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 Abstract: This paper describes the results of two joint academy-

industry projects that involve the Computer Science Department of 
Genoa University, Italy, and Ansaldo-STS, the Italian leader in 
design and construction of railway signalling and automation 
systems. 

The MAS developed as part of the MAD Agents (“Monitoring and 
Diagnostic Agents”) project monitors the behaviour of a set of 
processes running on an Ansaldo-STS server, whereas the goal of 

the MAS developed in the FYPA (“Find Your Path, Agents”) 
project is to find a feasible allocation of resources to agents over 
time that emerges as the result of a sequence of local negotiation 

steps.  
Both MASs have been developed in collaboration with scientists 
and engineers from Ansaldo-STS and have been widely tested on 
real data provided by the company. 
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1. Introduction 

                      

The AgentLink III Technology Roadmap [33] defines an 

agent as: “a computer system that is capable of flexible 

autonomous action in dynamic, unpredictable, typically 

multi-agent domains.” 

 

According to [34], agents should be 

• autonomous: they should operate without the direct 

intervention of humans or others, and have some kind 

of control over their actions and internal state; 

• responsive: they should perceive their environment 

and respond in a timely fashion to changes that occur 

in it; 

• pro-active: they should not simply act in response to 

their environment, but should exhibit opportunistic, 

goal-directed behaviour and take the initiative where 

appropriate; 

• social: they should be able to interact, when 

appropriate, with other artificial agents and humans 

in order to complete their own problem solving and to 

help others with their activities. 

 

Another characterizing feature of agents is situatedness: the 

agent receives sensory input from its environment and it can 

perform actions which change it in some way [13]. 

As far as sociality is concerned, it is now widely recognized 

that interaction is probably the most important single 

characteristic of nowadays’ complex software.  

A multi-agent system, or MAS for short, is a system 

composed by many interacting agents. In a MAS, each agent 

has incomplete information or capabilities for solving the 

problem, thus each agent has a limited viewpoint, there is 

no global system control, data is decentralized, and 

computation is asynchronous. Also, due to the dynamicity 

and unpredictability of scenarios where agents live, MASs 

are open to changes. This means that the topology of a MAS 

cannot be fixed a priori, but it dynamically changes as 

agents enter and leave the MAS.  

 

Distributed diagnosis, monitoring, and problem solving 

within complex and dynamic systems are three of the oldest 

applications of software agents. There are many good 

reasons for choosing a MAS approach for facing them [32]: 

 

• To permit reasoning based on information of different 

granularity: the MAS may be organised in a 

hierarchy of agents with different competencies, 

starting from those at the lowest level, directly 

interfaced with the processes to monitor and diagnose, 

and going up towards more and more sophisticated 

agents, equipped with expert system-like rules for 

devising problems according to the information 

coming from agents below in the hierarchy, reporting 

aggregated information and diagnosis to the agents 

higher in the hierarchy, and proposing solutions to 

problems.  

• To enable a number of different problem solving 

paradigms to be utilised: there is no universally best 

problem solving paradigm: procedural techniques 

may be required for algorithmic calculations, whereas 

symbolic reasoning based on heuristic search may be 

the best approach to diagnosis. A distributed approach 

enables each component to be encoded in the most 

appropriate method. 

• To meet the application’s performance criteria: the 

distributed nature of a MAS makes it a suitable 

solution for monitoring different processes 
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concurrently, thus gaining in performance and 

responsiveness. 

 

 

The motivations for choosing a Distributed Artificial 

Intelligence approach given by [5], [1] also apply to the 

diagnosis and monitoring domains: economy, robustness, 

reliability, natural representation of the domain. Also, 

distributed problem solving, with the Contract Net Protocol 

[36], represents one of the first examples of autonomous 

entities that negotiate for solving a problem that none of 

them, individually, could solve. 

  

Situational awareness, that is mandatory for the successful 

monitoring and decision-making in many scenarios, is one 

of 

the founding characteristics of intelligent software agents. 

When combined with reactivity, situatedness may lead to the 

early detection of anomalies and to the formulation of a 

suitable plan for solving them. The solution that agents find 

out to solve emerging problems may be submitted to a 

human expert, in case of safety-critical scenarios, or may 

directly be implemented by the agents themselves, if they 

are empowered to make corrective actions in the 

environment, without the approval of a human expert.  

 

Last but not least, an agent-based distributed infrastructure 

can be added to most existing systems with minimal or no 

impact over them. Agents monitor processes, be them 

computer processes, business processes, chemical processes, 

by “looking over their shoulders” without interfering with 

their activities.  

 

This paper describes the results of two joint academy-

industry projects that involve the Computer Science 

Department of Genoa University, Italy, and Ansaldo-STS, 

the Italian leader in design and construction of railway 

signalling and automation systems. 

