
Journal of Information Assurance and Security 4 (2009) 106-116

Received June 10, 2009 1554-1010 $ 03.50 Dynamic Publishers, Inc.

Intelligent Agents that Monitor,
Diagnose and Solve Problems

Two Success Stories of Industry-University Collaboration

Daniela Briola, Viviana Mascardi and Maurizio Martelli

DISI, Università degli Studi di Genova,

Via Dodecaneso 35, 16146, Genova, Italy

{Daniela.Briola, Viviana.Mascardi, Maurizio.Martelli}@unige.it

 Abstract: This paper describes the results of two joint academy-

industry projects that involve the Computer Science Department of
Genoa University, Italy, and Ansaldo-STS, the Italian leader in
design and construction of railway signalling and automation
systems.

The MAS developed as part of the MAD Agents (“Monitoring and
Diagnostic Agents”) project monitors the behaviour of a set of
processes running on an Ansaldo-STS server, whereas the goal of

the MAS developed in the FYPA (“Find Your Path, Agents”)
project is to find a feasible allocation of resources to agents over
time that emerges as the result of a sequence of local negotiation

steps.
Both MASs have been developed in collaboration with scientists
and engineers from Ansaldo-STS and have been widely tested on
real data provided by the company.

Keywords: agents, multi-agent systems, diagnosis, monitoring,

distributed problem solving.

1. Introduction

The AgentLink III Technology Roadmap [33] defines an

agent as: “a computer system that is capable of flexible

autonomous action in dynamic, unpredictable, typically

multi-agent domains.”

According to [34], agents should be

• autonomous: they should operate without the direct

intervention of humans or others, and have some kind

of control over their actions and internal state;

• responsive: they should perceive their environment

and respond in a timely fashion to changes that occur

in it;

• pro-active: they should not simply act in response to

their environment, but should exhibit opportunistic,

goal-directed behaviour and take the initiative where

appropriate;

• social: they should be able to interact, when

appropriate, with other artificial agents and humans

in order to complete their own problem solving and to

help others with their activities.

Another characterizing feature of agents is situatedness: the

agent receives sensory input from its environment and it can

perform actions which change it in some way [13].

As far as sociality is concerned, it is now widely recognized

that interaction is probably the most important single

characteristic of nowadays’ complex software.

A multi-agent system, or MAS for short, is a system

composed by many interacting agents. In a MAS, each agent

has incomplete information or capabilities for solving the

problem, thus each agent has a limited viewpoint, there is

no global system control, data is decentralized, and

computation is asynchronous. Also, due to the dynamicity

and unpredictability of scenarios where agents live, MASs

are open to changes. This means that the topology of a MAS

cannot be fixed a priori, but it dynamically changes as

agents enter and leave the MAS.

Distributed diagnosis, monitoring, and problem solving

within complex and dynamic systems are three of the oldest

applications of software agents. There are many good

reasons for choosing a MAS approach for facing them [32]:

• To permit reasoning based on information of different

granularity: the MAS may be organised in a

hierarchy of agents with different competencies,

starting from those at the lowest level, directly

interfaced with the processes to monitor and diagnose,

and going up towards more and more sophisticated

agents, equipped with expert system-like rules for

devising problems according to the information

coming from agents below in the hierarchy, reporting

aggregated information and diagnosis to the agents

higher in the hierarchy, and proposing solutions to

problems.

• To enable a number of different problem solving

paradigms to be utilised: there is no universally best

problem solving paradigm: procedural techniques

may be required for algorithmic calculations, whereas

symbolic reasoning based on heuristic search may be

the best approach to diagnosis. A distributed approach

enables each component to be encoded in the most

appropriate method.

• To meet the application’s performance criteria: the

distributed nature of a MAS makes it a suitable

solution for monitoring different processes

107 Briola, Mascardi and Martello

concurrently, thus gaining in performance and

responsiveness.

The motivations for choosing a Distributed Artificial

Intelligence approach given by [5], [1] also apply to the

diagnosis and monitoring domains: economy, robustness,

reliability, natural representation of the domain. Also,

distributed problem solving, with the Contract Net Protocol

[36], represents one of the first examples of autonomous

entities that negotiate for solving a problem that none of

them, individually, could solve.

Situational awareness, that is mandatory for the successful

monitoring and decision-making in many scenarios, is one

of

the founding characteristics of intelligent software agents.

When combined with reactivity, situatedness may lead to the

early detection of anomalies and to the formulation of a

suitable plan for solving them. The solution that agents find

out to solve emerging problems may be submitted to a

human expert, in case of safety-critical scenarios, or may

directly be implemented by the agents themselves, if they

are empowered to make corrective actions in the

environment, without the approval of a human expert.

Last but not least, an agent-based distributed infrastructure

can be added to most existing systems with minimal or no

impact over them. Agents monitor processes, be them

computer processes, business processes, chemical processes,

by “looking over their shoulders” without interfering with

their activities.

This paper describes the results of two joint academy-

industry projects that involve the Computer Science

Department of Genoa University, Italy, and Ansaldo-STS,

the Italian leader in design and construction of railway

signalling and automation systems.

The MAS developed as part of the MAD Agents

(“Monitoring and Diagnostic Agents”) project monitors the

behaviour of a set of processes running on an Ansaldo-STS

server. These processes control railway signalling. The

agents that monitor them react to anomalies either by

interacting with other agents in the MAS or by killing the

process that raised the anomaly.

The goal of the MAS developed in the FYPA (“Find Your

Path, Agents”) project is to find a feasible allocation of

resources to agents over time that emerges as the result of a

sequence of local negotiation steps. Resources are modelled

as nodes in a directed, non-planar graph that agents must

traverse from one start point to one end point. Resources are

indivisible and, in any time instant, they can be occupied by

at most one agent.

Both MASs have been developed in collaboration with

scientists from Ansaldo-STS and have been widely tested on

real data provided by the company.

The paper is organised in the following way: Section 2

discusses the MAD Agents project, Section 3 discusses the

FYPA project, Section 4 overviews works related to the

projects and concludes.

2. MAD Agents

The architecture of the MAD Agents MAS and its operating

scenario have been extensively described in [17], whereas its

implementation and execution have been the subject of [35].

