a very general and
selective strategy to detect attacks, because it can discover
malicious updates to data structures anytime a process
requires a critical operation to the OS. Moreover, the
isolation of the monitoring VM from the one that runs the
monitored process increases the overall robustness.

An area of future research is the automatic extraction of
invariants from the application source code of the monitored
process. Since we are currently focused on the run-time
aspects of the monitoring, to evaluate both its efficacy and
efficiency, the deduction of invariants through a static
analysis has been formally specified through a data-flow
framework [2]. In particular, we are interested in
relationships among system call parameters. Moreover, we
are currently working on a strategy that integrates static and
dynamic information to compute the addresses of local
variables, whose address may vary from run to run, by
keeping track of the value of the frame pointer.

References

[1] Fabrizio Baiardi and Daniele Sgandurra. Towards High
Assurance Networks of Virtual Machines. In
Proceedings of the 3rd European Conference on
Computer Network Defense (EC2ND 2007), Heraklion
(Greece), Lecture Notes in Electrical Engineering, Vol.
30 Siris, pp. 21-34, 2007.

[2] Darren C. Atkinson, William G. Griswold,
Implementation Techniques for Efficient Data-Flow
Analysis of Large Programs, icsm, pp.52, 17th IEEE
International Conference on Software Maintenance
(ICSM'01), 2001.

[3] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I.
Pratt, A.Warfield, P. Barham, and R. Neugebauer. Xen
and the art of virtualization. In Proceedings of the
ACM Symposium on Operating Systems Principles,
pages 164-177, October 2003.

[4] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and
P. M. Chen. Revirt: enabling intrusion analysis through
virtual-machine logging and replay. SIGOPS Oper.
Syst. Rev., 36(SI):211–224, 2002.

[5] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff. A sense of self for Unix processes. In
Proceedinges of the 1996 IEEE Symposium on
Research in Security and Privacy, pages 120–128.
IEEE Computer Society Press, 1996.

[6] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion detection.
In Proc. Network and Distributed Systems Security
Symposium, February 2003.

[7] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen.
Detecting past and present intrusions through
vulnerability-specific predicates. SIGOPS Oper. Syst.
Rev., 39(5):91–104, 2005.

[8] N. A. Kamble, J. Nakajima, and A. K. Mallick.
Evolution in kernel debugging using hardware
virtualization with xen, In Proceedings of the 2006
Ottawa Linux Symposium (Ottawa, Canada, July
2006).

[9] L. C. Lam. Program Transformation Techniques for
Hostbased Intrusion Prevention. PhD thesis, Stony
Brook University, December 2005.

[10] M. Laureano, C. Maziero, and E. Jamhour. Protecting
hostbased intrusion detectors through virtual machines.
Comput. Netw., 51(5):1275–1283, 2007.

[11] F. Leung, G. Neiger, D. Rodgers, A. Santoni, and R.
Uhlig. Intel Virtualization Technology: Hardware
support for efficient processor virtualization. Intel
Technology Journal, 10(3):167–178, August 2006.

[12] A.-Q. Nguyen and K. Suzaki. Xenprobes, a lightweight
user-space probing framework for xen virtual machine.
In USENIX Annual Technical Conference, pages 15–
28, 2007.

[13] Payne, B.D.; de Carbone, M.D.P.; Wenke Lee, Secure
and Flexible Monitoring of Virtual Machines,
Computer Security Applications Conference, 2007.
ACSAC 2007. Twenty-Third Annual, vol., no., pp.385-
397, 10-14 Dec. 2007

[14] Bryan D. Payne, Martim Carbone, Monirul Sharif,
Wenke Lee, Lares: An Architecture for Secure Active
Monitoring Using Virtualization, sp, pp.233-247, 2008
IEEE Symposium on Security and Privacy (sp 2008),
2008

[15] H. Sa¨ıdi. Guarded models for intrusion detection. In
PLAS ’07: Proceedings of the 2007 workshop on
Programming languages and analysis for security,
pages 85–94, New York, NY, USA, 2007. ACM.

