
Journal of Information Assurance and Security 4 (2009) 161-169

Received June 10, 2009 1554-1010 $ 03.50 Dynamic Publishers, Inc

Developing a Security Typed Java Servlet

Doaa Hassan1, Sherif El- Kassas2 and Ibrahim Ziedan3

1National Telecomm Institute, Computers and Systems Department
5 Mahmoud El Miligui Street, 6th district - Nasr City.Cairo - Egypt.

doaa@nti.sci.eg

2American University in Cairo, Computer Science Department

AUC Avenue, New Cairo 11835, Egypt

sherif@aucegypt.edu

3Zagazig University, Faculty of Engineering, Computers and Systems Department

Zagazig, Ash Sharqiyah governorate

iziedan@yahoo.com

Abstract: The Lack of security policy enforcement in web

development languages is one of the most important challenges in

web application systems development, as there is no formal check
for security policy violation that may occur during web application
system development. To check for policy compliance, the

programmer must walk through all the code and check every line
to make sure that there are no security violations. For example, a
developer may develop a web application system connected to data
base that seems to work properly, but it can make a certain

security policy violation by permitting unauthorized users to access
the data base system. This paper proposes a solution for the above
problem by developing and application of a security typed Java

servlet that can run on the web server side safely. This servlet is
developed by embedding the Java code produced by compiling the
Java information flow language (Jif) (a security-typed

programming language that extends Java with support for
information flow control and access control, both at compile time
and at run time) into a servlet code format . The code produced by
compiling Jif language is security typed and support servlet with

means of flow control and access control. Hence we can guarantee
that when we run this servlet into a web application system it will
check input data trough the web application system for information

flow security policy violation.

Keywords: Information flow control, Jif language, decentralized
label model, threat model, web application system, Java servlet.

1. Introduction

The current Java-web based development languages such as

Java Sever Pages (JSP) do not check for security policy

violation, especially when connecting to database. For

example an unsafe JSP script could use unchecked input

strings to compose SQL queries and then have the DBMS

execute query, which potentially allows the attacker to

insert arbitrary commands in the SQL query (the so-called

SQL-injection attack)[17]. To prevent this, we need to make

sure that the queries performed by the system comply with

the desired security policies on the data stored in the

database. In current development environments, if we want

to achieve the security policy goals of maintaining the

confidentiality and integrity of data, we must check the web

scripts for security policy violations at compile and runtime.

In this paper we propose extensions to the web scripting

environments that enable both the static (compile-time) and

dynamic (runtime) checking for information flow security

policy violations. We try to extend the Java-servlet with new

features that enable it to make static and runtime checking

for security policy violations during compile and runtime

phases respectively.

We achieve our goals by developing a security typed Java

servlet that can run on the web server side and permit

accessing to the system resources safely. This servlet is

developed by embedding the Java code produced by

compiling the Java information flow language (Jif) [2], [3]

language code into a Java servlet code format. Since the Jif

language is an extension to Java that keeps Java

programming language features in addition to permitting

static checking of information flow policies. Jif is an

implementation of JFlow language described in [4]. In other

words, our new Java servlet enforces the security features of

Jif in a web application system framework when run inside

the web servers.

In this way we are able to ensure the static checking for

information flow security policy violations that can

harmfully affect the confidentiality and integrity of data in a

web application developed using the servlet technology,

hence in Jif, the type of a variable may be annotated with a

label specifying a set of principals who own the data and a

set of principals that are permitted to read the data in

addition to a set of principals that are permitted to modify

the data.

Labels are checked by the compiler to ensure that the

information flow policies are not violated. Since, Jif is an

extension to Java and needs Java environment to run, in our

new secure servlet, we can keep many features of normal

Java servlet operation in addition to the new security

162 Hassan, Kassas and Ziedan

features added to our new secure servlet that are inherited

from Jif.

The remainder of this paper is organized as follows;

section 2 provides some background about the Information

flow control in web application System, Decentralized label

Model, Jif Language and Java servlet. Section 3 presents our

methodology to develop our new secure Servlet and

implementation. Section 4 presented the related work, and

then we conclude in section 5 with directions to future work.