In the sequel we briefly summarize them.

 2.1 MAD Agents Operating Scenario

The Command and Control System for Railway Circulation

(“Sistema di Comando e Controllo della Circolazione

Ferroviaria”, SCC) is a framework project for the

technological development of the Italian Railways

(“Ferrovie dello Stato”, FS). It is based on the installation of

centralised Traffic Command and Control Systems, able to

remotely control the plants located in the railway stations,

and to manage the movement of trains from the Central

Plants (namely, the offices where instances of the SCC

system are installed).

The SCC can be decomposed into five subsystems

• Circulation, for remote control of traffic and for

making circulation as regular as possible;

• Synoptic Frame, for representing railway lines, nodes,

and trains, in a summarised, easily understandable

way;

• Diagnosis and Upkeep, for the diagnosis of plants and

equipments of the SCC;

• Information to Customers, for providing information

to the FS customers;

• Remote surveillance, intrusion avoidance, fire

detection, emergency management, for dealing with

all these situations efficiently.

Figure 1. Operator and synoptic frame in Genoa’s SCC.

The MAD Agents MAS monitors and reacts to problems of

Intelligent Agents that Monitor, Diagnose and Solve Problems 108

one critical process belonging to the Circulation subsystem:

Path Selection.

The Path Selection process is the front-end user interface for

the activities concerned with railway regulation. There is

one Path Selection process running on any workstation in

the SCC and each operator interacts with one instance of

this process.

The Path Selection process visualises decisions made by the

Planner process and allows the operator to either confirm or

modify them.

The Planner process is the back-end elaboration process for

the activities concerned with railway regulation. There is

only one instance of the Planner process in the SCC,

running on the server. It continuously receives information

on the position of trains from sensors located in the stations

along the railway lines, checks the timetable, and formulates

a plan for ensuring that the train schedule is respected.

Operators may modify the Planner’s decisions thanks to the

Path Selection process.

By integrating a monitoring MAS into the circulation sub-

system, we equip any operator of the Central Plant (any

workstation) with the means for early detecting anomalies

that, if reported to the SCC Assistance Centre in a short

time, and before their effects have propagated to the entire

system, may allow the prevention of more serious problems.

To have an idea of the dimensions of an SCC and of the

area it controls, the SCC of the node of Genoa, that we

employed as a case-study for the implementation of our

MAS, controls an area with 255 km of tracks, with 28 fully

equipped stations plus 20 stops. One of the 16 user

workstations of Genoa’s SCC is shown in Figure 1. The

synoptic frame can be seen in the background.

It is worth noting that our MAS does not manage problems

tightly connected with the railway domain. Indeed, it

monitors parameters which are common to many processes

in many domains, like the use of the cpu and the hard disk,

the state of the connection to the network, etc.. The aim of

our project was to develop a system able to monitor the

execution of a process characterised by the above

parameters. As a consequence, the architecture and the

MAS developed are general and flexible enough for

monitoring many different processes, and not only to the

Path Selection one: our system could be easily adapted to

monitor new processes without changing the architecture of

the MAS but just creating specific reader agents and

equipping the other agents with new rules.

 2.2 MAD Agents Architecture

Figure 2. MAD Agents Architecture.

The MAD Agents MAS consists of the four kinds of agent

depicted in Figure 2.

Agents are organized in a hierarchy: Log Reader Agents are

at the bottom of the hierarchy and interact with Process

Monitoring Agents, which in turn interact with Computer

Monitoring Agents. At the root of the hierarchy is the Plant

Monitoring Agent, unique in each SCC. Agents live and act

in the software Environment consisting of the already

existing processes developed by Ansaldo-STS, and interact

with it in the limited way discussed below.

Log Reader Agent. In our MAS, there is one Log Reader

Agent (LRA) for each process that needs to be monitored.

Thus, there may be many LRAs running on the same

computer (if there are more processes to monitor; at the time

of writing, only Path Selection is considered). Once every m

minutes the LRA reads the log-file produced by the process

P it monitors, extracts information from it, produces a

symbolic representation of the extracted information in a

format amenable of logic-based reasoning, and sends the

symbolic representation to the Process Monitoring Agent in

charge of monitoring P. Relevant information to be sent to

the Process Monitoring Agent includes loss of connection to

the net and life of the process. LRA is the only agent able to

get information from the Environment where the MAS is

situated.

Process Monitoring Agent. Process Monitoring Agents

(PMAs) are in a one-to-one correspondence with LRAs: the

PMA associated with process P receives the information sent

by the LRA associated with P, looks for anomalies in the

functioning of P, reports them to the Computer Monitoring

Agent (CMA) and asks it for more information, and in case

kills and restarts P if necessary. It implements a sort of

social, context-aware, reactive and proactive expert system.

PMA can interact with the Environment by killing and

restarting the process it monitors.

109 Briola, Mascardi and Martello

Computer Monitoring Agent. The CMA receives all the

messages arriving from the PMAs that run on that

computer, and monitors parameters like network

availability, CPU usage, memory usage, hard disk usage.

The messages received from PMAs together with the values

of the monitored parameters allow the CMA to make

hypotheses on the functioning of the computer where it is

running. If necessary, the CMA may ask the PlaMA for

more information, to know about the state of the entire plant

and to act consequently.

Plant Monitoring Agent. There is one Plant Monitoring

Agent (PlaMA) for each plant. The PlaMA receives

messages from all the CMAs in the plant and in case alerts

the SCC Assistance Centre. It interacts with the

Environment by alerting the remote assistance centre.

 2.3 MAD Agents Implementation

All the agents of the MAS, apart from LRA that is a pure

JADE [6] agent, have been implemented in TuProlog [9]

integrated into JADE by means of an extended version of

DCaseLP libraries [18].

LRAs have been designed and developed as agents for

clearly separating what has been developed as part of this

project (“agents”) from what already existed (“non agents”).

We also wanted to emphasise their autonomy (although very

limited) and to separate the functionality of parsing the log-

file from the one of reasoning over facts. However, LRAs

are very trivial agents and we could have designed and

implemented them as “Artifacts” in the A&A metamodel

[23] or as “Touchpoints” in the Autonomic computing

terminology [2] as well.