 

The MAS developed as part of the MAD Agents 

(“Monitoring and Diagnostic Agents”) project monitors the 

behaviour of a set of processes running on an Ansaldo-STS 

server. These processes control railway signalling. The 

agents that monitor them react to anomalies either by 

interacting with other agents in the MAS or by killing the 

process that raised the anomaly.  

 

The goal of the MAS developed in the FYPA (“Find Your 

Path, Agents”) project is to find a feasible allocation of 

resources to agents over time that emerges as the result of a 

sequence of local negotiation steps. Resources are modelled 

as nodes in a directed, non-planar graph that agents must 

traverse from one start point to one end point. Resources are 

indivisible and, in any time instant, they can be occupied by 

at most one agent.  

 

Both MASs have been developed in collaboration with 

scientists from Ansaldo-STS and have been widely tested on 

real data provided by the company.  

 

The paper is organised in the following way: Section 2 

discusses the MAD Agents project, Section 3 discusses the 

FYPA project, Section 4 overviews works related to the 

projects and concludes.  

 

2. MAD Agents 

The architecture of the MAD Agents MAS and its operating 

scenario have been extensively described in [17], whereas its 

implementation and execution have been the subject of [35]. 

In the sequel we briefly summarize them. 

 

 2.1  MAD Agents Operating Scenario 

 

The Command and Control System for Railway Circulation 

(“Sistema di Comando e Controllo della Circolazione 

Ferroviaria”, SCC) is a framework project for the 

technological development of the Italian Railways 

(“Ferrovie dello Stato”, FS). It is based on the installation of 

centralised Traffic Command and Control Systems, able to 

remotely control the plants located in the railway stations, 

and to manage the movement of trains from the Central 

Plants (namely, the offices where instances of the SCC 

system are installed). 

The SCC can be decomposed into five subsystems 

• Circulation, for remote control of traffic and for 

making circulation as regular as possible; 

• Synoptic Frame, for representing railway lines, nodes, 

and trains, in a summarised, easily understandable 

way; 

• Diagnosis and Upkeep, for the diagnosis of plants and 

equipments of the SCC;  

• Information to Customers, for providing information 

to the FS customers; 

• Remote surveillance, intrusion avoidance, fire 

detection, emergency management, for dealing with 

all these situations efficiently. 

 

 

Figure 1. Operator and synoptic frame in Genoa’s SCC. 

 

The MAD Agents MAS monitors and reacts to problems of 
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one critical process belonging to the Circulation subsystem: 

Path Selection. 

The Path Selection process is the front-end user interface for 

the activities concerned with railway regulation. There is 

one Path Selection process running on any workstation in 

the SCC and each operator interacts with one instance of 

this process. 

The Path Selection process visualises decisions made by the 

Planner process and allows the operator to either confirm or 

modify them. 

The Planner process is the back-end elaboration process for 

the activities concerned with railway regulation. There is 

only one instance of the Planner process in the SCC, 

running on the server. It continuously receives information 

on the position of trains from sensors located in the stations 

along the railway lines, checks the timetable, and formulates 

a plan for ensuring that the train schedule is respected. 

Operators may modify the Planner’s decisions thanks to the 

Path Selection process. 

By integrating a monitoring MAS into the circulation sub-

system, we equip any operator of the Central Plant (any 

workstation) with the means for early detecting anomalies 

that, if reported to the SCC Assistance Centre in a short 

time, and before their effects have propagated to the entire 

system, may allow the prevention of more serious problems. 

To have an idea of the dimensions of an SCC and of the 

area it controls, the SCC of the node of Genoa, that we 

employed as a case-study for the implementation of our 

MAS, controls an area with 255 km of tracks, with 28 fully 

equipped stations plus 20 stops. One of the 16 user 

workstations of Genoa’s SCC is shown in Figure 1. The 

synoptic frame can be seen in the background. 

 

It is worth noting that our MAS does not manage problems 

tightly connected with the railway domain. Indeed, it 

monitors parameters which are common to many processes 

in many domains, like the use of the cpu and the hard disk, 

the state of the connection to the network, etc.. The aim of 

our project was to develop a system able to monitor the 

execution of a process characterised by the above 

parameters. As a consequence, the architecture and the 

MAS developed are general and flexible enough for 

monitoring many different processes, and not only to the 

Path Selection one: our system could be easily adapted to 

monitor new processes without changing the architecture of 

the MAS but just creating specific reader agents and 

equipping the other agents with new rules. 

 

 2.2  MAD Agents Architecture 

 

 
Figure 2. MAD Agents Architecture. 

 

The MAD Agents MAS consists of the four kinds of agent 

depicted in Figure 2. 

