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Abstract: Many researches are about optimizing schemes for 
packet classification and matching filters to increase the 
performance of many network devices such as firewalls and QoS 
routers. Most of the proposed algorithms do not process 
dynamically the packets and give no specific interest in the 
skewness of the traffic. In this paper, we conceive a set of self-
adjusting tree filters by combining the scheme of binary search on 
prefix length with the splay tree model. Hence, we have at most 2 
hash accesses per filter for consecutive values. Our proposed filter 
is adapted to easily assure exact matching for protocol field, prefix 
matching for IP addresses, and range matching for port numbers. 
Also, we use the splaying technique to optimize the early rejection 
of unwanted flows, which is important for many filtering devices 
such as firewalls.  
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1. Introduction 
In the packet classification problems we wish to classify the 
incoming packets into classes based on predefined rules. 
Classes are defined by rules composed of multiple header 
fields, mainly source and destination IP addresses, source 
and destination port numbers, and a protocol type.  
In order to deal with the huge traffic, it is necessary to have 
firewalls and QoS routers with fast link speed, high packet 
forwarding rate and especially high classification 
performance with minimum cost. 
On one hand, packet classifiers must be constantly optimized 
to cope with the network traffic demands. On the other hand, 
few of the proposed algorithms process dynamically the 
packets and the lack of dynamic packet filtering solutions 
has been the motivation for this research. 
Our work is in the area of optimizing the performance of the 
packet classifiers by taking into account the relative 
frequency of the incoming values. Our study shows that the 
use of a dynamic data structure is the best solution to take 
into consideration the skewness in the traffic distribution. In 
order to achieve this goal, we adapt the splay tree data 
structure to the binary search on prefix length algorithm. 
Hence, we have conceived a set of dynamic filters for each 
packet header-field to minimize the average matching time. 
The proposed algorithm is able to achieve good performance 
in a practical environment and it can significantly improve 
the worst-case performance. Many recent works on IP 
lookup and packet classification problems use the basic 
scheme of binary search on prefix length proposed by 
Waldvogel et al. [1] such as the packet classification 

algorithm proposed by Hyesook Lim et al. [2] which applies 
binary search on prefix length to the area-based quad-trie 
and the multidimensional packet classification scheme 
proposed in [3]. Thus, optimizing the basic scheme of 
Waldvogel is important because the latter has now been 
widely used in many packet classification schemes. In 
addition, many of the data structures used for the 
representation of filtering rules are static and do not process 
dynamically the packets. 
On the other hand, discarded packets represent an important 
part of the traffic treated then reject by a firewall. So, those 
packets might cause more harm than others as they traverse a 
long matching path before they are finally rejected by the 
default-deny rule. Therefore, we use the technique of 
splaying to reject the maximum number of the unwanted 
packets as early as possible. 
The rest of the paper is organized as follows. Section 2 
describes the previously published related works and gives a 
brief description of the splay trees. Section 3 explains the 
proposed scheme and our optimizing techniques. In section 4 
we illustrate the complexity analysis and the experimental 
results of our proposed algorithm. At the end, in Section 5 
we present the conclusion and our plans for future work. 

2. Previous Work 
Since our proposed work in this paper applies binary search 
on prefix length with splay trees, we describe in this section 
the basic scheme of binary search on prefix length algorithm 
in detail. After that, we present the main properties of the 
splay tree data structure then we give an example of a 
previous dynamic scheme based on this data structure called 
Splay Tree based Packet Classification (ST-PC) [4]. Finally, 
we present a proposed early rejection technique used to 
maximize the rejection of the unwanted packets. 
 

Rule 
no. 

Src 
Prefix 

Dst 
Prefix 

Src 
Port 

Dst 
Port 

Proto. 

