
Journal of Information Assurance and Security 4 (2009) 133-141

Received June 10, 2009 1554-1010 $ 03.50 Dynamic Publishers, Inc

Dynamic Scheme for Packet Classification Using
Splay Trees

Nizar Ben Neji and Adel Bouhoula

Higher School of Communications of Tunis (Sup'Com), University of 7th November at Carthage,

City of Communications Technologies, 2083, Ariana, Tunisia
nizar.bennaji@certification.tn, adel.bouhoula@supcom.rnu.tn

Abstract: Many researches are about optimizing schemes for
packet classification and matching filters to increase the
performance of many network devices such as firewalls and QoS
routers. Most of the proposed algorithms do not process
dynamically the packets and give no specific interest in the
skewness of the traffic. In this paper, we conceive a set of self-
adjusting tree filters by combining the scheme of binary search on
prefix length with the splay tree model. Hence, we have at most 2
hash accesses per filter for consecutive values. Our proposed filter
is adapted to easily assure exact matching for protocol field, prefix
matching for IP addresses, and range matching for port numbers.
Also, we use the splaying technique to optimize the early rejection
of unwanted flows, which is important for many filtering devices
such as firewalls.

Keywords: Packet Classification, Binary Search on Prefix
Length, Splay Tree, Early Rejection.

1. Introduction
In the packet classification problems we wish to classify the
incoming packets into classes based on predefined rules.
Classes are defined by rules composed of multiple header
fields, mainly source and destination IP addresses, source
and destination port numbers, and a protocol type.
In order to deal with the huge traffic, it is necessary to have
firewalls and QoS routers with fast link speed, high packet
forwarding rate and especially high classification
performance with minimum cost.
On one hand, packet classifiers must be constantly optimized
to cope with the network traffic demands. On the other hand,
few of the proposed algorithms process dynamically the
packets and the lack of dynamic packet filtering solutions
has been the motivation for this research.
Our work is in the area of optimizing the performance of the
packet classifiers by taking into account the relative
frequency of the incoming values. Our study shows that the
use of a dynamic data structure is the best solution to take
into consideration the skewness in the traffic distribution. In
order to achieve this goal, we adapt the splay tree data
structure to the binary search on prefix length algorithm.
Hence, we have conceived a set of dynamic filters for each
packet header-field to minimize the average matching time.
The proposed algorithm is able to achieve good performance
in a practical environment and it can significantly improve
the worst-case performance. Many recent works on IP
lookup and packet classification problems use the basic
scheme of binary search on prefix length proposed by
Waldvogel et al. [1] such as the packet classification

algorithm proposed by Hyesook Lim et al. [2] which applies
binary search on prefix length to the area-based quad-trie
and the multidimensional packet classification scheme
proposed in [3]. Thus, optimizing the basic scheme of
Waldvogel is important because the latter has now been
widely used in many packet classification schemes. In
addition, many of the data structures used for the
representation of filtering rules are static and do not process
dynamically the packets.
On the other hand, discarded packets represent an important
part of the traffic treated then reject by a firewall. So, those
packets might cause more harm than others as they traverse a
long matching path before they are finally rejected by the
default-deny rule. Therefore, we use the technique of
splaying to reject the maximum number of the unwanted
packets as early as possible.
The rest of the paper is organized as follows. Section 2
describes the previously published related works and gives a
brief description of the splay trees. Section 3 explains the
proposed scheme and our optimizing techniques. In section 4
we illustrate the complexity analysis and the experimental
results of our proposed algorithm. At the end, in Section 5
we present the conclusion and our plans for future work.

2. Previous Work
Since our proposed work in this paper applies binary search
on prefix length with splay trees, we describe in this section
the basic scheme of binary search on prefix length algorithm
in detail. After that, we present the main properties of the
splay tree data structure then we give an example of a
previous dynamic scheme based on this data structure called
Splay Tree based Packet Classification (ST-PC) [4]. Finally,
we present a proposed early rejection technique used to
maximize the rejection of the unwanted packets.

Rule
no.

Src
Prefix

Dst
Prefix

Src
Port

Dst
Port

Proto.