 

Agents are organized in a hierarchy: Log Reader Agents are 

at the bottom of the hierarchy and interact with Process 

Monitoring Agents, which in turn interact with Computer 

Monitoring Agents. At the root of the hierarchy is the Plant 

Monitoring Agent, unique in each SCC. Agents live and act 

in the software Environment consisting of the already 

existing processes developed by Ansaldo-STS, and interact 

with it in the limited way discussed below. 

 

Log Reader Agent. In our MAS, there is one Log Reader 

Agent (LRA) for each process that needs to be monitored. 

Thus, there may be many LRAs running on the same 

computer (if there are more processes to monitor; at the time 

of writing, only Path Selection is considered). Once every m 

minutes the LRA reads the log-file produced by the process 

P it monitors, extracts information from it, produces a 

symbolic representation of the extracted information in a 

format amenable of logic-based reasoning, and sends the 

symbolic representation to the Process Monitoring Agent in 

charge of monitoring P. Relevant information to be sent to 

the Process Monitoring Agent includes loss of connection to 

the net and life of the process. LRA is the only agent able to 

get information from the Environment where the MAS is 

situated. 

 

Process Monitoring Agent. Process Monitoring Agents 

(PMAs) are in a one-to-one correspondence with LRAs: the 

PMA associated with process P receives the information sent 

by the LRA associated with P, looks for anomalies in the 

functioning of P, reports them to the Computer Monitoring 

Agent (CMA) and asks it for more information, and in case 

kills and restarts P if necessary. It implements a sort of 

social, context-aware, reactive and proactive expert system. 

PMA can interact with the Environment by killing and 

restarting the process it monitors. 
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Computer Monitoring Agent. The CMA receives all the 

messages arriving from the PMAs that run on that 

computer, and monitors parameters like network 

availability, CPU usage, memory usage, hard disk usage. 

The messages received from PMAs together with the values 

of the monitored parameters allow the CMA to make 

hypotheses on the functioning of the computer where it is 

running. If necessary, the CMA may ask the PlaMA for 

more information, to know about the state of the entire plant 

and to act consequently. 

 

Plant Monitoring Agent. There is one Plant Monitoring 

Agent (PlaMA) for each plant. The PlaMA receives 

messages from all the CMAs in the plant and in case alerts 

the SCC Assistance Centre. It interacts with the 

Environment by alerting the remote assistance centre. 

 

 2.3  MAD Agents Implementation 

All the agents of the MAS, apart from LRA that is a pure 

JADE [6] agent, have been implemented in TuProlog [9] 

integrated into JADE by means of an extended version of 

DCaseLP libraries [18].  

 

LRAs have been designed and developed as agents for 

clearly separating what has been developed as part of this 

project (“agents”) from what already existed (“non agents”). 

We also wanted to emphasise their autonomy (although very 

limited) and to separate the functionality of parsing the log- 

file from the one of reasoning over facts. However, LRAs 

are very trivial agents and we could have designed and 

implemented them as “Artifacts” in the A&A metamodel 

[23] or as “Touchpoints” in the Autonomic computing 

terminology [2] as well. 

The CMA, PMA and PlaMA have a cyclic “observe-think-

act” behaviour [14] (and a “cyclic behaviour” in JADE) 

where they 

• look if a new message matching a given template has 

been received; 

• retrieve the message from their message queue and 

store it in their history; 

• manage the message according to the rules in their 

program, and to their knowledge base (that includes 

all the messages received in the past); 

• answer to the agent that has sent the message, and, in 

case, send messages to other agents in the MAS. 

 

The architecture of each agent, apart LRA ones, is a 

declarative architecture where the knowledge base is 

modelled as a set of Prolog facts, the behaviour is 

determined by Prolog rules, reactivity is implemented by 

allowing agents to look at their message box and to react to 

incoming messages. Messages arrive from the LRA to the 

PMA every m seconds (where m is a configuration 

parameter of the MAS), and the PMA looks for anomalies 

and starts the managing process if necessary. 

 

Agents are equipped with different rules dealing with the 

different parameters to be monitored, namely: 

1) parameters tightly connected to the process monitored by 

the PMA; these parameters include “cpu usage” and 

“errors” and are not influenced by the state of the network 

or by other processes; 

2) parameters influenced either by the state of the network, 

or by the behaviour of other processes as those running on 

the server (for example, “connection to server” and “view”). 

 

Parameters of the first type are treated locally by the PMA. 

Parameters of the second type are dealt with by PMA asking 

the CMA, which can ask the PlaMA, for more information, 

since they may involve non-local problems. 

 

The state of an agent consists of a set of facts representing 

what happened in the past. Different agents store different 

facts: PMAs store information about what local problems 

have been found and when (facts reporting a timestamp and 

what the problem is), CMAs keep information about the 

problems of all its PMAs and the notifications of a process 

killing (facts reporting the name of the process, a timestamp 

and what the problem is and facts reporting why and when a 

process have been killed), whereas PlaMA records facts 

about problems in the network (facts reporting the name of 

the machine and the process, a timestamp and what the 

problem is), but nothing about the solutions that have been 

taken (because they are local solutions).  