2. Background

2.1 Information flow control in web application

System

Information flow control of program is very important for

large scale distributed system such as web application

system to provide more precise control of information

propagation to the public, as it is not practical to manually

checks all the code for complexity reasons to ensure that

code does not leak confidential information.

It aims to track all the dependency between objects which

may cause confidential information leakage. For example

when the value of an object Y is affected by an object X we

say that there is an information flow from X to Y. The

problem of information flow is relevant if X stores sensitive

information and Y is a public system output. In this case the

control of how sensitive information propagates in the

program is crucial for protecting confidentiality. Generally,

program data can be associated with security levels which

constitute a security lattice. The higher security level in the

lattice is associated with the more sensitive information. To

get a secure information flow, the data must flow up the

lattice. If, for some reason, data must flow down the lattice,

declassification must take place.

We identify the information flow in web applications as

the information that flows over multiple requests, such as a

request sent to a server by a user may contain information

about user’s previous request and response. The input data

coming from the client web browser can be treated as having

the security labels public and tainted, while the information

on the server side have the security labels secret and

untainted.

The information flow model in web application system

[15] is presented by a simple lattice with two security level.

The higher security in the lattice is associated with the

sensitive information such as web resources, including

databases or system files, while the low security level

presents the public information that presents the input data

coming from the client web browser. Figure (1) shows a

simple lattice form for information flow in web application

system.

Figure 1. Example of web security lattice

2.2 Decentralized label Model

The Decentralized label model (DLM) [14] is a language

based approach of information flow control. DLM is

implemented in Jif Language to allow users to declassify

their information in controlled way without traditional

impractical security constraints. Its main elements are:

principals- labels- constraints and declassification.

Principals in DLM are users or groups or roles which may

own, update and release or declassify information. Labels

are used to guarantee confidentiality. Every label consists of

a set of policies that express privacy requirements. A privacy

policy has two parts: an owner and set of readers, which is

written in the form owner: readers. By definition, an owner

is implicitly contained in reader set. A principal is allowed

to read data if and only if it is contained in the reader set of

all policies of the label attached to the data. Constraints

require the authority of a principal to perform actions that

may compromise the security of a principal such as

declassification of sensitive information or permitting a

certain principal to act for another one. This is can be used

to build more complex access control mechanisms.

Declassification is called downgrading [16] and it is needed

to weaken the security policies of application when it is

necessary.

For example, a login program must declassify some

information about the confidential password when it accepts

or rejects the user's login attempt.

2.3 Jif Language

Jif Language was developed by Andrew Myers and hid

research team as an extension to the Java language that that

keeps many features of it in addition to control the

propagation of confidential data by permitting static

checking of information flow policies and implementing the

decentralized label model (DLM) [14] by adding labels that

express restrictions on how information may be used. Jif is

based on the JFlow language described in [4].Its primary

goal is to prevent confidential and/or untrusted information

from being used improperly.

In Jif, the security policy for confidentiality or integrity is

incorporated into the code by adding labels to variables and

objects. Labels specify the ownership, read and write

permissions. The following example shows the declaration

of a variable x of type integer that owned by Alice, and both

Alice and Bob can read the data.

Int {Alice:Bob} x;

Labels are used to guarantee confidentiality and integrity. A

Developing a Security Typed Java Servlet 163

label is a pair of a confidentiality policy and an integrity

policy. We write a label {c;d}, where c is a confidentiality

policy, and d is an integrity policy. A confidentiality policy

has two parts: an owner and set of readers, which is written

in the form owner: reader or o→r allows the owner to

specify which principals can read information. By

definition, an owner is implicitly contained in reader set. A

confidentiality policy o→r says that o permits a principal q

to read information only if q can act for either the owner of

the policy or the specified reader. An integrity policy has

two parts: an owner and a set of writers, which is written in

the form owner!: writer or o←w allows the owner to specify

which principals may have influenced ("written") the value

of a given piece of information. The policy o←w means that

according to the owner o, a principal q could have

influenced the value of the information only if q can act for

the owner o or the specified writer w.