R1 01001* 000111* * 80 TCP
R2 01001* 00001* * 80 TCP
R3 010* 000* * 443 TCP
R4 0001* 0011* * 443 TCP
R5 1011* 11010* * 80 UDP
R6 1011* 110000* * 80 UDP
R7 1010* 110* * 443 UDP
R8 110* 1010* * 443 UDP
R9 * * * * *
Table 1. Example of a Rule Set with 8-bit prefixes for the

source and the destination IP addresses fields.

134

Ben Neji and Bouhoula

Figure 1. The scheme of binary search on prefix length

applied to the destination address field of Table. 1

2.1 Binary Search on Prefix Length

Waldvogel et al. [1] have proposed the IP lookup scheme
based on the binary search on prefix length technique. Their
scheme performs a binary search on hash tables organized by
prefix length. The use of the binary search gives a
logarithmic number of searches and their scheme scales well
as the filtering list size increases.
Each hash table in their scheme contains prefixes of the same
length together with markers for longer-length prefixes
(Figure 1). In that case, IP Lookup can be done with
O(log(Ldis)) hash-table searches, where Ldis is the number of
distinct prefix lengths and Ldis <W-1 where W is the
maximum possible length, in bits, of a prefix in the filter
table. Note that W=32 for IPv4, W=128 for IPv6. Figure 1
shows a binary tree for the destination prefix field of Table 1
and the access order performing the binary search on prefix
lengths proposed in [1].
Many other works were proposed to perform this scheme.
Srinivasan and Varghese [5] and Kim and Sahni [6] have
proposed ways to improve the performance of the binary
search on lengths scheme by using prefix expansion to
reduce the value of Ldis, and the complexity of the controlled
prefix expansion algorithm proposed in [5] is O(NW2),
where N is the number of prefixes. Whereas the algorithm of
[6] minimizes storage requirements but takes O(NW3+ kW4)
time, where k is the desired number of distinct lengths.
Broder and Mitzenmacher [7] proposed an algorithm using
multiple hash functions (two hash functions) to improve the
lookup performance of the Waldvogel’s scheme.
In addition, an asymmetric binary search was proposed to
reduce the average number of hash computations [1]. This
tree basically inserts values of higher occurrence probability
(matching frequency) at higher tree levels than the values of
less probability. In fact, we have to rebuild periodically the
search tree based on the traffic characteristics.
Also, a rope search algorithm was proposed in [1] to reduce
the average number of hash computations but it increases the
rebuild time of the search tree because it uses pre-
computation techniques to fulfill this goal. So we have

O(NW) time complexity when we rebuild the tree after an
entry insertion or deletion in the list of rules.
The basic algorithm of binary search on prefix length is
widely used to improve the performance of several packet
classification schemes implemented in high speed packet
classifiers such as the area-based quad-tree algorithm which
consists of a two dimensional tree using source and
destination prefix fields and applies binary search on levels
[2]. It constructs multiple disjoint tries depending on relative
levels in rule hierarchy to avoid the pre-computation
required in the binary search.
Also, a multidimensional classifier similar to the one-
dimensional scheme of Waldvogel was recently presented
[3] and it also consists of binary search on a collection of
hash-tables.

2.2 Dynamic Packet Classification Schemes

2.2.1 Splay Tree Based Scheme

The Splay Tree is a data structure invented by Sleator and
Tarjan [8]. It is an ordered binary tree: for every node x,
every element in the left sub-tree of x is ≤ x, and every node
in the right sub-tree of x is ≥ x.
On a n-node splay tree, all the standard search tree
operations have an amortized time bound of O(log(n)) per
operation, where by “amortized time” is meant the time per
operation averaged over a worst-case sequence of
operations. When we access a node, we apply either a single
rotation or a series of rotations to move the node to the root.
The most interesting aspect of this structure is that, unlike
balanced tree schemes such as 2-3 trees or AVL trees, it is
not necessary to rebalance the tree explicitly after every
operation it happens automatically with the use of splaying
rotations.
In the literature, there are other schemes implemented in the
high-speed packet classifiers based on the splay tree data
structure such as the Splay Tree Packet Classification
Technique (ST-PC) [4].
The idea of the ST-PC is to convert the set of the prefixes
into integer ranges as shown in Table 2 then we put all the
lower and upper values of the ranges into a splay tree data
structure. In the other hand, we have to store in each node of
the data structure all the matching rules as shown in Figure.
2. The same procedure can be repeated for the other packet's
header fields the resulting splay trees are to be linked to each
other to determine the corresponding action to take for the
incoming packets.