The CMA, PMA and PlaMA have a cyclic “observe-think-

act” behaviour [14] (and a “cyclic behaviour” in JADE)

where they

• look if a new message matching a given template has

been received;

• retrieve the message from their message queue and

store it in their history;

• manage the message according to the rules in their

program, and to their knowledge base (that includes

all the messages received in the past);

• answer to the agent that has sent the message, and, in

case, send messages to other agents in the MAS.

The architecture of each agent, apart LRA ones, is a

declarative architecture where the knowledge base is

modelled as a set of Prolog facts, the behaviour is

determined by Prolog rules, reactivity is implemented by

allowing agents to look at their message box and to react to

incoming messages. Messages arrive from the LRA to the

PMA every m seconds (where m is a configuration

parameter of the MAS), and the PMA looks for anomalies

and starts the managing process if necessary.

Agents are equipped with different rules dealing with the

different parameters to be monitored, namely:

1) parameters tightly connected to the process monitored by

the PMA; these parameters include “cpu usage” and

“errors” and are not influenced by the state of the network

or by other processes;

2) parameters influenced either by the state of the network,

or by the behaviour of other processes as those running on

the server (for example, “connection to server” and “view”).

Parameters of the first type are treated locally by the PMA.

Parameters of the second type are dealt with by PMA asking

the CMA, which can ask the PlaMA, for more information,

since they may involve non-local problems.

The state of an agent consists of a set of facts representing

what happened in the past. Different agents store different

facts: PMAs store information about what local problems

have been found and when (facts reporting a timestamp and

what the problem is), CMAs keep information about the

problems of all its PMAs and the notifications of a process

killing (facts reporting the name of the process, a timestamp

and what the problem is and facts reporting why and when a

process have been killed), whereas PlaMA records facts

about problems in the network (facts reporting the name of

the machine and the process, a timestamp and what the

problem is), but nothing about the solutions that have been

taken (because they are local solutions).

Messages received in previous interactions are also stored by

agents in their knowledge bases, since agents may act in

different ways if some problem is reported for the first time

or if the problem is common to other agents that recently

reported it.

This structure allows us to leave the rules that establish how

to manage a problem (either kill a process or not, according

to the CMA advice) in the PMA, to store the intelligence to

monitor a computer and decide when more information is

needed in the CMA, and to have the PlaMA look over the

whole network and answer CMAs’ requests, but without

intruding in the local management.

 2.4 MAD Agents Execution

In order to run the developed system, JADE and TuProlog

(version 1.3, in order to be compliant with the DCaseLP

libraries) need to be installed on the machine, as well as the

extended DCaseLP libraries. The simplest configuration of

the MAS includes

 • one PlaMA

 • one CMA

 • one PMA

but usually the MAS will consist of at least two CMAs

controlling different PMAs. At this stage of the project we

use more PMAs of the same type, which is not a problem

because the rationale is to simulate the behaviour of the

CMA with more processes, regardless of their type. The

PlaMA is one for each MAS. In the sequel we show the

behaviour of the MAS concerning the management of

different parameters, and with different configurations and

history. Some figures will not show the LRA to let the

reader better understand the interactions among the other

agents.

Intelligent Agents that Monitor, Diagnose and Solve Problems 110

The first example shows the behaviour of the MAS when the

value “high” of the “cpu usage” is reported by the LRA to

the PMA, with the simplest MAS configuration consisting

of just one agent of any kind.

When the PMA receives a message from the LRA:

1) If the value of the “cpu usage” parameter is “normal”, no

action needs to be taken.

2) If the value of the parameter is “high”, and it remains

high

in the successive message sent by the LRA, the PMA kills

and restarts the process, and informs the CMA.

The simplest MAS configuration works well enough to

demonstrate this behaviour, because it does not depend on

how many PMAs encountered the same problem. As shown

in Figure 3, the first message notifying a high cpu usage

from the LRA does not cause the delivery of message from

the PMA. The second message with the same content,

instead, causes the PMA to send a message to the CMA,

with the content “process killed”.

Figure 3. Execution run concerning the “cpu usage”

parameter.

The second example shows the behaviour of the system for

the management of the “connection to server” parameter.

The behaviour is much more complex than the one dealing

with the “cpu usage”. To allow a good understanding of how

it works, we will use two different configurations and

histories.

Figure 4. Execution run concerning the “connection to

server” parameter.

The first configuration, shown in Figure 4, involves one

PlaMA, one CMA and two PMAs, named Pma1 and Pma2.

Pma1 receives a message from its LRA with “connection to

server(lost)”: Pma1 asks for more information to CMA, that

has no recent notifications of this problem from other

PMAs, and answers “no network problem” to Pma1. Pma1

kills and restarts the process and informs CMA of this.

Later on, also Pma2 receives the same message from its

LRA, and, in the same way as Pma1, asks to CMA if the

same problem has already been reported. CMA, which had

registered the problem of Pma1 in its history, needs to verify

if this is a local problem or a problem involving the entire

network. Thus, it asks the PlaMA if it is aware of other

CMAs with the same problem. For the PlaMA, this is the

first notification of the problem so it registers it into its

history and answers “no network problem”. The CMA

forwards the message to Pma2 which kills and restarts the

process, and informs CMA of it.

Figure 5. Execution run concerning the “connection to

server” parameter, complex configuration.

If we make the configuration even more complex (Figure 5),

the behaviour of the MAS changes. We add another CMA

named Cma2, controlling two PMAs (Pma3 and Pma4). The

agents shown in Figure 4 are still alive and their history

includes the events discussed before. If Pma3 receives the

notification of the “connection to server(lost)” problem, it

reacts exactly as Pma1, and Cma2 acts as Cma1. That is,

Cma2 answers to Pma3, without asking the PlaMA, that

there are no network problems. But if also Pma4 receives

the “connection to server(lost)” message from its LRA, then

Cma2 must ask the PlaMA if there are network problems.

The PlaMA’s history contains the fact that Cma1 reported

the same problem a short while ago, so PlaMA sends a

message with content “network problem” to Cma2. This

answer is propagated to Pma4 by Cma2, and, as a

consequence, Pma4 does not kill the process because the

problem cannot be managed locally.