In Jif, the implicit information flow problem is controlled

by associating a static program counter label (pc) with every

statement and expression, representing the information that

might be learned from the knowledge that the statement or

expression was evaluated.

Principals in the Jif language, the entities that have

security requirements, are explicitly represented, both as

type annotations and as values that can be manipulated at

run time. Jif provides the ability to create user-defined

principals, so that programs can define their own

authentication and authorization procedures. The Jif

interface (jif.lang.Principal) is used to represent principals,

and Jif programs may implement this interface to define

their own principals.

 Jif allows classes and interfaces to be parameterized by

explicitly declared label and principal parameters. The Jif

compiler automatically infers label and principal parameters

for local variables. This makes programming in Jif more

convenient, because it is not necessary to explicitly

instantiate parameterized classes in most places where these

types can be mentioned.

 Jif provides mechanisms to downgrade the

confidentiality and the integrity of information, via explicit

program annotations to weaken the security policies of

information as part of their intended functionality. For

example, a login program must declassify some information

about the (confidential) password when it accepts or rejects

the user's login attempt. The expression declassify(e, L1 to

L2) relabels the result of an expression e from the initial

label L1 to the label L2, where the integrity specified by L2

must be at least as restrictive as the integrity specified by L1.

That is, a declassify expression can weaken only the

confidentiality, not the integrity, of information. Similarly,

the expression endorse(e, L1 to L2) relabels the result of an

expression e from L1 to L2, where the confidentiality

specified by L2 must be at least as restrictive as the

confidentiality specified by L1.

During compilation, the Jif compiler translates Jif

language to Java language that can be executed with

standard Java virtual machine after the Jif type checker

guarantee that labels specified by the programmer satisfy the

required security policy. If there are violations in the

security policy declared in the labels, the Jif compiler

reports them and reject the program as unsecure. Although

information flow security policy enforcement is mostly done

by Jif at compile time, Jif does also allow some enforcement

to take place at run time. Therefore, Jif programs in general

require the Jif run-time library. For more details about Jif

language, refer to [2],[3],[4].

 2.4 Java Servlet overview

A servlet is a server side platform independent Java program

that can be used to handle data between client and web

server based on interactively viewing or modifying that data

using dynamic web page generation techniques. Since

servlets run inside server side, they do not need graphical

user interface.

A client program which could be a browser or some other

program that can make connections across the internet,

access the web server and makes a request. Servlet can

respond to the client requests by dynamically constructing a

response that is sent back to the client. Each client request is

represented by a servlet request object (of type

ServletRequest). The response sends to the client is

represented by a servlet response object (of type

servletResponse). Figure (2) shows the basic servlet

operation.

A single servlet can be invoked multiple times to serve a

request from multiple clients. A servlet can handle multiple

requests concurrently and can synchronize requests. Also it

can forward requests to other servers and servlets. To invoke

servlet, a URL command pointing to the location of the

servlet must be issued as the servlets are located in any

directory or machine where a web server is running.

Because servlets written in Java, they are ideal for

implementing complex business application logic, that

allows clients to access relational databases through

dynamic web page. In addition they are portable and follow

a well-standardized API. Consequently, servlets written for,

say I-Planet Enterprise Server can run virtually unchanged

on Apache, Microsoft IIS, or WebStar. Servlets are

supported directly or via a plugin on almost every major web

server. Also adding servlet support to a web server, no

matter the cost of it is generally free or cheap. For more

details about Java servlet refer to [1], [12].

Figure 2. Basic Servlet operation.

164 Hassan, Kassas and Ziedan

3. Proposed solution and Implementation

In the presented work we develop our servlet by joining the

work between the Jif environment and Java environment in

two implementation phases. In the Jif environment we need

the security type checking of Jif to produce a security typed

Java code, as the Jif program is compiled and produces a

Java code that have the same behavior of Jif code according

to type safety . The Java code produced by Jif compiler in Jif

environment is embedded into a Java servlet format in a

Java environment. The result will be a normal Java servlet

that can be run on any Java servelt container or in other

words Java application server, but with some security

constrains inherited from Jif language. This security features

can keep the developer time from walking through all the

code and check every line to make sure that there are no

security violations. Our new secure Java servlet development

life cycle is illustrated into figure (3).