Rule
no.

Dst Prefix Lower
Bound

Upper
Bound

R1 000111* 28 31
R2 00001* 8 15
R3 000* 0 31
R4 0011* 48 63
R5 11010* 208 215
R6 110000* 192 195
R7 110* 192 223
R8 1010* 160 175
R9 * 0 255

Table 2. Conversion into ranges of the 8-bit destination
prefixes.

135

Dynamic Scheme for Packet Classification Using Splay Trees

Figure 2. Splaying the newly accessed node in the destination splay tree constructed as shown in Table 2.

2.2.2 Other Dynamic Schemes
Gupta et al. [9] proposed an efficient data structure to exploit
the bias in access pattern: they use the extended binary
search tree to exploit the difference in the probabilities with
which the various leaves of the tree (where the intervals are
stored) are accessed by incoming packets in order to speedup
the lookup process. Their technique achieves faster lookups
for more frequently accessed keys while bounding the worst
case lookup time, in fact it is near optimal under constraints
on worst case performance. However, this scheme needs to
be rebuilt periodically to reflect the changes in access
patterns, which can be inefficient for bursty environments.
Funda Ergun et al. [10] introduce a new dynamic data
structure to exploit biases in the access pattern which tend to
change dynamically. Their data structure, called the biased
skip list (BSL), has a self-update mechanism which reflects
the changes in the access patterns efficiently and
immediately, without any need for rebuilding.
Sahni and Kim [11], [12] develop data structures, called a
collection of red-black trees (CRBT) and alternative
collection of red-black trees (ACRBT), that support the three
operations (Lookup, Insert and Delete) of a dynamic longest-
matching prefix-tables (LMPT) in O(log n) time each. The
number of cache misses is also O(log n).
In [12], Sahni and Kim show that their ACRBT structure is
easily modified to extend the biased-skip-list structure of
Ergun et al. [10] so as to obtain a biased-skip-list structure
for dynamic LMPTs. Using this modified biased skip-list
structure, lookup, insert, and delete can each be done in
O(log n) expected time and O(log n) expected cache misses.
Like the original biased-skip list structure of [10], the
modified structure of [12] adapts so as to perform lookups
faster for bursty access patterns than for non-bursty patterns.
The ACRBT structure may also be adapted to obtain a
collection of splay trees structure [12], which performs the
three dynamic LMPT operations in O(log n) amortized time
and which adapts to provide faster lookups for bursty traffic.
Lu and Sahni [13] show how priority search trees may be
used to support the three dynamic router-table operations in
O(log n) time each. Their work applies to both prefix filters
as well as to the case of a set of conflict-free range filters.

2.3 Early Rejection Rules
The technique of early rejection rules was proposed by Adel
El-Atawy et al. [14], using an approximation algorithm that
analyzes the firewall policy in order to construct a set of

early rejection rules. This set can reject the maximum
number of unwanted packets (discarded by the policy rules)
as early as possible. Unfortunately, the construction of the
optimal set of rejection rules is an NP-complete problem and
adding them may increase the size of matching rules list.
This technique uses an approximation algorithm that pre-
processes the firewall policy off-line and generates different
near optimal solutions.
This early rejection technique works periodically by building
a list of most frequently hit rejection rules based on the
network traffic statistics. And then, starts comparing the
incoming packets to that list prior to trying the normal packet
filter rules.