R1 01001* 000111* * 80 TCP 
R2 01001* 00001* * 80 TCP 
R3 010* 000* * 443 TCP 
R4 0001* 0011* * 443 TCP 
R5 1011* 11010* * 80 UDP 
R6 1011* 110000* * 80 UDP 
R7 1010* 110* * 443 UDP 
R8 110* 1010* * 443 UDP 
R9 * * * * * 
Table 1. Example of a Rule Set with 8-bit prefixes for the 

source and the destination IP addresses fields. 
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Figure 1. The scheme of binary search on prefix length 

applied to the destination address field of Table. 1 

2.1 Binary Search on Prefix Length 

Waldvogel et al. [1] have proposed the IP lookup scheme 
based on the binary search on prefix length technique. Their 
scheme performs a binary search on hash tables organized by 
prefix length. The use of the binary search gives a 
logarithmic number of searches and their scheme scales well 
as the filtering list size increases.  
Each hash table in their scheme contains prefixes of the same 
length together with markers for longer-length prefixes 
(Figure 1). In that case, IP Lookup can be done with 
O(log(Ldis)) hash-table searches, where Ldis is the number of 
distinct prefix lengths and Ldis <W-1 where W is the 
maximum possible length, in bits, of a prefix in the filter 
table. Note that W=32 for IPv4, W=128 for IPv6. Figure 1 
shows a binary tree for the destination prefix field of Table 1 
and the access order performing the binary search on prefix 
lengths proposed in [1]. 
Many other works were proposed to perform this scheme. 
Srinivasan and Varghese [5] and Kim and Sahni [6] have 
proposed ways to improve the performance of the binary 
search on lengths scheme by using prefix expansion to 
reduce the value of Ldis, and the complexity of the controlled 
prefix expansion algorithm proposed in [5] is O(NW2), 
where N is the number of prefixes. Whereas the algorithm of 
[6] minimizes storage requirements but takes O(NW3+ kW4) 
time, where k is the desired number of distinct lengths. 
Broder and Mitzenmacher [7] proposed an algorithm using 
multiple hash functions (two hash functions) to improve the 
lookup performance of the Waldvogel’s scheme.  
In addition, an asymmetric binary search was proposed to 
reduce the average number of hash computations [1]. This 
tree basically inserts values of higher occurrence probability 
(matching frequency) at higher tree levels than the values of 
less probability. In fact, we have to rebuild periodically the 
search tree based on the traffic characteristics.  
Also, a rope search algorithm was proposed in [1] to reduce 
the average number of hash computations but it increases the 
rebuild time of the search tree because it uses pre-
computation techniques to fulfill this goal. So we have 

O(NW) time complexity when we rebuild the tree after an 
entry insertion or deletion in the list of rules.  
The basic algorithm of binary search on prefix length is 
widely used to improve the performance of several packet 
classification schemes implemented in high speed packet 
classifiers such as the area-based quad-tree algorithm which 
consists of a two dimensional tree using source and 
destination prefix fields and applies binary search on levels 
[2]. It constructs multiple disjoint tries depending on relative 
levels in rule hierarchy to avoid the pre-computation 
required in the binary search.  
Also, a multidimensional classifier similar to the one-
dimensional scheme of Waldvogel was recently presented 
[3] and it also consists of binary search on a collection of 
hash-tables. 

2.2 Dynamic Packet Classification Schemes 

2.2.1  Splay Tree Based Scheme 

The Splay Tree is a data structure invented by Sleator and 
Tarjan [8]. It is an ordered binary tree: for every node x, 
every element in the left sub-tree of x is ≤ x, and every node 
in the right sub-tree of x is ≥ x.  
On a n-node splay tree, all the standard search tree 
operations have an amortized time bound of O(log(n)) per 
operation, where by “amortized time” is meant the time per 
operation averaged over a worst-case sequence of 
operations. When we access a node, we apply either a single 
rotation or a series of rotations to move the node to the root.  
The most interesting aspect of this structure is that, unlike 
balanced tree schemes such as 2-3 trees or AVL trees, it is 
not necessary to rebalance the tree explicitly after every 
operation it happens automatically with the use of splaying 
rotations. 
In the literature, there are other schemes implemented in the 
high-speed packet classifiers based on the splay tree data 
structure such as the Splay Tree Packet Classification 
Technique (ST-PC) [4]. 
The idea of the ST-PC is to convert the set of the prefixes 
into integer ranges as shown in Table 2 then we put all the 
lower and upper values of the ranges into a splay tree data 
structure. In the other hand, we have to store in each node of 
the data structure all the matching rules as shown in Figure. 
2. The same procedure can be repeated for the other packet's 
header fields the resulting splay trees are to be linked to each 
other to determine the corresponding action to take for the 
incoming packets. 
 