[16] Hirano, M. and Okuda, T. and Kawai, E. and
Yamaguchi, S., Design and Implementation of a
Portable ID Management Framework for a Secure
Virtual Machine Monitor, Journal of Information
Assurance and Security, Volume 2, pages 211--216,
2007

[17] L. Litty and D. Lie. Manitou: a layer-below approach to
fighting malware. In ASID ’06: Proceedings of the 1st
workshop on Architectural and system support for
improving software dependability, pages 6–11, New
York, NY, USA, 2006. ACM.

[18] S. Chen, J. Xu, E. C. Sezer, P.Gauriar, and R. K. Iyer.
Non-control-data attacks are realistic threats. In Proc.
of the 14th USENIX Security Symposium, pages 12–
12, Berkeley, CA, USA, 2005. USENIX Association.

[19] S. Bhatkar and A. Chaturvedi. Sekar., R. Improving
Attack Detection in Host-Based IDS by Learning
Properties of System Call Arguments. Proc. of the
IEEE Symposium on Security and Privacy, 2006.

[20] M. Ernst, J. Perkins, P. Guo, S. McCamant, C. Pacheco,
M. Tschantz, and C. Xiao. The Daikon system for
dynamic detection of likely invariants. Science of
Computer Programming, 69(1-3):35–45, 2007.

[21] G. Ammons, R. Bod´ık, and J. R. Larus. Mining
specifications. SIGPLAN Not., 37(1):4–16, 2002.

131 Baiardi, Maggiari, Sgandurra

[22] D. Wagner and D. Dean. Intrusion detection via static
analysis. In Proc. of the 2001 IEEE Symposium on
Security and Privacy, page 156, Washington, DC,
USA, 2001. IEEE Computer Society.

[23] M. Bernaschi, E. Gabrielli, and L. V. Mancini.
Operating system enhancements to prevent the misuse
of system calls. In Proc. of the 7th ACM conference on
Computer and communications security, pages 174–
183, New York, NY, USA, 2000. ACM.

[24] N. A. Quynh and Y. Takefuji. Towards a tamper-
resistant kernel rootkit detector. In SAC '07:
Proceedings of the 2007 ACM symposium on Applied
computing, pages 276-283, New York, NY, USA,
2007. ACM

[25] J. Rhee, R. Riley, D. Xu, and X. Jiang. Defeating
Dynamic Data Kernel Rootkit Attacks via VMM-based
Guest-Transparent Monitoring, Proceedings of 4th
International Conference on Availability, Reliability
and Security (ARES 2009), Fukuoka, Japan, March
2009

[26] B. Hay and K. Nance. Forensics examination of volatile
system data using virtual introspection. SIGOPS Oper.
Syst. Rev., 42(3):74-82, 2008.

[27] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. VMM-based hidden process detection and
identification using Lycosid. In VEE'08: Proceedings
of the fourth ACM SIGPLAN/SIGOPS international

conference on Virtual execution environments, pages
91-100, New York, NY, USA, 2008. ACM.

[28] M. Pollitt, K. Nance, B. Hay, R. C. Dodge, P. Craiger,
P. Burke, C. Marberry, and B. Brubaker. Virtualization
and digital forensics: A research and education agenda.
J. Digit. Forensic Pract., 2(2):62-73, 2008.

[29] Jansen, Bernhard and Ramasamy, Harigovind V. and
Schunter, Matthias and Tanner, Axel. Architecting
dependable and secure systems using virtualization. In
Architecting Dependable Systems V, Springer-Verlag,
pages 124-149, 2008.

Author Biographies
Fabrizio Baiardi graduated in Computer Science at Università di Pisa
where is a Full Professor with Dipartimento di Informatica where he chairs
one of the computer science degree. His main research interest in the
computer security field is risk assessment and management of complex ICT
infrastructures

Dario Maggiari graduated in Computer Science at Università di Pisa in
2008. Currently is a researcher in the field of virtual machines security and
program static analysis.

Daniele Sgandurra graduated in Computer Science at Università di Pisa in
2006. He is currently a PhD student at the Department of Informatics at
Università di Pisa, where his major research fields are virtual machines
security, intrusion detection systems and operating systems security.

 Invariant Evaluation through Introspection for Proving Security Properties 132