3. Proposed Work
Our proposed scheme is a set of self-adjusting filters and it is
called SA-BSPL: Self-Adjusting Binary Search on Prefix
Length. In this work, we perform the scheme of Waldvogel
et al [1] by using the splay tree model to ameliorate the
average search time.
Our proposed filter can be applied to filter every packet's
header field. Accordingly, it can easily assure exact
matching for protocol field, prefix matching for IP addresses,
and range matching for port numbers.
Generally, the process of packet classification is based on
more than one packet header field of the incoming packet.
Especially for range fields, we have to use the direct range-
to-prefix conversion algorithm to transform each individual
range into one or more prefixes.
The binary search on prefix length algorithm [1] is known to
be efficient in search performance and it is based on three
main ideas:
First, it uses hashing to check whether an incoming value
matches any prefix of a particular length; second, it uses
binary search to reduce number of searches from linear to
logarithmic; third, it uses pre-computation to prevent
backtracking in case of failures in the binary search.

Figure 3. The collection of hash-tables according to the

destination address field of Table. 1

136

Ben Neji and Bouhoula

Figure 4. Proposed algorithm for determining and splaying of the best length value and its successor while searching on

prefix lengths.

In order to ameliorate the scheme of Waldvogel, our work is
based on three main optimization techniques:
•• We adapt the splay tree model to the binary search on

prefix length algorithm to filter every packet header field
and to take into consideration the skewness in the traffic.

•• We give a special interest in the amount of packets
treated then rejected through the default entry because
these flows might cause more harm than others as they
traverse a long decision path before they are finally sent
to the default entry.

•• With the use of the top-down splay tree, we can reach a
better classification time because we are able to combine
searching and restructuring steps together.

3.1 Splay Tree Filters

The proposed scheme consists of a collection of hash-tables
and a splay tree with no need to represent the default prefix
(with zero length).
On one hand, the prefixes are grouped by lengths in hash-
tables, as illustrated on the Figure 3. Also, each hash-table is
augmented with markers for longer length prefixes (Figure. 1
shows an example).
On the other hand, the different values of lengths are stored
in a splay tree which is an efficient implementation of binary
search trees that takes advantage of locality in the incoming
lookup requests.
Locality in this context is a tendency to look for the same
element multiple times. Using splay trees, nodes that are
often accessed will reside close to the tree root. Hence, we
reduce dynamically the number of memory accesses to reach
quickly the required result.
In our scheme, we still use binary search on prefix length but
with splaying operations to push every newly accessed node
to the top of the tree and because of the search phase starts at

root and ends at the leaves of the splay tree, we have to splay
the best length value to the root and its successor to the
root.right position (Figure 5).
The trivial composed splaying operation (CSplay) is
expressed as follows:

).,(),(),(rightxxSplayrootxSplayxxCSplay ++=+ (1)

Consequently, the tree is adequately adjusted to have at most
2 hash accesses for all repeated values. We start the search
process from the root node of the splay tree and if we get a
successful match in the corresponding hash-table, we update
the best length value and the best matching prefix then we go
for higher lengths and if nothing is matched, we update the
successor of the best length value then we go for lower
lengths (Figure 4). We stop the search process if a leaf is
met. After that, the best length value and its successor have
to be splayed to the top of the tree.
In this case, we can use either bottom-up or top-down splay
trees. However, the top-down splay tree is much more
efficient because we are able to combine searching and
splaying stages together.

Figure 5. The operation of splaying of the item x and its

successor (We assume that x is the best length value and x+
its successor).

137

Dynamic Scheme for Packet Classification Using Splay Trees

3.2 Alternative Optimized Technique

In this subsection, we are going to give a better alternative
implementation of the splaying operations. In the other
words, the best length value and its successor are to be
splayed to the top of the tree with a slightly better amortized
time bound than the trivial one given in Figure 5.
We assume that the item x is the best length value and x+ its
successor. When we search for the best length value, we start
searching from the root node until we reach a leaf. The item
x and x+ belong to the same search path as it is shown in
Figure 6, Figure 7 and Figure 9. Hence, we have two
alternatives for this case.
Figure 6 shows that the best length x may appear before its
successor x+ in the search path. In this case, we have to
splay x+ until it becomes the right child of x. Then we splay
x and x+, as a single node, to the top of the tree.
The optimized composed splay operation (OCSplay) is
expressed as follows (2):