3. FYPA

The real application for which the FYPA MAS has been

developed is protected by a Non Disclosure Agreement

between the Computer Science Department of Genoa

University (DISI) and Ansaldo-STS. Thus, in this section

we provide a generalization of the problem that we

addressed, we show how the complexity of this problem can

be profitably faced following an agent-oriented approach,

and we discuss the design of the developed MAS

maintaining our description at the right level of abstraction.

We provide one example of interactions taking place within

the MAS and we discuss one screenshot that shows the

interactions among the implemented agents.

111 Briola, Mascardi and Martello

3.1 The problem faced by FYPA

The problem that the FYPA MAS addresses consists of

• A set of indivisible resources that must be assigned to

different entities in different time slots (each resource

can be used by only one entity in each time slot).

• A set of entities with different priorities, each needing

to use some of the available resources for one or more

time slots; entities have preferences over the set of

resources they can obtain.

• A directed graph of dependencies among resources:

an entity can start using resource R only if it used

exactly one resource from {R1 , R2 , ..., Rn } in the

previous time slot (we represent these dependencies as

arcs R1 → R, R2 → R, ..., Rn → R in the graph).

• A set of resources named “start points” that can be

assigned to entities without requiring the prior usage

of other resources (no arc enters in the corresponding

node).

• A set of resources named “end points” that, once

assigned to one entity, allow the entity to complete its

job (no arc exits from the corresponding node).

• A set of couples of conflicting arcs in the graph of

dependencies: an entity releasing R1 for accessing R2,

where the usage of R2 depends on the previous usage

of R1, might conflict with an entity releasing R3 for

accessing R4. The two entities might indeed need to

use the same transportation means for accessing R2

from R1 and R4 from R3 respectively, and the

transportation means might be non sharable as well.

• A static allocation plan that assigns resources to

entities for pre-defined time slots, in such a way that

no conflicts arise.

In an ideal world where resources never go out of order and

where any entity in the system can always access the

resources assigned to it by the static allocation plan, no

problems arise.

In the real world where entities happen to use resources for

longer than planned and where resources can break up, a

dynamic reallocation of resources over time is often

required. Thus, the solution of the real world problem is a

dynamic re-allocation of the resources to the entities such

that:

• the re-allocation is feasible, namely free of conflicts;

in our scenario, conflicts may arise both because two

or more entities would want to access the same

resource in the same time slot, and because two or

more entities would want to use conflicting arcs in the

same time slot;

• the re-allocation task is completed within a pre-

defined amount of time;

• each entity minimizes the changes between its new

plan and its static allocation plan: the start and end

point must always remain those stated in the static

allocation plan, but the nodes in between may change,

as well as the time slots during which resources are

used;

• each entity minimizes the delay in which it reaches

the end point with respect to its static allocation plan;

• the number of entities and resources involved in the

re-allocation process is kept to the minimum.

We modelled the problem as a directed and non-planar

graph that entities must traverse from one start point to one

end point. Nodes in the graph are labelled by resources

whereas arcs represent dependencies among them. We adopt

a discrete and linear time model.

Given this model, the problem to solve can be stated as:

For each entity that enters the graph from a start

point either confirm the validity of the plan stated in

the static allocation plan, or, if some unexpected

event occurred that makes the original plan no longer

applicable, find a new plan for reaching an end point

of the graph. The new plan should minimize the delay

in which the entity exits the graph and the number of

required changes with respect to the original plan, as

well as the number of entities involved in the re-

allocation process.

3.2 FYPA Architecture

In order to face the dynamic resource allocation problem

described in Section 3.1 we designed three types of agents

each with its own capabilities and view of the system:

Resource Agents (RAs), User Agents (UAs), Interface

Agents (IAs). The graph becomes the Environment where

agents live. There is no central control of the state of the

graph, which is indeed spread all over the RAs.

Resource Agent. Each node in the graph is managed by one

RA. RAs do not take decisions about which UA will obtain

the control of the node but keep track of the node’s state

(free/occupied). RAs also manage the allocation of arcs

entering the node.

UAs interact with RAs for knowing whether the node is free

or occupied in a given time slot. RAs answer the question

and, in case the node is not free, tell which UA occupies the

node for the given time slot, its priority, and when the node

will become free again.

RAs also manage the allocation of the arcs incoming into

the node they control. The RA controlling node N has the

list of all its neighbours, namely those RAs controlling

nodes Nfrom such that an arc Nfrom → N exists. For each arc

Nfrom → N, the RA also possesses the list of arcs A1 , ..., Ak

that conflict with Nfrom → N.

When the RA receives a reservation request for node N and

chooses the free arc Nfrom → N to reach it, it updates its

reservation table by marking the arc as occupied, answers

the request, and informs all the RAs that may be interested

by this reservation, namely those controlling arcs A1 , ...,

Ak, about the new state of the arc.

These RAs need to know that arcs conflicting with Nfrom →

N can not be used for the specified time slot. In this way, the

neighbours of RA have up-to-date information about the

Intelligent Agents that Monitor, Diagnose and Solve Problems 112

state of the arcs that might cause conflicts with their own

arcs, and will be able to provide conflict-free answers to

successive reservation requests.

User Agent. UAs represent entities that want to traverse the

graph. Each UA has an original plan stated in the static

allocation plan and consisting of the list of nodes to traverse

together with arrival and departure time for each of them.

As soon as an UA enters the graph, no matter if it is on time

or late, it always tries to get a reservation for the nodes in its

original path. UAs do not try to reserve a specific arc to

reach a node: they ask RAs to reserve the most suitable arc

for them.

UAs do not know the topology of the graph; they may

interact with the Path Agent introduced later on in this

section to obtain information on the paths that connect the

start point where they enter the graph with the end point

they must reach to exit the graph.

UAs communicate with RAs to reserve resources. Only in

one case UAs may communicate with each other.

Every UA has a priority that it uses to reserve a resource or

even to steal a resource to another UA. In case of theft of a

resource, the UA victim of the theft may directly interact

with the thief as discussed later on.

Since each UA has the unique goal of getting out of the

graph, it continues to look for a path in it until it obtains the

reservation for all the nodes in the path.