Messages received in previous interactions are also stored by 

agents in their knowledge bases, since agents may act in 

different ways if some problem is reported for the first time 

or if the problem is common to other agents that recently 

reported it. 

This structure allows us to leave the rules that establish how 

to manage a problem (either kill a process or not, according 

to the CMA advice) in the PMA, to store the intelligence to 

monitor a computer and decide when more information is 

needed in the CMA, and to have the PlaMA look over the 

whole network and answer CMAs’ requests, but without 

intruding in the local management. 

 

 2.4 MAD Agents Execution 

In order to run the developed system, JADE and TuProlog 

(version 1.3, in order to be compliant with the DCaseLP 

libraries) need to be installed on the machine, as well as the 

extended DCaseLP libraries. The simplest configuration of 

the MAS includes 

   • one PlaMA 

   • one CMA 

   • one PMA 

but usually the MAS will consist of at least two CMAs 

controlling different PMAs. At this stage of the project we 

use more PMAs of the same type, which is not a problem 

because the rationale is to simulate the behaviour of the 

CMA with more processes, regardless of their type. The 

PlaMA is one for each MAS. In the sequel we show the 

behaviour of the MAS concerning the management of 

different parameters, and with different configurations and 

history. Some figures will not show the LRA to let the 

reader better understand the interactions among the other 

agents. 
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The first example shows the behaviour of the MAS when the 

value “high” of the “cpu usage” is reported by the LRA to 

the PMA, with the simplest MAS configuration consisting 

of just one agent of any kind. 

 

When the PMA receives a message from the LRA: 

1) If the value of the “cpu usage” parameter is “normal”, no 

action needs to be taken. 

2) If the value of the parameter is “high”, and it remains 

high 

in the successive message sent by the LRA, the PMA kills 

and restarts the process, and informs the CMA. 

 

The simplest MAS configuration works well enough to 

demonstrate this behaviour, because it does not depend on 

how many PMAs encountered the same problem. As shown 

in Figure 3, the first message notifying a high cpu usage 

from the LRA does not cause the delivery of message from 

the PMA. The second message with the same content, 

instead, causes the PMA to send a message to the CMA, 

with the content “process killed”. 

 

 
Figure 3. Execution run concerning the “cpu usage” 

parameter. 

 

The second example shows the behaviour of the system for 

the management of the “connection to server” parameter. 

The behaviour is much more complex than the one dealing 

with the “cpu usage”. To allow a good understanding of how 

it works, we will use two different configurations and 

histories. 

 

 

 
Figure 4. Execution run concerning the “connection to 

server” parameter. 

 

The first configuration, shown in Figure 4, involves one 

PlaMA, one CMA and two PMAs, named Pma1 and Pma2. 

Pma1 receives a message from its LRA with “connection to 

server(lost)”: Pma1 asks for more information to CMA, that 

has no recent notifications of this problem from other 

PMAs, and answers “no network problem” to Pma1. Pma1 

kills and restarts the process and informs CMA of this. 

Later on, also Pma2 receives the same message from its 

LRA, and, in the same way as Pma1, asks to CMA if the 

same problem has already been reported. CMA, which had 

registered the problem of Pma1 in its history, needs to verify 

if this is a local problem or a problem involving the entire 

network. Thus, it asks the PlaMA if it is aware of other 

CMAs with the same problem. For the PlaMA, this is the 

first notification of the problem so it registers it into its 

history and answers “no network problem”. The CMA 

forwards the message to Pma2 which kills and restarts the 

process, and informs CMA of it. 

 

 
Figure 5. Execution run concerning the “connection to 

server” parameter, complex configuration. 

If we make the configuration even more complex (Figure 5), 

the behaviour of the MAS changes. We add another CMA 

named Cma2, controlling two PMAs (Pma3 and Pma4). The 

agents shown in Figure 4 are still alive and their history 

includes the events discussed before. If Pma3 receives the 

notification of the “connection to server(lost)” problem, it 

reacts exactly as Pma1, and Cma2 acts as Cma1. That is, 

Cma2 answers to Pma3, without asking the PlaMA, that 

there are no network problems. But if also Pma4 receives 

the “connection to server(lost)” message from its LRA, then 

Cma2 must ask the PlaMA if there are network problems. 

The PlaMA’s history contains the fact that Cma1 reported 

the same problem a short while ago, so PlaMA sends a 

message with content “network problem” to Cma2. This 

answer is propagated to Pma4 by Cma2, and, as a 

consequence, Pma4 does not kill the process because the 

problem cannot be managed locally. 