Rule 
no. 

Dst Prefix Lower 
Bound 

Upper 
Bound 

R1 000111* 28 31 
R2 00001* 8 15 
R3 000* 0 31 
R4 0011* 48 63 
R5 11010* 208 215 
R6 110000* 192 195 
R7 110* 192 223 
R8 1010* 160 175 
R9 * 0 255 

Table 2. Conversion into ranges of the 8-bit destination 
prefixes. 
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Figure 2. Splaying the newly accessed node in the destination splay tree constructed as shown in Table 2. 

2.2.2  Other Dynamic Schemes 
Gupta et al. [9] proposed an efficient data structure to exploit 
the bias in access pattern: they use the extended binary 
search tree to exploit the difference in the probabilities with 
which the various leaves of the tree (where the intervals are 
stored) are accessed by incoming packets in order to speedup 
the lookup process. Their technique achieves faster lookups 
for more frequently accessed keys while bounding the worst 
case lookup time, in fact it is near optimal under constraints 
on worst case performance. However, this scheme needs to 
be rebuilt periodically to reflect the changes in access 
patterns, which can be inefficient for bursty environments. 
Funda Ergun et al. [10] introduce a new dynamic data 
structure to exploit biases in the access pattern which tend to 
change dynamically. Their data structure, called the biased 
skip list (BSL), has a self-update mechanism which reflects 
the changes in the access patterns efficiently and 
immediately, without any need for rebuilding. 
Sahni and Kim [11], [12] develop data structures, called a 
collection of red-black trees (CRBT) and alternative 
collection of red-black trees (ACRBT), that support the three 
operations (Lookup, Insert and Delete) of a dynamic longest-
matching prefix-tables (LMPT) in O(log n) time each. The 
number of cache misses is also O(log n).  
In [12], Sahni and Kim show that their ACRBT structure is 
easily modified to extend the biased-skip-list structure of 
Ergun et al. [10] so as to obtain a biased-skip-list structure 
for dynamic LMPTs. Using this modified biased skip-list 
structure, lookup, insert, and delete can each be done in 
O(log n) expected time and O(log n) expected cache misses. 
Like the original biased-skip list structure of [10], the 
modified structure of [12] adapts so as to perform lookups 
faster for bursty access patterns than for non-bursty patterns. 
The ACRBT structure may also be adapted to obtain a 
collection of splay trees structure [12], which performs the 
three dynamic LMPT operations in O(log n) amortized time 
and which adapts to provide faster lookups for bursty traffic. 
Lu and Sahni [13] show how priority search trees may be 
used to support the three dynamic router-table operations in 
O(log n) time each. Their work applies to both prefix filters 
as well as to the case of a set of conflict-free range filters. 

2.3 Early Rejection Rules 
The technique of early rejection rules was proposed by Adel 
El-Atawy et al. [14], using an approximation algorithm that 
analyzes the firewall policy in order to construct a set of 

early rejection rules. This set can reject the maximum 
number of unwanted packets (discarded by the policy rules) 
as early as possible. Unfortunately, the construction of the 
optimal set of rejection rules is an NP-complete problem and 
adding them may increase the size of matching rules list. 
This technique uses an approximation algorithm that pre-
processes the firewall policy off-line and generates different 
near optimal solutions.  
This early rejection technique works periodically by building 
a list of most frequently hit rejection rules based on the 
network traffic statistics. And then, starts comparing the 
incoming packets to that list prior to trying the normal packet 
filter rules. 