If it looses the reservation of one of these nodes, for example

because a UA with higher priority stole the node to it, it will

start the search again until it will succeed in reserving all

the nodes in one path.

Interface Agent. IAs act as an interface between the MAS

and the external environment. There are three types of IAs:

• The Path Agent (PA) provides an interface between

agents in the MAS (in particular, UAs) and the Path

Finder Service offered by a software module external

to the MAS. The Path Finder Service exploits its

knowledge about the graph topology and geometry.

Given two nodes, it returns a list of selected paths

connecting them ordered from the best one to the

worst one. The strategy for selecting and ordering the

paths depends on the application. In Ansaldo-STS’s

application, it depends on the number of nodes in the

path and on geometrical constraints. If a UA wants to

pass through a particular node that we name “parking

node”, it asks the PA to look for a path satisfying this

requirement. The PA uses this additional parameter to

query the Path Finder Service and to obtain the list of

all the paths that include the parking node.

• The RA Manager reads the structure of the graph

from a configuration file that includes real data and

creates the RAs corresponding to the nodes, equipped

with all the information they need.

• The UA Manager creates the UAs that enter the

graph according to a configuration file and taking the

real data on the agents’ delay into account.

3.3 Interactions among FYPA agents: one example

In this section we provide one example of interactions

taking place among agents in the FYPA MAS. In this

example, a conflict over a resource arises.

The graph that we use in our first example is represented in

Figure 6. There are three UAs, UA1, UA2 and UA3, with

the same start and end nodes, A and H respectively.

Figure 7 shows how the resources (on the rows) are

allocated to the UAs in the time (columns) according to the

static allocation plan.

Figure 7. The static allocation plan.

Note that Figure 7 shows time starting from T1, which is the

time slot when UA2 enters the graph, but there were other

time slots before T1. For example, UA1 entered the graph at

time T0 which is not shown in the figure.

Let us suppose that the current time slot is either T1 or T2,

and that UA1 realizes that it must stop on D not only for the

time slot T3 as the original allocation plan states, but also

for T4 and T5, as it has no means to move from D until T6.

UA1 sends a “non disputable” reservation (namely, a

reservation that the RA is forced to accept) for the time slots

T3, T4 and T5 to the RA controlling D, that we name D (for

sake of readability, we identify the RAs with the names of

the resources they control, which also label the nodes in the

graph). D has already a reservation from UA2 for time slots

Figure 6. The Graph

113 Briola, Mascardi and Martello

T4 and T5, but, since UA1’s reservation is “non disputable”,

it sends a “cancel” message to UA2 specifying that UA1

stole D for time slots T4 and T5 with a “non disputable”

reservation.

UA2 has to change its original path for reaching H:

Case 1: if the delay that it would undergo if it stopped on C

for T4 and T5 (waiting for UA1 to release D) is acceptable,

it can accept to stop on C for T4 and T5 and then move to

D; otherwise

Case 2: it must look for a new path.

Case 1. In the first case, UA2 sends a request to D for T6

and T7, and a request to C for T4 and T5. Both C and D

answer with an “occupied” message, specifying that the

corresponding resource is occupied by UA3 that has priority

P3. UA2 has priority P2 and will behave in two different

ways according to the relationships between P2 and P3:

Case 1.1: if P2 >= P3, UA2 will reserve anyway the

resources, stealing them to UA3;

Case 1.2: if P2 < P3, UA2 must look for a new path.

In the first case (1.1), UA3 will search for a new path

because it has lost C and D: let us suppose that it is B → F

→ G → H. UA3 will send the requests to the RAs in charge

for the resources in this path. It will succeed in reserving

them and it will exit the graph in time slot T7 (Figure 8).

In the second case (1.2), UA2 will use the path C → G → H

and will succeed in exiting the graph at T8, while the

reservations of UA3 will not be affected (Figure 9).

Case 2. Case 2, namely the case where UA2 should gain too

much delay if stopping on C for T4 and T5, has the same

solution as case 1.2: UA2 will use G and H, in the same

time slots as shown in Figure 9.

3.4 FYPA implementation and execution

The FYPA MAS has been implemented with JADE and uses

the JADE Web Services Integration Gateway, WSIG [37]

for interfacing with applications outside the MAS. Due to

the confidentiality of the project we can not go into the

details of the implementation. We limit ourselves to

showing a screenshot of the JADE Sniffer Agent taken

during one of our tests or real data provided by Ansaldo-

STS (Figure 10).

In this screenshot we see UA1 that enters the graph in node

1 managed by RA1 and wants to move to node 2 managed

by RA2 and to exit in node 3 managed by RA3.

As soon as the UA Manager creates UA1, UA1 sends a

“query-if” to the three RAs in order to reserve the resources

it needs.

Figure 10. FYPA MAS execution.

After receiving all the three messages from the RAs with

“confirm” performative, UA1 replies with three

confirmations in order to reserve the path.

Finally the UA Manager sends an information request about

the reserved path to UA1, and UA1 informs it of the path

that it just reserved.

4. Related work and conclusions

The exploitation of intelligent agents for monitoring,

diagnosing and solving problems in complex, distributed

systems has a long and successful history dating back to the

early and mid nineties.

Before that, Distributed Artificial Intelligence (DAI)

techniques were adopted. Even if the first DAI systems did

not integrate “agents” as we intend them today, they were

Figure 8. New plan under hypothesis P2 >= P3.

Figure 9. New plan under hypothesis P2 < P3.

Intelligent Agents that Monitor, Diagnose and Solve Problems 114

the ancestors of MASs and deserve to be shortly mentioned

in this section.

In 1990, the “Large-internetwork Observation and

Diagnosis Expert System”, LODES [29], was implemented.

It represents an interesting example of application of DAI to

diagnosis and problem solving. The diagnostic system was

created by reusing and unifying pre-existing network

diagnosis expert systems. Each sub-LAN had its own

LODES system, and problems were solved by their co-

operative work. In the same year, Weihmayer and Brandau

developed TEAM-CPS [30], a test bed for introducing DAI

to control and manage customer networks: in TEAM-CPS

the customers’ virtual private networks were automatically

reconfigured using links from the public network. In 1992,

the “Distributed Big Brother” was one of the earliest works

where DAI was adopted for monitoring purposes in the

telecommunications area [28]. The project applied DAI

techniques to Local-Area Networks, to make their

management more robust and faster.