)),,(().,(),(rootxxSplaydroitxxSplayxxOCSplay +++=+ (2)

The elementary operation Splay(x1, x2) means that the item
x1 has to be splayed to the top of the tree which root node is
x2.
Figure 7 shows that the best length x may appear after its
successor in the search path. Hence, we have to splay x until
it becomes the parent of x+ then these two nodes have to be
splayed as single node to the top of the tree. In this case, the
optimized composed splay operation (OCSplay) is expressed
as follows (3):

)),,((),(),(rootxxSplayxxSplayxxOCSplay +++=+ (3)

Consequently, we have a better amortized cost of the
composed splaying operations and we are going to give a
proof for the logarithmic amortized cost of these operations
in the next section.

Figure 6. Splaying x and x+ as a single node (x appears

before x+ at the search path).

Figure 7. Splaying x and x+ as a single node (x appears after

x+ at the search path).

3.3 Range to Prefix Conversion

As we saw before, such a matching paradigm works well for
prefix matching of IP addresses but is not well-suited to
matching fields with ranges (e.g., port number range).
Packet classification involves various matching conditions,
e.g., longest prefix matching (LPM), exact matching, and
range matching, making it a complicated pattern matching
issue. [15] reported that today’s real-world policy filtering
(PF) tables involve significant percentages of rules with
ranges. The transport-layer fields have a wide variety of
specifications. Many (10.2%) of them are range
specifications (e.g. of the type gt 1023, i.e. greater than
1023, or in range 20-24). In particular, the specification ’gt
1023’ occurs in about 9% of the rules.
The usual way is to convert each range into a set of prefixes.
With the use of the direct range-to-prefix conversion, each
range is individually converted into one or more prefixes. An
efficient direct range-to-prefix conversion algorithm can be
found in [16] and [17].
For example, the range R = [2, 6] is converted into three
prefixes, 001*, 010*, and 0110. In the worst case, the range
[1, 2W – 2] is split into 2W – 2 prefixes. For a set of m
ranges, the worst-case number of prefixes generated by a
direct range-to-prefix conversion algorithm is O(mW) [17]
with W is the maximum number of bits in the address space
of prefixes or ranges.

3.4 Minimizing the Number of Tree Rotations

In order to reduce the number of tree rotations while
adjusting the splay tree, we have to maintain each assembled
values (best length value and its successor) linked together.
The attached nodes have to be moved as several single
nodes; therefore we have to put solid edges between the best
length values and their successors and normal edges between
the other nodes (Figure 8).
The only case where the solid edge between x and x+ have
to be broken is when the successor of the best length value
x+ is the node to be rotated to the top of the tree.
The resulting tree constructed with solid and normal edges or
with single and double nodes is able to maintain all the last
accessed pairs of node close to the top of tree to be quickly
found.

Figure 8. An efficient technique to minimize tree rotations.

138

Ben Neji and Bouhoula

Figure 9. Searching process in the Top-Down Splay Tree.

3.5 Top-Down Splay Tree

Various variants, modifications and generalization of splay
trees have been studied; we give for example [18] and [19].
The top-down splay trees [8] are another way of
implementing splay trees.
On one hand, the top-down algorithm is much more efficient
than the bottom-up because we are able to combine the
search and the tree reorganization into a single phase (Figure
9). On the other hand, it is the method recommended by the
inventors of splay trees as a means of avoiding having to
traverse the search path again. Both the bottom-up and the
top-down splay trees coincide if the node being searched is
at an even depth [19], but if the item being searched is at an
odd depth, then the top-down and bottom-up trees may differ
[18] and some experimental evidence suggests [20] that top-
down splay trees [8], [19] are faster in practice as compared
to the normal splay trees.
We have adapted the binary search on prefix length
algorithm to the top-down splay tree as given in Figure 9 to
improve the performance of the bottom-up algorithm given
(Figure 4). In top-down splay trees, we look at two nodes at
a time, while searching for the best length value, and also we
keep restructuring the tree until we reach a leaf and the item
we are looking for has been located.
When searching for the best length value, the current tree is
divided into three sub-trees, while we move down two nodes
at a time searching for the query item.
• Middle Sub-tree: This sub-tree is continuously updated

while we move down two nodes at a time searching for
the best length value in the original tree and it contains
only two nodes (x and x+) and if we update the best
length and its successor while searching, we insert the
old values of x and x+ respectively in the left sub-tree
and the right sub-tree.