3. Proposed Work 
Our proposed scheme is a set of self-adjusting filters and it is 
called SA-BSPL: Self-Adjusting Binary Search on Prefix 
Length. In this work, we perform the scheme of Waldvogel 
et al [1] by using the splay tree model to ameliorate the 
average search time.  
Our proposed filter can be applied to filter every packet's 
header field. Accordingly, it can easily assure exact 
matching for protocol field, prefix matching for IP addresses, 
and range matching for port numbers.  
Generally, the process of packet classification is based on 
more than one packet header field of the incoming packet. 
Especially for range fields, we have to use the direct range-
to-prefix conversion algorithm to transform each individual 
range into one or more prefixes. 
The binary search on prefix length algorithm [1] is known to 
be efficient in search performance and it is based on three 
main ideas:  
First, it uses hashing to check whether an incoming value 
matches any prefix of a particular length; second, it uses 
binary search to reduce number of searches from linear to 
logarithmic; third, it uses pre-computation to prevent 
backtracking in case of failures in the binary search. 
 

  
Figure 3. The collection of hash-tables according to the 

destination address field of Table. 1 
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Figure 4. Proposed algorithm for determining and splaying of the best length value and its successor while searching on 

prefix lengths.

In order to ameliorate the scheme of Waldvogel, our work is 
based on three main optimization techniques:  
••  We adapt the splay tree model to the binary search on 

prefix length algorithm to filter every packet header field 
and to take into consideration the skewness in the traffic.  

••  We give a special interest in the amount of packets 
treated then rejected through the default entry because 
these flows might cause more harm than others as they 
traverse a long decision path before they are finally sent 
to the default entry.  

••  With the use of the top-down splay tree, we can reach a 
better classification time because we are able to combine 
searching and restructuring steps together.  

3.1 Splay Tree Filters 

The proposed scheme consists of a collection of hash-tables 
and a splay tree with no need to represent the default prefix 
(with zero length). 
On one hand, the prefixes are grouped by lengths in hash-
tables, as illustrated on the Figure 3. Also, each hash-table is 
augmented with markers for longer length prefixes (Figure. 1 
shows an example).  
On the other hand, the different values of lengths are stored 
in a splay tree which is an efficient implementation of binary 
search trees that takes advantage of locality in the incoming 
lookup requests.  
Locality in this context is a tendency to look for the same 
element multiple times. Using splay trees, nodes that are 
often accessed will reside close to the tree root. Hence, we 
reduce dynamically the number of memory accesses to reach 
quickly the required result. 
In our scheme, we still use binary search on prefix length but 
with splaying operations to push every newly accessed node 
to the top of the tree and because of the search phase starts at 

root and ends at the leaves of the splay tree, we have to splay 
the best length value to the root and its successor to the 
root.right position (Figure 5).  
The trivial composed splaying operation (CSplay) is 
expressed as follows: 
 

).,(),(),( rightxxSplayrootxSplayxxCSplay ++=+  (1) 

Consequently, the tree is adequately adjusted to have at most 
2 hash accesses for all repeated values. We start the search 
process from the root node of the splay tree and if we get a 
successful match in the corresponding hash-table, we update 
the best length value and the best matching prefix then we go 
for higher lengths and if nothing is matched, we update the 
successor of the best length value then we go for lower 
lengths (Figure 4). We stop the search process if a leaf is 
met. After that, the best length value and its successor have 
to be splayed to the top of the tree.  
In this case, we can use either bottom-up or top-down splay 
trees. However, the top-down splay tree is much more 
efficient because we are able to combine searching and 
splaying stages together. 
 