 

3.  FYPA 
 

The real application for which the FYPA MAS has been 

developed is protected by a Non Disclosure Agreement 

between the Computer Science Department of Genoa 

University (DISI) and Ansaldo-STS. Thus, in this section 

we provide a generalization of the problem that we 

addressed, we show how the complexity of this problem can 

be profitably faced following an agent-oriented approach, 

and we discuss the design of the developed MAS 

maintaining our description at the right level of abstraction. 

We provide one example of interactions taking place within 

the MAS and we discuss one screenshot that shows the 

interactions among the implemented agents. 

 



111    Briola, Mascardi and Martello 

 

3.1 The problem faced by FYPA 

 

The problem that the FYPA MAS addresses consists of 

• A set of indivisible resources that must be assigned to 

different entities in different time slots (each resource 

can be used by only one entity in each time slot). 

• A set of entities with different priorities, each needing 

to use some of the available resources for one or more 

time slots; entities have preferences over the set of 

resources they can obtain. 

• A directed graph of dependencies among resources: 

an entity can start using resource R only if it used 

exactly one resource from {R1 , R2 , ..., Rn } in the 

previous time slot (we represent these dependencies as 

arcs    R1 → R, R2 → R, ..., Rn → R in the graph). 

• A set of resources named “start points” that can be 

assigned to entities without requiring the prior usage 

of other resources (no arc enters in the corresponding 

node). 

• A set of resources named “end points” that, once 

assigned to one entity, allow the entity to complete its 

job (no arc exits from the corresponding node). 

• A set of couples of conflicting arcs in the graph of 

dependencies: an entity releasing R1 for accessing R2, 

where the usage of R2 depends on the previous usage 

of R1, might conflict with an entity releasing R3 for 

accessing R4. The two entities might indeed need to 

use the same transportation means for accessing R2 

from R1 and R4 from R3 respectively, and the 

transportation means might be non sharable as well. 

• A static allocation plan that assigns resources to 

entities for pre-defined time slots, in such a way that 

no conflicts arise.  

 

In an ideal world where resources never go out of order and 

where any entity in the system can always access the 

resources assigned to it by the static allocation plan, no 

problems arise. 

In the real world where entities happen to use resources for 

longer than planned and where resources can break up, a 

dynamic reallocation of resources over time is often 

required. Thus, the solution of the real world problem is a 

dynamic re-allocation of the resources to the entities such 

that: 

• the re-allocation is feasible, namely free of conflicts; 

in our scenario, conflicts may arise both because two 

or more entities would want to access the same 

resource in the same time slot, and because two or 

more entities would want to use conflicting arcs in the 

same time slot; 

• the re-allocation task is completed within a pre-

defined amount of time; 

• each entity minimizes the changes between its new 

plan and its static allocation plan: the start and end 

point must always remain those stated in the static 

allocation plan, but the nodes in between may change, 

as well as the time slots during which resources are 

used; 

• each entity minimizes the delay in which it reaches 

the end point with respect to its static allocation plan; 

• the number of entities and resources involved in the 

re-allocation process is kept to the minimum. 

 

We modelled the problem as a directed and non-planar 

graph that entities must traverse from one start point to one 

end point. Nodes in the graph are labelled by resources 

whereas arcs represent dependencies among them. We adopt 

a discrete and linear time model. 

 

Given this model, the problem to solve can be stated as: 

For each entity that enters the graph from a start 

point either confirm the validity of the plan stated in 

the static allocation plan, or, if some unexpected 

event occurred that makes the original plan no longer 

applicable, find a new plan for reaching an end point 

of the graph. The new plan should minimize the delay 

in which the entity exits the graph and the number of 

required changes with respect to the original plan, as 

well as the number of entities involved in the re-

allocation process. 

 

3.2 FYPA Architecture 

 

In order to face the dynamic resource allocation problem 

described in Section 3.1 we designed three types of agents 

each with its own capabilities and view of the system: 

Resource Agents (RAs), User Agents (UAs), Interface 

Agents (IAs). The graph becomes the Environment where 

agents live. There is no central control of the state of the 

graph, which is indeed spread all over the RAs. 

 

Resource Agent. Each node in the graph is managed by one 

RA. RAs do not take decisions about which UA will obtain 

the control of the node but keep track of the node’s state 

(free/occupied). RAs also manage the allocation of arcs 

entering the node. 

UAs interact with RAs for knowing whether the node is free 

or occupied in a given time slot. RAs answer the question 

and, in case the node is not free, tell which UA occupies the 

node for the given time slot, its priority, and when the node 

will become free again. 

RAs also manage the allocation of the arcs incoming into 

the node they control. The RA controlling node N has the 

list of all its neighbours, namely those RAs controlling 

nodes Nfrom such that an arc Nfrom → N exists. For each arc 

Nfrom → N, the RA also possesses the list of arcs A1 , ..., Ak 

that conflict with Nfrom → N. 