• Left Sub-tree: When we get a successful match with the
current item we put it in the left sub-tree. The left sub-
tree contains items which are smaller than the item we
are searching.

• Right Sub-tree: When we don’t get match with the
current node we put it in the right sub-tree. The right sub-
tree consists of items which are larger than the item we
are searching.

Finally, the sub-trees have to be linked to each other to form
the new tree which becomes ideally adjusted to have at most
2 hash accesses for all the repeated values.

3.6 Early Rejection Technique

In this section, we focus on optimizing matching of traffic
discarded due to the default-deny rule because it has more
profound effect on the performance of the firewalls.
In our case, we have no need to represent the default prefix
(with zero length) so if a packet don’t match any length it
will be automatically rejected by the Min-node. Generally,
rejected packets might traverse long decision path of rule
matching before they are finally rejected by the default-deny
rule. The left child of the Min-node is Null, hence if a packet
doesn’t match the Min-node we go to its left child which is
Null, so it means that this node is the end of the search path.
In our case, in each filter, we have to traverse the entire tree
until we arrive to the node with the minimum value.
Subsequently, a packet might traverse a long path in the
search tree before it is rejected by the Min-node. Hence, we
have to rotate always the Min-node in the upper levels of the
self-adjusting tree. We have to splay the Min-node to the
root.left position as shown in (Figure 10).
In our case, we can use either bottom-up or top-down splay
trees. However, the top-down splay tree is much more
efficient for the early rejection technique because we are
able to maintain the Min-node fixed at the desired position
when searching for the best matching value without
explicitly splaying it.

Figure 10. Maintaining the Min-node at the upper level of

the search tree (Bottom-Up Splay Tree)

4. Complexity Analysis
In this section, we first give the complexity analysis of the
proposed operations used to adapt the splay tree data
structure to the binary search on prefix length algorithm and
we also give the cost per filter of our early rejection
technique. Then, we compare our splay tree packet
classification scheme SA-BSPL with the ST-PC scheme
described in Section 2 in term of space usage and search
time.

139

Dynamic Scheme for Packet Classification Using Splay Trees

4.1 Amortized Analysis
Splay trees are a simple and efficient data structure for
storing an ordered set. It consists of a binary tree, with no
additional fields and it allows searching, insertion, deletion,
splitting, joining, and many other operations, all with
amortized logarithmic performance.
According to the analysis of Sleator and Tarjan [8], if each
item of the splay tree is given a weight wx, with Wt denoting
the sum of the weights in the tree t, then the amortized cost
to access an item x have the following upper bounds (Let x+
denote the item following x in the tree t and x- denote the
item preceding x):

()1log3 Ο+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

x
w

t
W

 if x is in the tree t (4)

()1
),min(

log3 Ο+
+− ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
wxwx

t
W

 if x is not in the tree t (5)

In our case, we have to rotate the best length value to the
root position and its successor to the root.right position
(Figure 5). We have a logarithmic amortized complexity to
release these two operations and the time cost is calculated
using (4) and (5):

()1log3log3 Ο+
+

−
+ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

x
w

x
w

t
W

x
w

t
W

 (6)

With the use of the alternative optimized implementation of
splaying (Figure 6 and Figure 7) we obtain slightly better
amortized time bound than the one given in (6):

()1
),min(

log3 Ο+
+

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
wxwx

x
w

t
W

 (7)

On the other hand, the cost of the early rejection step
(Bottom up case) is:

()1
min

log3 Ο+
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
w

x
w

t
W

 (8)

We note that wmin is the weight of the Min-node. With the
use of the proposed early rejection technique, we have at
most 2 hash accesses before we reject a packet and at least
only one. If we have m consecutive values to be rejected by
the default deny rule, search time will be at most m+1 hash
accesses per filter and at least m hash accesses.