  
Figure 5. The operation of splaying of the item x and its 

successor (We assume that x is the best length value and x+ 
its successor). 
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3.2 Alternative Optimized Technique 

In this subsection, we are going to give a better alternative 
implementation of the splaying operations. In the other 
words, the best length value and its successor are to be 
splayed to the top of the tree with a slightly better amortized 
time bound than the trivial one given in Figure 5.  
We assume that the item x is the best length value and x+ its 
successor. When we search for the best length value, we start 
searching from the root node until we reach a leaf. The item 
x and x+ belong to the same search path as it is shown in 
Figure 6, Figure 7 and Figure 9. Hence, we have two 
alternatives for this case.  
Figure 6 shows that the best length x may appear before its 
successor x+ in the search path. In this case, we have to 
splay x+ until it becomes the right child of x. Then we splay 
x and x+, as a single node, to the top of the tree.  
The optimized composed splay operation (OCSplay) is 
expressed as follows (2): 
 

)),,(().,(),( rootxxSplaydroitxxSplayxxOCSplay +++=+  (2) 

The elementary operation Splay(x1, x2) means that the item 
x1 has to be splayed to the top of the tree which root node is 
x2.  
Figure 7 shows that the best length x may appear after its 
successor in the search path. Hence, we have to splay x until 
it becomes the parent of x+ then these two nodes have to be 
splayed as single node to the top of the tree. In this case, the 
optimized composed splay operation (OCSplay) is expressed 
as follows (3): 
 

)),,((),(),( rootxxSplayxxSplayxxOCSplay +++=+  (3) 

Consequently, we have a better amortized cost of the 
composed splaying operations and we are going to give a 
proof for the logarithmic amortized cost of these operations 
in the next section. 
 

  
Figure 6. Splaying x and x+ as a single node (x appears 

before x+ at the search path). 

 

  
Figure 7. Splaying x and x+ as a single node (x appears after 

x+ at the search path). 

3.3 Range to Prefix Conversion 

As we saw before, such a matching paradigm works well for 
prefix matching of IP addresses but is not well-suited to 
matching fields with ranges (e.g., port number range).  
Packet classification involves various matching conditions, 
e.g., longest prefix matching (LPM), exact matching, and 
range matching, making it a complicated pattern matching 
issue. [15] reported that today’s real-world policy filtering 
(PF) tables involve significant percentages of rules with 
ranges. The transport-layer fields have a wide variety of 
specifications. Many (10.2%) of them are range 
specifications (e.g. of the type gt 1023, i.e. greater than 
1023, or in range 20-24). In particular, the specification ’gt 
1023’ occurs in about 9% of the rules.  
The usual way is to convert each range into a set of prefixes. 
With the use of the direct range-to-prefix conversion, each 
range is individually converted into one or more prefixes. An 
efficient direct range-to-prefix conversion algorithm can be 
found in [16] and [17]. 
For example, the range R = [2, 6] is converted into three 
prefixes, 001*, 010*, and 0110. In the worst case, the range 
[1, 2W – 2] is split into 2W – 2 prefixes. For a set of m 
ranges, the worst-case number of prefixes generated by a 
direct range-to-prefix conversion algorithm is O(mW) [17] 
with W is the maximum number of bits in the address space 
of prefixes or ranges. 

3.4 Minimizing the Number of Tree Rotations 

In order to reduce the number of tree rotations while 
adjusting the splay tree, we have to maintain each assembled 
values (best length value and its successor) linked together. 
The attached nodes have to be moved as several single 
nodes; therefore we have to put solid edges between the best 
length values and their successors and normal edges between 
the other nodes (Figure 8). 
The only case where the solid edge between x and x+ have 
to be broken is when the successor of the best length value 
x+ is the node to be rotated to the top of the tree. 
The resulting tree constructed with solid and normal edges or 
with single and double nodes is able to maintain all the last 
accessed pairs of node close to the top of tree to be quickly 
found. 

  
Figure 8. An efficient technique to minimize tree rotations. 
 



138 
 

 

Ben Neji and Bouhoula

 
Figure 9. Searching process in the Top-Down Splay Tree. 