Among the oldest applications of rule-based intelligent

agents in the monitoring and diagnosis domain we may

mention a re-implementation of TEAM-CPS [31] where

agents used the PRODIGY planning system [20] for local

network planning, and the well-known Agent-Orientated

Programming framework [27] for communication and

control. In 1997, Leckie et al. [15] developed a prototype

agent-based system for performance monitoring and fault

diagnosis in a telecommunications network, where agents

were implemented using C5 [24], based on the OPS5 rule

language [11], and communicated using KQML [10].

An architecture for a software agent operating a physical

device and capable of testing and repairing the device’s

components is described in [3]. In that work, the authors

focus on modelling the agent’s behaviour after the discovery

of a fault in a circuit: the knowledge as well the behaviours

of the agent are expressed in A-Prolog [4]. The life of the

agent is an “observe-think-act” loop where actions are quite

simple, but nevertheless able to modify the circuit in order

to repair it. An industrial application of A-Prolog to a

medium size knowledge-intensive application for

controlling some functions of the Space Shuttle is described

in [21]. However, no agents are used there.

Moving to nowadays, [26] describes Space Shuttle Ground

Processing with Monitoring Agents. JESS [38] is used to

realize a system that helps the monitoring of all the

processes, instrumentation and data flows of the Kennedy

Space Centre’s Launch Processing System. The system,

called NESTA, helps to monitor and above all to discover

problems concerning the “ground process”, i.e. the set of the

operations carried out in the weeks before the Space

Shuttle’s launch. NESTA autonomously and continuously

monitors shuttle telemetry data and automatically alerts

NASA shuttle engineers if it discovers predefined situations.

This system, developed and tested in a real, safety-critical

scenario, shows that an agent-oriented solution implemented

with a rule-based language may be employed to satisfy

concrete industrial needs, and demonstrates the success of

agents outside the boundaries of academia.

Other applications of agents for diagnosis and monitoring

include [16] that presents a technique for monitoring the

start up sequences of gas turbine: the system uses a MAS

where decisions are taken by combining partial information

possessed by individual agents, thus obtaining a global view

of the situation, and producing an automatic fault diagnosis

for the engineers. The MAS is implemented with the ZEUS

Agent Building Toolkit [22]. In 2006, the Rockwell

Automation company applied agents to control

manufacturing production [19]. The MAS is implemented

with real-time control agents, and also the information

transfer among the software agents takes place in real-time,

using a Programmable Logic Controller. A MAS for the

simulation of the environment for material handling systems

has been implemented in JADE.

In [42], the integration of intelligent anomaly agents and

traditional monitoring systems for high-performance

distributed systems is discussed. The intelligent agents

presented in that study employ machine learning techniques

to develop profiles of normal behavior as seen in sequences

of operating system calls (kernel-level monitoring) and

function calls (user-level monitoring) generated by an

application. The Ganglia distributed monitoring system

(developed by Massie, Chun and Culler at the University of

California, Berkeley [43]) was used as a test bed for

integration case studies. Mechanisms provided by Ganglia

make it relatively easy to integrate anomaly detection

systems and to visualize the output of the agents. The results

provided demonstrate that the integrated intelligent agents

can detect the execution of unauthorized applications and

network faults that are not obvious in the standard output of

traditional monitoring systems.

Finally, [7] describes a model for managing faults in

industrial processes. The model is based on a generic

framework that uses MASs for distributed control systems;

the system manages faults with feedback control process and

decides about the scheduling of the preventive maintenance

tasks, also running preventive and corrective specific

maintenance tasks.

As far as distributed problem solutions emerging from

negotiation, which is the research activity we carried out in

the FYPA project, some proposals exist [39], [40], [41] and,

among them, some negotiation algorithms similar to the one

that we implemented in FYPA exist. However, changing

even only one assumption, requirement or constraint in the

negotiation algorithm, leads to very different results. Thus,

an algorithm “similar” but not identical to the one we

needed was not suitable for our FYPA project. To the best of

our knowledge, no negotiation algorithm similar to the one

we needed is available to the research community as a

source code. Thus, even if we had found the right algorithm

for FYPA in the literature, the burden of implementing it

would have been up to us in any case. Also, we developed

the FYPA MAS having a real application in mind. We

could not neglect all the constraints on the software

environment where our MAS would be integrated. For these

reasons we decided to design and implement our own

negotiation algorithm.

115 Briola, Mascardi and Martello

The MAD Agents and FYPA projects, although similar in

their purposes to other applications ([25]) developed in the

past, demonstrate an increased industrial interest and trust

in both agent-based and, as far as MAD Agent is concerned,

rule-based technologies.

To the best of our understanding only few proposals of using

rule-based agents led to the development of a MAS

prototype used inside an industry ([12], [8], [26]). The

industrial strength system described in [19], despite not

using rule-based technologies, shares with our projects the

choice of JADE as the agent middleware.

The Agent Technology Roadmap [33] observed that “One of

the most fundamental obstacles to the take-up of agent

technology is the lack of mature software development

methodologies for agent-based systems.”. According to the

experience of DISI and Ansaldo-STS, agent tools, languages

and methodologies are today mature enough to be adopted

by the industry. Although the competencies on how to

exploit them are still missing in many companies,

companies now know that agents exist, believe in their

usefulness for coping with the complexity of open,

distributed, dynamic applications, and are more and more

keen on integrating them into their projects. The role of

academia in providing a good support during the design and

implementation of MASs for real applications is a key factor

in the take-off of the agent technology, and the joint DISI-

Ansaldo-STS projects discussed in this paper represent two

success stories in this direction.

Acknowledgement

We acknowledge Riccardo Caccia and Carlo Milani from

Ansaldo-STS that collaborated to the design and

development of MAD Agents and FYPA and allowed us to

report the projects' results in this paper.

We also acknowledge Gabriele Arecco who helped in the

implementation of MAD Agents.