4.2 Number of Nodes

Space and time complexity are related to the number of
nodes in the search tree. Our self-adjusting scheme is based
on the binary search on prefix length scheme which is a
collection of hash-tables organized by prefix lengths. Hence,
the number of nodes in our case is equal to the number of
hash-tables. Subsequently, if we consider W the length of the
longest prefix in the packet filter list, we have at most w
nodes (Figure 11).

wn BSPLSA =− (9)

For the ST-PC scheme, if we assume that all the prefixes are
distinct, then we have at most 2w nodes in the worst case.
Besides, if all bounds are distinct, then we have 2r nodes, we
note that r is the number of entries in the packet classifier
list. So, the actual number of nodes in ST-PC in the worst
case will be the minimum of these two values.

)2,2min(rw
PCST

n =
−

 (10)

Since the number of nodes in our self-adjusting tree is
smaller than in the ST-PC especially with an important
number of filtering rules (Figure 11), we can say that our
splay tree scheme is much more competitive in term of time
and scalability.

Figure 11. This figure shows the distribution of the number
of nodes with respect to w and r, where w is the maximum

possible length in bits and r the number of rules.

4.3 Memory accesses
Memory accesses are expensive and are the dominant factor
in determining the worst-case execution time and it’s the
most costly operation in the packet classification schemes.
When analyzing the performance of a given algorithm, a
common technique is to differentiate the average and the
worst case performance of a resource usage. Usually the
resource being considered is the running time.

Figure 12. The increase of the average number of memory

accesses with the increase of the number of rules.

140

Ben Neji and Bouhoula

Figure 12 compares the average number of memory accesses
required for both SA-BSPL and ST-PC techniques for an
arbitrary sequence of incoming values. Here again, the
performance of the proposed filter is better than the ST-PC
technique.
The worst case time behavior can also be viewed through the
distribution of the worst case of the number of nodes in the
search tree (Figure 11).

5. Conclusion
The packet classification optimization problem has received
the attention of the research community for many years.
Nevertheless, there is a manifested need for new innovative
directions to enable filtering devices such as firewalls and
QoS routers to keep up with the high-speed networking
demands. In our work, we have suggested a dynamic
scheme, based on collections of hash-tables and splay trees
to filter the incoming packets based on the destination and
source IP addresses. The proposed scheme can be easily
adapted to filter the other header fields of the incoming
packets. We have also proved that the proposed model is
suitable to take advantage of the locality in the incoming
requests and it outperforms the previous techniques
especially for highly skewed incoming values. In conclusion,
we have reached the desired goal with a logarithmic time
cost, and in our future works, we wish to optimize data
storage and the other performance aspects.

References
[1] M. Waldvogel, G. Varghese, J. Turner, B. Plattner.

“Scalable High Speed IP Routing Lookups”. In
Proceedings of the ACM SIGCOMM (SIGCOMM ’97),
pp. 25-36, 1997.

[2] H. Lim, J. Hyoung. “High-speed Packet Classification
using Binary Search on Length”. In Proceedings of the
3rd ACM/IEEE Symposium on Architecture for
Networking and Communications Systems (ANCS’07),
pp. 137-144, 2007.

[3] H. Lu, S. Sahni. “O(logW) Multidimensional Packet
Classification”. IEEE/ACM Transactions on
Networking (TON), 15 (2), pp. 462-472, 2007.

[4] T. Srinivasan, M. Nivedita, V. Mahadevan. “Efficient
Packet Classification Using Splay Tree Models”.
IJCSNS International Journal of Computer Science and
Network Security, 6(5), pp. 28-35, 2006.

[5] V. Srinivasan, G. Varghese. “Fast Address Lookups
using Controlled Prefix Expansion”. ACM Transactions
on Computer Systems (TOCS’99), 17(1), pp. 1-40,
1999.

[6] K. Kim, S. Sahni. “IP Lookup by Binary Search on
Prefix Length”. In Proceedings of the 8th IEEE
International Symposium on Computers and
Communications (ISCC’03), pp. 77-82, 2003.