3.5 Top-Down Splay Tree 

Various variants, modifications and generalization of splay 
trees have been studied; we give for example [18] and [19]. 
The top-down splay trees [8] are another way of 
implementing splay trees.  
On one hand, the top-down algorithm is much more efficient 
than the bottom-up because we are able to combine the 
search and the tree reorganization into a single phase (Figure 
9). On the other hand, it is the method recommended by the 
inventors of splay trees as a means of avoiding having to 
traverse the search path again. Both the bottom-up and the 
top-down splay trees coincide if the node being searched is 
at an even depth [19], but if the item being searched is at an 
odd depth, then the top-down and bottom-up trees may differ 
[18] and some experimental evidence suggests [20] that top-
down splay trees [8], [19] are faster in practice as compared 
to the normal splay trees.  
We have adapted the binary search on prefix length 
algorithm to the top-down splay tree as given in Figure 9 to 
improve the performance of the bottom-up algorithm given 
(Figure 4). In top-down splay trees, we look at two nodes at 
a time, while searching for the best length value, and also we 
keep restructuring the tree until we reach a leaf and the item 
we are looking for has been located.  
When searching for the best length value, the current tree is 
divided into three sub-trees, while we move down two nodes 
at a time searching for the query item. 
• Middle Sub-tree: This sub-tree is continuously updated 

while we move down two nodes at a time searching for 
the best length value in the original tree and it contains 
only two nodes (x and x+) and if we update the best 
length and its successor while searching, we insert the 
old values of x and x+ respectively in the left sub-tree 
and the right sub-tree. 

• Left Sub-tree: When we get a successful match with the 
current item we put it in the left sub-tree. The left sub-
tree contains items which are smaller than the item we 
are searching. 

• Right Sub-tree: When we don’t get match with the 
current node we put it in the right sub-tree. The right sub-
tree consists of items which are larger than the item we 
are searching. 

Finally, the sub-trees have to be linked to each other to form 
the new tree which becomes ideally adjusted to have at most 
2 hash accesses for all the repeated values. 

3.6 Early Rejection Technique 

In this section, we focus on optimizing matching of traffic 
discarded due to the default-deny rule because it has more 
profound effect on the performance of the firewalls. 
In our case, we have no need to represent the default prefix 
(with zero length) so if a packet don’t match any length it 
will be automatically rejected by the Min-node. Generally, 
rejected packets might traverse long decision path of rule 
matching before they are finally rejected by the default-deny 
rule. The left child of the Min-node is Null, hence if a packet 
doesn’t match the Min-node we go to its left child which is 
Null, so it means that this node is the end of the search path. 
In our case, in each filter, we have to traverse the entire tree 
until we arrive to the node with the minimum value. 
Subsequently, a packet might traverse a long path in the 
search tree before it is rejected by the Min-node. Hence, we 
have to rotate always the Min-node in the upper levels of the 
self-adjusting tree. We have to splay the Min-node to the 
root.left position as shown in (Figure 10). 
In our case, we can use either bottom-up or top-down splay 
trees. However, the top-down splay tree is much more 
efficient for the early rejection technique because we are 
able to maintain the Min-node fixed at the desired position 
when searching for the best matching value without 
explicitly splaying it. 
 

  
Figure 10.  Maintaining the Min-node at the upper level of 

the search tree (Bottom-Up Splay Tree) 

4. Complexity Analysis 
In this section, we first give the complexity analysis of the 
proposed operations used to adapt the splay tree data 
structure to the binary search on prefix length algorithm and 
we also give the cost per filter of our early rejection 
technique. Then, we compare our splay tree packet 
classification scheme SA-BSPL with the ST-PC scheme 
described in Section 2 in term of space usage and search 
time. 
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4.1 Amortized Analysis 
Splay trees are a simple and efficient data structure for 
storing an ordered set. It consists of a binary tree, with no 
additional fields and it allows searching, insertion, deletion, 
splitting, joining, and many other operations, all with 
amortized logarithmic performance. 
According to the analysis of Sleator and Tarjan [8], if each 
item of the splay tree is given a weight wx, with Wt denoting 
the sum of the weights in the tree t, then the amortized cost 
to access an item x have the following upper bounds (Let x+ 
denote the item following x in the tree t and x- denote the 
item preceding x): 
 