References

[1] E. Abel, I. Laresgoiti, J. Perez J., Corera, and J.

Echavarri. A multi-agent approach to analyse

disturbances in electrical networks. In International

Conference on Expert Systems Applications to Power

Systems, ESAP’93, Proceedings, 1993.

[2] B. A. Miller. http://www.ibm.com/developerworks/

autonomic/library/ac-edge5/, 2005.

[3] M. Balduccini and M. Gelfond. Diagnostic reasoning

with a-prolog. Theory Pract. Log. Program., 3(4):425–

461, 2003.

[4] M. Balduccini, M. Gelfond, and M. Nogueira. A-

prolog as a tool for declarative programming. In 12th

International Conference on Software Engineering and

Knowledge Engineering, SEKE’00, Proceedings, pages

63–72. Knowledge Systems Institute, 2000.

[5] J. Barandiaran, I. Laresgoiti, J. Perez, J. Corera, and J.

Echavarri. Diagnosing faults in electrical networks. In

S. Hashemi, J.P. Marciano, and J.G. Gouarderes,

editors, International Conference on Expert Systems

Applications, EXPERSYS’91, Proceedings. IITT Paris,

1991.

[6] F. L. Bellifemine, G. Caire, and D. Greenwood.

Developing Multi-Agent Systems with JADE. Wiley,

2007.

[7] M. Cerrada, J. Cardillo, J. Aguilar, and R. Faneite.

Agents-based design for fault management systems in

industrial processes. Computers in Industry,

58(4):313–328, 2007.

[8] J. M. Corera, I. Laresgoiti, and N. R. Jennings. Using

Archon, part 2: Electricity transportation management.

IEEE Expert, 11(6):71–79, 1996.

[9] E. Denti, A. Omicini, and A. Ricci. tuProlog: A

lightweight prolog for internet applications and

infrastructures. In I. V. Ramakrishnan, editor, 3rd

International Symposium on Practical Aspects of

Declarative Languages, PADL’01, Proceedings, pages

184–198. Springer, 2001.

[10] T. W. Finin, R. Fritzson, D. P. McKay, and R.

McEntire. KQML as an agent communication

language. In 3rd International Conference on

Information and Knowledge Management, CIKM’94,

Proceedings, pages 456–463. ACM, 1994.

[11] C.L. Forgy. Ops5 user’s manual. Technical Report

CMU-CS-81-135, Carnegie-Mellon University, 1981.

[12] N. R. Jennings, E. H. Mamdani, J. M. Corera, I.

Laresgoiti, F. Perriollat, P. Skarek, and L. Zsolt Varga.

Using Archon to develop real-world DAI applications,

part 1. IEEE Expert, 11(6):64–70, 1996.

[13] N. R. Jennings, K. P. Sycara, and M. Wooldridge. A

roadmap of agent research and development.

Autonomous Agents and Multi-Agent Systems, 1(1):7–

38, 1998.

[14] R. Kowalski and F. Sadri. From logic programming

towards multi-agent systems. Annals of Mathematics

and Artificial Intelligence, 25(3-4):391–419, 1999.

[15] C. Leckie, R. Senjen, B. Ward, and M. Zhao.

Communication and coordination for intelligent fault

diagnosis agents. In 8th IFIP/IEEE International

Workshop for Distributed Systems Operations and

Management, DSOM’97, Proceedings, pages 280–291,

1997.

[16] E.E. Mangina, S.D.J McArthur, J.R. Mc Donald, and

A. Moyes. A multi agent system for monitoring

industrial gas turbine start-up sequences. IEEE

Transactions on Power Systems, 16(3):396–401, 2001.

[17] V. Mascardi, D. Briola, M. Martelli, R. Caccia, and C.

Milani. Monitoring and diagnosing railway signalling

with logic-based distributed agents. In E. Corchado

and R. Zunino, editors, International Workshop on

Computational Intelligence in Security for Information

Systems, CISIS’08, Proceedings, Advances in Soft

Computing Series. Springer-Verlag, pages 108–115,

2008.

[18] V. Mascardi, M. Martelli, and I. Gungui. DCaseLP: a

prototyping environment for multi-language agent

systems. In M. Dastani, A. El-Fallah Seghrouchni, J.

Leite, and P. Torroni, editors, In Proceedings of the

First Workshop on LAnguages, methodologies and

Development tools for multi-agent systemS, LADS’007

Intelligent Agents that Monitor, Diagnose and Solve Problems 116

Post-proceedings, volume 5118 of LNCS, pages 139–

155. Springer-Verlag, 2008.

[19] V. Mařík, P. Vrba, K. H. Hall, and F. P. Maturana.

Rockwell automation agents for manufacturing. In F.

Dignum, V. Dignum, S. Koenig, S. Kraus, M. P.

Singh, and M. Wooldridge, editors, 4rd International

Joint Conference on Autonomous Agents and

Multiagent Systems, AAMAS’05, Proceedings, pages

107–113. ACM, 2005.

[20] S. Minton, C. A. Knoblock, D. R. Kuokka, Y. Gil, R.

L. Joseph, and J. G. Carbonell. Prodigy 2.0: The

manual and tutorial. Technical Report CMU-CS-89-

146, Carnegie-Mellon University, 1989.

[21] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson,

and M. Barry. An a-prolog decision support system for

the space shuttle. In A. Provetti and T. Cao Son,

editors, 1st International Workshop on Answer Set

Programming, Towards Efficient and Scalable

Knowledge Representation and Reasoning, ASP’01,

Proceedings, 2001.

[22] H. Nwana, D. Ndumu, L. Lee, and J. Collis. ZEUS: A

tool-kit for building distributed multi-agent systems.

Applied Artifical Intelligence Journal, 13(1):129–186,

1999.

[23] A. Ricci, M. Viroli, and A. Omicini. The A&A

programming model and technology for developing

agent environments in MAS. In M. Dastani, A. El

Fallah-Seghrouchni, A. Ricci, and M. Winikoff,

editors, Programming Multi-Agent Systems, 5th

International Workshop, ProMAS 2007, Proceedings,

pages 89–106, volume 4908 of LNCS. Springer, 2008.