When the RA receives a reservation request for node N and 

chooses the free arc Nfrom → N to reach it, it updates its 

reservation table by marking the arc as occupied, answers 

the request, and informs all the RAs that may be interested 

by this reservation, namely those controlling arcs A1 , ..., 

Ak, about the new state of the arc.  

These RAs need to know that arcs conflicting with Nfrom → 

N can not be used for the specified time slot. In this way, the 

neighbours of RA have up-to-date information about the 
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state of the arcs that might cause conflicts with their own 

arcs, and will be able to provide conflict-free answers to 

successive reservation requests. 

 

User Agent. UAs represent entities that want to traverse the 

graph. Each UA has an original plan stated in the static 

allocation plan and consisting of the list of nodes to traverse 

together with arrival and departure time for each of them. 

As soon as an UA enters the graph, no matter if it is on time 

or late, it always tries to get a reservation for the nodes in its 

original path. UAs do not try to reserve a specific arc to 

reach a node: they ask RAs to reserve the most suitable arc 

for them. 

UAs do not know the topology of the graph; they may 

interact with the Path Agent introduced later on in this 

section to obtain information on the paths that connect the 

start point where they enter the graph with the end point 

they must reach to exit the graph. 

UAs communicate with RAs to reserve resources. Only in 

one case UAs may communicate with each other. 

Every UA has a priority that it uses to reserve a resource or 

even to steal a resource to another UA. In case of theft of a 

resource, the UA victim of the theft may directly interact 

with the thief as discussed later on. 

Since each UA has the unique goal of getting out of the 

graph, it continues to look for a path in it until it obtains the 

reservation for all the nodes in the path.  

If it looses the reservation of one of these nodes, for example 

because a UA with higher priority stole the node to it, it will 

start the search again until it will succeed in reserving all 

the nodes in one path. 

 

Interface Agent. IAs act as an interface between the MAS 

and the external environment. There are three types of IAs: 

• The Path Agent (PA) provides an interface between 

agents in the MAS (in particular, UAs) and the Path 

Finder Service offered by a software module external 

to the MAS. The Path Finder Service exploits its 

knowledge about the graph topology and geometry. 

Given two nodes, it returns a list of selected paths 

connecting them ordered from the best one to the 

worst one. The strategy for selecting and ordering the 

paths depends on the application. In Ansaldo-STS’s 

application, it depends on the number of nodes in the 

path and on geometrical constraints. If a UA wants to 

pass through a particular node that we name “parking 

node”, it asks the PA to look for a path satisfying this 

requirement. The PA uses this additional parameter to 

query the Path Finder Service and to obtain the list of 

all the paths that include the parking node. 

• The RA Manager reads the structure of the graph 

from a configuration file that includes real data and 

creates the RAs corresponding to the nodes, equipped 

with all the information they need. 

• The UA Manager creates the UAs that enter the 

graph according to a configuration file and taking the 

real data on the agents’ delay into account. 

 

3.3 Interactions among FYPA agents: one example 

 

In this section we provide one example of interactions 

taking place among agents in the FYPA MAS. In this 

example, a conflict over a resource arises.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The graph that we use in our first example is represented in 

Figure 6. There are three UAs, UA1, UA2 and UA3, with 

the same start and end nodes, A and H respectively. 

 

Figure 7 shows how the resources (on the rows) are 

allocated to the UAs in the time (columns) according to the 

static allocation plan. 

 

 
Figure 7. The static allocation plan. 

 

 

Note that Figure 7 shows time starting from T1, which is the 

time slot when UA2 enters the graph, but there were other 

time slots before T1. For example, UA1 entered the graph at 

time T0 which is not shown in the figure. 

 

Let us suppose that the current time slot is either T1 or T2, 

and that UA1 realizes that it must stop on D not only for the 

time slot T3 as the original allocation plan states, but also 

for T4 and T5, as it has no means to move from D until T6. 

 

UA1 sends a “non disputable” reservation (namely, a 

reservation that the RA is forced to accept) for the time slots 

T3, T4 and T5 to the RA controlling D, that we name D (for 

sake of readability, we identify the RAs with the names of 

the resources they control, which also label the nodes in the 

graph). D has already a reservation from UA2 for time slots 

Figure 6. The Graph 
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T4 and T5, but, since UA1’s reservation is “non disputable”, 

it sends a “cancel” message to UA2 specifying that UA1 

stole D for time slots T4 and T5 with a “non disputable” 

reservation. 

 

UA2 has to change its original path for reaching H: 

Case 1: if the delay that it would undergo if it stopped on C 

for T4 and T5 (waiting for UA1 to release D) is acceptable, 

it can accept to stop on C for T4 and T5 and then move to 

D; otherwise 

Case 2: it must look for a new path. 