[7] A. Broder, M. Mitzenmacher. “Using Multiple Hash
Functions to Improve IP Lookups”. In Proceedings of
the IEEE INFOCOM, pp. 1454–1463, 2001.

[8] D. Sleator, R. Tarjan. “Self Adjusting Binary Search
Trees”. Journal of the ACM, 32(3), pp. 652-686, 1985.

[9] P. Gupta, B. Prabhakar, S. Boyd. “Near-optimal Routing
Lookups with Bounded Worst Case Performance”. In
Proceeding of IEEE INFOCOM, pp. 1184-1192, 2000.

[10] F. Ergun, S. Mittra, S. C. Sahinalp, J. Sharp, R. K.
Sinha. “A dynamic lookup scheme for bursty access
patterns”. In Proceeding of IEEE INFOCOM, pp. 1444-
1453, 2001.

[11] S. Sahni, K. Kim. “O(log n) Dynamic Packet Routing”.
In Proceedings of the 7th International Symposium on
Computers and Communications (ISCC'02), pp. 443-
448, 2002.

[12] S. Sahni, K. Kim. “Efficient Dynamic Lookup for
Bursty Access Patterns”. In
http://www.cise.ufl.edu/~sahni, 2003.

[13] H. Lu, S. Sahni. “O(log n) Dynamic Router-tables for
Prefixes and Ranges”. In IEEE Transactions on
Computers, 53(10), 2004.

[14] H. Hamed, A. El-Atawy, E. Al-Shaer. “Adaptive
Statistical Optimization Techniques for Firewall Packet
Filtering”. In Proceeding of IEEE INFOCOM, pp. 1-12,
2006.

[15] E. Spitznagel, D. Taylor, J. Turner. “Packet
Classification Using Extended TCAMs”. In
Proceedings of the 11th IEEE International Conference
on Network Protocols, pp.120-131, 2003.

[16] M.D. Berg, M.V. Kreveld, M. Overmars, O.
Schwarzkopf. “Computational Geometry: Algorithms
and Applications”, Springer Verlag, 1997.

[17] Y.K. Chang, “A 2-Level TCAM Architecture for
Ranges”, In IEEE Transactions on Computers, 55(12),
pp. 1614-1629, 2006.

[18] S. Albers, M. Karpinkski. “Randomized Splay Trees:
Theoretical and Experimental Results“. Information
Processing Letters, 81(4), pp. 213-221, 2002.

[19] E. Makinen. “On Top-down Splaying”. BIT Computer
Science and Numerical Mathematics, 27(3), pp. 330-
339, 1987.

[20] J. Bell, G. Gupta. “An Evaluation of Self-adjusting
Binary Search Tree Techniques”. Software-Practice
and Experience, 23(4), pp. 369-382, 1993.

Author Biographies
Nizar Ben Neji received in 2005 his engineering
degree in computer science from the national
Tunisian school of computer sciences (ENSI) and he
received in 2008 his MS degree from the higher
school of communications of Tunis (Sup’Com). Nizar
Ben Neji is actually a PhD student at Sup’Com and
his research interests are about security devices and
optimizing the performance of the packet classifiers
used in high speed networks. Nizar BEN NEJI works

also as computer engineer in the National Digital Certification Agency
(NDCA: The root certification authority in Tunisia) and he is a member of
the Tunisian Association of Digital Security (TADS).

141

Dynamic Scheme for Packet Classification Using Splay Trees

Adel Bouhoula obtained his undergraduate degree in
computer engineering with distinction from the
University of Tunis in Tunisia. He also holds a
Master’s, PhD and Habilitation from Henri Poincare
University in Nancy, France. Adel Bouhoula is
currently an Associate Professor at the Sup’Com
Engineering School of Telecommunications in
Tunisia. He is also the founder and Director of the

Research Unit on Digital Security and the President of the Tunisian
Association of Digital Security (TADS). His research interests include
Automated Reasoning, Algebraic specifications, Rewriting, Network
Security, Cryptography, and Validation of cryptographic protocols.