( )1log3 Ο+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

x
w

t
W

 if x is in the tree t  (4) 

( )1
),min(

log3 Ο+
+− ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
wxwx

t
W

 if x is not in the tree t  (5) 

In our case, we have to rotate the best length value to the 
root position and its successor to the root.right position 
(Figure 5). We have a logarithmic amortized complexity to 
release these two operations and the time cost is calculated 
using (4) and (5): 
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With the use of the alternative optimized implementation of 
splaying (Figure 6 and Figure 7) we obtain slightly better 
amortized time bound than the one given in (6): 
 

( )1
),min(

log3 Ο+
+

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
wxwx

x
w

t
W

 (7) 

On the other hand, the cost of the early rejection step 
(Bottom up case) is: 
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We note that wmin is the weight of the Min-node. With the 
use of the proposed early rejection technique, we have at 
most 2 hash accesses before we reject a packet and at least 
only one. If we have m consecutive values to be rejected by 
the default deny rule, search time will be at most m+1 hash 
accesses per filter and at least m hash accesses. 

4.2 Number of Nodes 

Space and time complexity are related to the number of 
nodes in the search tree. Our self-adjusting scheme is based 
on the binary search on prefix length scheme which is a 
collection of hash-tables organized by prefix lengths. Hence, 
the number of nodes in our case is equal to the number of 
hash-tables. Subsequently, if we consider W the length of the 
longest prefix in the packet filter list, we have at most w 
nodes (Figure 11). 

 
wn BSPLSA =−  (9) 

For the ST-PC scheme, if we assume that all the prefixes are 
distinct, then we have at most 2w nodes in the worst case. 
Besides, if all bounds are distinct, then we have 2r nodes, we 
note that r is the number of entries in the packet classifier 
list. So, the actual number of nodes in ST-PC in the worst 
case will be the minimum of these two values.  
 

)2,2min( rw
PCST

n =
−

 (10) 

Since the number of nodes in our self-adjusting tree is 
smaller than in the ST-PC especially with an important 
number of filtering rules (Figure 11), we can say that our 
splay tree scheme is much more competitive in term of time 
and scalability. 
 

  
Figure 11. This figure shows the distribution of the number 
of nodes with respect to w and r, where w is the maximum 

possible length in bits and r the number of rules. 

4.3 Memory accesses 
Memory accesses are expensive and are the dominant factor 
in determining the worst-case execution time and it’s the 
most costly operation in the packet classification schemes.  
When analyzing the performance of a given algorithm, a 
common technique is to differentiate the average and the 
worst case performance of a resource usage. Usually the 
resource being considered is the running time. 

  
Figure 12. The increase of the average number of memory 

accesses with the increase of the number of rules. 
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Figure 12 compares the average number of memory accesses 
required for both SA-BSPL and ST-PC techniques for an 
arbitrary sequence of incoming values. Here again, the 
performance of the proposed filter is better than the ST-PC 
technique. 
The worst case time behavior can also be viewed through the 
distribution of the worst case of the number of nodes in the 
search tree (Figure 11).  

5. Conclusion 
The packet classification optimization problem has received 
the attention of the research community for many years. 
Nevertheless, there is a manifested need for new innovative 
directions to enable filtering devices such as firewalls and 
QoS routers to keep up with the high-speed networking 
demands. In our work, we have suggested a dynamic 
scheme, based on collections of hash-tables and splay trees 
to filter the incoming packets based on the destination and 
source IP addresses. The proposed scheme can be easily 
adapted to filter the other header fields of the incoming 
packets. We have also proved that the proposed model is 
suitable to take advantage of the locality in the incoming 
requests and it outperforms the previous techniques 
especially for highly skewed incoming values. In conclusion, 
we have reached the desired goal with a logarithmic time 
cost, and in our future works, we wish to optimize data 
storage and the other performance aspects. 
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