 

Case 1. In the first case, UA2 sends a request to D for T6 

and T7, and a request to C for T4 and T5. Both C and D 

answer with an “occupied” message, specifying that the 

corresponding resource is occupied by UA3 that has priority 

P3. UA2 has priority P2 and will behave in two different 

ways according to the relationships between P2 and P3: 

 

Case 1.1: if P2 >= P3, UA2 will reserve anyway the 

resources, stealing them to UA3; 

 

Case 1.2: if P2 < P3, UA2 must look for a new path. 

 

 

 

In the first case (1.1), UA3 will search for a new path 

because it has lost C and D: let us suppose that it is B → F 

→ G → H. UA3 will send the requests to the RAs in charge 

for the resources in this path. It will succeed in reserving 

them and it will exit the graph in time slot T7 (Figure 8). 

 

 

 

  

In the second case (1.2), UA2 will use the path C → G → H 

and will succeed in exiting the graph at T8, while the 

reservations of UA3 will not be affected (Figure 9). 

 

Case 2. Case 2, namely the case where UA2 should gain too 

much delay if stopping on C for T4 and T5, has the same 

solution as case 1.2: UA2 will use G and H, in the same 

time slots as shown in Figure 9. 

 

3.4 FYPA implementation and execution 

 

The FYPA MAS has been implemented with JADE and uses 

the JADE Web Services Integration Gateway, WSIG [37] 

for interfacing with applications outside the MAS. Due to 

the confidentiality of the project we can not go into the 

details of the implementation. We limit ourselves to 

showing a screenshot of the JADE Sniffer Agent taken 

during one of our tests or real data provided by Ansaldo-

STS (Figure 10). 

 

In this screenshot we see UA1 that enters the graph in node 

1 managed by RA1 and wants to move to node 2 managed 

by RA2 and to exit in node 3 managed by RA3. 

As soon as the UA Manager creates UA1, UA1 sends a 

“query-if” to the three RAs in order to reserve the resources 

it needs. 

 

 
Figure 10. FYPA MAS execution. 

 

After receiving all the three messages from the RAs with 

“confirm” performative, UA1 replies with three 

confirmations in order to reserve the path. 

Finally the UA Manager sends an information request about 

the reserved path to UA1, and UA1 informs it of the path 

that it just reserved. 

 

4. Related work and conclusions 

The exploitation of intelligent agents for monitoring, 

diagnosing and solving problems in complex, distributed 

systems has a long and successful history dating back to the 

early and mid nineties.  

Before that, Distributed Artificial Intelligence (DAI) 

techniques were adopted. Even if the first DAI systems did 

not integrate “agents” as we intend them today, they were 

Figure 8. New plan under hypothesis P2 >= P3. 

Figure 9. New plan under hypothesis P2 < P3. 
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the ancestors of MASs and deserve to be shortly mentioned 

in this section. 

In 1990, the “Large-internetwork Observation and 

Diagnosis Expert System”, LODES [29], was implemented. 

It represents an interesting example of application of DAI to 

diagnosis and problem solving. The diagnostic system was 

created by reusing and unifying pre-existing network 

diagnosis expert systems. Each sub-LAN had its own 

LODES system, and problems were solved by their co-

operative work. In the same year, Weihmayer and Brandau 

developed TEAM-CPS [30], a test bed for introducing DAI 

to control and manage customer networks: in TEAM-CPS 

the customers’ virtual private networks were automatically 

reconfigured using links from the public network. In 1992, 

the “Distributed Big Brother” was one of the earliest works 

where DAI was adopted for monitoring purposes in the 

telecommunications area [28]. The project applied DAI 

techniques to Local-Area Networks, to make their 

management more robust and faster. 

Among the oldest applications of rule-based intelligent 

agents in the monitoring and diagnosis domain we may 

mention a re-implementation of TEAM-CPS [31] where 

agents used the PRODIGY planning system [20] for local 

network planning, and the well-known Agent-Orientated 

Programming framework [27] for communication and 

control. In 1997, Leckie et al. [15] developed a prototype 

agent-based system for performance monitoring and fault 

diagnosis in a telecommunications network, where agents 

were implemented using C5 [24], based on the OPS5 rule 

language [11], and communicated using KQML [10]. 

An architecture for a software agent operating a physical 

device and capable of testing and repairing the device’s 

components is described in [3]. In that work, the authors 

focus on modelling the agent’s behaviour after the discovery 

of a fault in a circuit: the knowledge as well the behaviours 

of the agent are expressed in A-Prolog [4]. The life of the 

agent is an “observe-think-act” loop where actions are quite 

simple, but nevertheless able to modify the circuit in order 

to repair it. An industrial application of A-Prolog to a 

medium size knowledge-intensive application for 

controlling some functions of the Space Shuttle is described 

in [21]. However, no agents are used there. 