[24] J.R. Roland, G.T. Vesonder, and J.M. Wilson. C5 user

manual, release 2.1. Technical report, AT&T Bell

Laboratories, 1990.

[25] M. Schroeder, I. de Almeida Móra, and L. Moniz

Pereira. A deliberative and reactive diagnosis agent

based on logic programming. In M. P. Singh, A. S.

Rao, and M. Wooldridge, editors, 4th International

Workshop on Agent Theories, Architectures, and

Languages, ATAL’97, Proceedings, volume 1365 of

LNCS, pages 293–307. Springer, 1998.

[26] G. S. Semmel, S. R. Davis, K. W. Leucht, D. A. Rowe,

K. E. Smith, and L. Boloni. Space shuttle ground

processing with monitoring agents. IEEE Intelligent

Systems, 21(1):68–73, 2006.

[27] Y. Shoham. Agent-orientated programming. Artificial

Intelligence, 60(1):51–92, 1993.

[28] Y. So and E. H. Durfee. A distributed problem-solving

infrastructure for computer network management. Int.

J. Cooperative Inf. Syst., 2(2):363–392, 1992.

[29] T. Sugawara. A cooperative lan diagnostic and

observation expert system. In 9th Annual International

Phoenix Conference on Computers and

Communications, PCCC’94, Proceedings, pages 667–

674. IEEE, 1990.

[30] R. Weihmayer and R. Brandau. A distributed ai

architecture for customer network control. In IEEE

Global Telecommunications Conference,

Globecom’90, Proceedings, pages 656–662. IEEE,

1990.

[31] T. Weihmayer and M. Tan. Modeling cooperative

agents for customer network control using planning

and agent-oriented programming. In IEEE Global

Telecommunications Conference, Globecom’92,

Proceedings, pages 537–543. IEEE, 1992.

[32] N. Jennings, Cooperating Agents for Industrial Process

Control, http://users.ecs.soton.ac.uk/nrj/download-

files/archon/arch10.html

[33] M. Luck, P. McBurney, O. Shehory, S. Willmott, and

the AgentLink Community, Agent Technology:

Computing as Interaction – A Roadmap for Agent-

Based Computing, AgentLink III, 2005.

[34] M. Wooldridge and N. R. Jennings. Intelligent Agents:

Theory and Practice, The Knowledge Engineering

Review, 10(2):115–152, 1995.

[35] D. Briola, V. Mascardi, M. Martelli, G. Arecco, R.

Caccia, C. Milani. A Prolog-Based MAS for Railway

Signalling Monitoring: Implementation and

Experiments. In Atti del Workshop Dagli Oggetti agli

Agenti, WOA'08, M. Baldoni, M. Cossentino, F. De

Paoli, V. Seidita eds., Seneca Edizioni, 2008.

[36] R.G. Smith, The Contract Net Protocol: High-Level

Communication and Control in a Distributed Problem

Solver, IEEE Transactions on Computers,

29(12):1104-1113, 1980.

[37] JADE Board. Jade web services integration gateway

(WSIG) guide. http://jade.cselt.it/doc/tutorials/

WSIG_Guide.pdf, accessed on June, 10th, 2009.

[38] JESS, the Rule Engine for the Java Platform,

http://www.jessrules.com/, accessed on June, 10th,

2009.

[39] Y. Chevaleyre, P. E. Dunne, U. Endriss, J. Lang, M.

Lemaître, N. Maudet, J. Padget, S. Phelps, J. A.

Rodríguez-Aguilar, and P. Sousa. Issues in multiagent

resource allocation. Informatica, 30:3–31, 2006.

[40] Multi-Agent Systems Lab, Department of Computer

Science at the University of Massachusetts at Amherst.

Publications on negotiation in multi-agent systems.

http://mas.cs.umass.edu/pub/search.html?search=true&

author=&title=&year=&keywords%5B%5D=Negotiati

on, accessed on June, 10th, 2009.

[41] Stanford AI Lab, Stanford Computer Science

Department. Publications on game theory and multi-

agent systems.

http://robotics.stanford.edu/~shoham/YoavPublications

.htm, accessed on June, 10th, 2009.

[42] G. Florez-Larrahondo, Z. Liu, Y. S. Dandass, S. M.

Bridges, and R. Vaughn. Integrating Intelligent

Anomaly Detection Agents into Distributed

Monitoring Systems. Journal of Information Assurance

and Security 1(1):59–77, 2006.

[43] M. L. Massie, B. N. Chun, D. E. Culler, The Ganglia

distributed monitoring system: Design,

implementation, and experience, Parallel

Computing. 30(7):817–840, 2004.

117 Briola, Mascardi and Martello

Author Biographies

Daniela Briola was born in Genoa, Italy. She is a Ph.D. student at the
Computer Science Department at University of Genoa, Italy. Her research
interests include multi-agent systems, negotiation in MAS, logic programming
languages and software engineering for MAS. In these areas she published,
together with the other authors of this paper, some papers presented in national
and international workshops. Daniela has one degree in computer science
obtained from the University of Genoa.
Contact her at daniela.briola@unige.it.

Viviana Mascardi was born in Genoa, Italy. She is an assistant professor in
the Computer Science Department at University of Genoa. She co-organised
national and international workshops on intelligent agents and ontologies. She
co-authored more than 50 publications on agent-oriented software engineering
(in particular, modelling, verification, rapid prototyping), on development of
platforms for specification and implementation of MASs, on languages for

intelligent software agents, and on semantic interoperability. She holds a Ph.D.
degree in computer science obtained from the University of Genoa in 2002.
Contact her at viviana.mascardi@unige.it.

Maurizio Martelli was born in Pisa, Italy. He graduated with honours in
Computer Science at the University of Pisa in 1974 and he is now full
professor of Computer Science and Artificial Intelligence in the Genoa
University. He is Vice-Rector of the University of Genoa. He has been Dean of
the Faculty of Science of the University of Genoa during the period 2005-
2008. His research interests include from the theoretical point of view the use
of Higher Order Linear Logic in Logic Programming and from the applicative
point of view the use of LP techniques in the specification and rapid
prototyping of Intelligent Multi-Agent Systems, Ontologies and Software
Engineering.
Contact him at maurizio.martelli@unige.it.