Moving to nowadays, [26] describes Space Shuttle Ground 

Processing with Monitoring Agents. JESS [38] is used to 

realize a system that helps the monitoring of all the 

processes, instrumentation and data flows of the Kennedy 

Space Centre’s Launch Processing System. The system, 

called NESTA, helps to monitor and above all to discover 

problems concerning the “ground process”, i.e. the set of the 

operations carried out in the weeks before the Space 

Shuttle’s launch. NESTA autonomously and continuously 

monitors shuttle telemetry data and automatically alerts 

NASA shuttle engineers if it discovers predefined situations. 

This system, developed and tested in a real, safety-critical 

scenario, shows that an agent-oriented solution implemented 

with a rule-based language may be employed to satisfy 

concrete industrial needs, and demonstrates the success of 

agents outside the boundaries of academia. 

Other applications of agents for diagnosis and monitoring 

include [16] that presents a technique for monitoring the 

start up sequences of gas turbine: the system uses a MAS 

where decisions are taken by combining partial information 

possessed by individual agents, thus obtaining a global view 

of the situation, and producing an automatic fault diagnosis 

for the engineers. The MAS is implemented with the ZEUS 

Agent Building Toolkit [22]. In 2006, the Rockwell 

Automation company applied agents to control 

manufacturing production [19]. The MAS is implemented 

with real-time control agents, and also the information 

transfer among the software agents takes place in real-time, 

using a Programmable Logic Controller. A MAS for the 

simulation of the environment for material handling systems 

has been implemented in JADE.  

In [42], the integration of intelligent anomaly agents and 

traditional monitoring systems for high-performance 

distributed systems is discussed. The intelligent agents 

presented in that study employ machine learning techniques 

to develop profiles of normal behavior as seen in sequences 

of operating system calls (kernel-level monitoring) and 

function calls (user-level monitoring) generated by an 

application. The Ganglia distributed monitoring system 

(developed by Massie, Chun and Culler at the University of 

California, Berkeley [43]) was used as a test bed for 

integration case studies. Mechanisms provided by Ganglia 

make it relatively easy to integrate anomaly detection 

systems and to visualize the output of the agents. The results 

provided demonstrate that the integrated intelligent agents 

can detect the execution of unauthorized applications and 

network faults that are not obvious in the standard output of 

traditional monitoring systems.  

Finally, [7] describes a model for managing faults in 

industrial processes. The model is based on a generic 

framework that uses MASs for distributed control systems; 

the system manages faults with feedback control process and 

decides about the scheduling of the preventive maintenance 

tasks, also running preventive and corrective specific 

maintenance tasks. 

As far as distributed problem solutions emerging from 

negotiation, which is the research activity we carried out in 

the FYPA project, some proposals exist [39], [40], [41] and, 

among them, some negotiation algorithms similar to the one 

that we implemented in FYPA exist. However, changing 

even only one assumption, requirement or constraint in the 

negotiation algorithm, leads to very different results. Thus, 

an algorithm “similar” but not identical to the one we 

needed was not suitable for our FYPA project. To the best of 

our knowledge, no negotiation algorithm similar to the one 

we needed is available to the research community as a 

source code. Thus, even if we had found the right algorithm 

for FYPA in the literature, the burden of implementing it 

would have been up to us in any case. Also, we developed 

the FYPA MAS having a real application in mind. We 

could not neglect all the constraints on the software 

environment where our MAS would be integrated. For these 

reasons we decided to design and implement our own 

negotiation algorithm.  
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The MAD Agents and FYPA projects, although similar in 

their purposes to other applications ([25]) developed in the 

past, demonstrate an increased industrial interest and trust 

in both agent-based and, as far as MAD Agent is concerned, 

rule-based technologies.  

To the best of our understanding only few proposals of using 

rule-based agents led to the development of a MAS 

prototype used inside an industry ([12], [8], [26]). The 

industrial strength system described in [19], despite not 

using rule-based technologies, shares with our projects the 

choice of JADE as the agent middleware. 

The Agent Technology Roadmap [33] observed that “One of 

the most fundamental obstacles to the take-up of agent 

technology is the lack of mature software development 

methodologies for agent-based systems.”. According to the 

experience of DISI and Ansaldo-STS, agent tools, languages 

and methodologies are today mature enough to be adopted 

by the industry. Although the competencies on how to 

exploit them are still missing in many companies, 

companies now know that agents exist, believe in their 

usefulness for coping with the complexity of open, 

distributed, dynamic applications, and are more and more 

keen on integrating them into their projects. The role of 

academia in providing a good support during the design and 

implementation of MASs for real applications is a key factor 

in the take-off of the agent technology, and the joint DISI-

Ansaldo-STS projects discussed in this paper represent two 

success stories in this direction. 
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