Figure 3. Secure Java Servlet Development life cycle.

3.1 Jif Implementation

For implementation we, consider a case of study that

requires some security constrains. This is the case when a

normal user needs to open and read a system file. The user

will access the file through a dynamic web application

system that is built using our new secure Java servlet.

Since Jif language interacts with file system [18], so it

will take into consideration the permission given by the

operating system to read, write and execute the file by any

user that want to access the file if the application policy is

less restrictive than the operating system, but if the

application policy is more restrictive than the operating

system, then the access control policy specified in the

application (.i.e. Jif program) will be applied to the file. In

our case we write a Jif program that enforce a file access

permission policy that prevent the normal user from reading

the file and give the permission to file owner only (.i.e. the

user who creates the file) . So the result of execution will

prevent any user except the owner from reading the file as

he has more restrictive access control permissions than the

user has. This access permission is applied to the file if it is

more restrictive than the access permission given to the file

from the operating system. Figure (4):a, b respectively show

a Jif program (cat.Jif) that permit the file owner only to

open and read the file and a part of the Java code produced

by compiling it (cat.java) that have the same security policy

of cat.Jif to access the file.

3.2 Threat model

The threat model [13] addressed by our application

environment is the attempt of current user of the system

specified in (cat.Jif) by Runtime class, which instantiated by

getRuntime() and parameterized only by the user who

executed this program (.i.e. the current user of the operating

system) to access the file owned by certain principal

specified by the access permission of the file from the

operating system, although there is mismatching between

the current user of the operating system who executes the

program and the file owner specified by the operating

system. Also the current user of the operating system does

not act for file owner. The model here covers the operation

of reading the file, not editing or writing in the file (.i.e. the

confidential information release, not the integrity of this

information).

3.3 Trust model

In the trust model [13], presented in our work, the current

user of the system can access the file owned by certain

principal, as this principal trusts the current user of the

system to perform this operation (.i.e. reading the file) , if

and only if the access permission of the file from the

operating system states that owner of the fileis matching the

current user of the system who executes the Jif program

specified by getruntime() in (cat.Jif).

3.4 Java Implementation

The Java code introduced above is embedded into a Java

servlet format and produces our new secure servlet

(catsrvlet.Java) that have enforce the same access control

policy to the file as (cat.Jif) as shown in figure (5).

This servlet can be used by many clients to access the files

stored on web server depends on the access permission

specified in our new secure servlet that is the same like the

access permission to the file that is specified in cat.jif.

We used the Apache Tomcat server [11] as a Java Servlet

container on which our new secure Java servlet runs.

4. Related work

The idea of using programming-language techniques for

enforcing information flow policies was discussed for some

time in [5]. The focus of this research was on work that uses

static program analysis to enforce information flow policies.

It assumes that computation using confidential information

is possible, and that it is important to prevent the results of

computation from leaking even partial information about

confidential inputs. This approach addressed the practical

security mechanisms in language-based techniques for

soundly enforcing end-to end confidentiality policies

continues.

The type-checking approach has been implemented in

security typed language such as Jif [2], which extends Java,

and FlowCaml [10], which extends Caml. Both of these

Developing a Security Typed Java Servlet 165

languages provide type systems that enforce information

flow policies. In the type-checking approach, every program

expression has a security type with two parts: an ordinary

type such as int, and a label that describes how the value

may be used. Security is enforced by type checking, the

compiler reads a program containing labeled types and in

type checking, the program ensures that it cannot contain

improper information flows at run time.

However, to date, a security-typed language such as Jif

has only been used to build simple “toy” programs. There

Figure 4 :(a) a Jif program (cat.Jif) that permit the file owner only to open and read the file.

166 Hassan, Kassas and Ziedan

Figure 4 :(b) A part of Java code (cat.java) produced by compiling cat.Jif.

Developing a Security Typed Java Servlet 167

Figure 5. A part of code of (catservlet.java), a security-typed Java servlet developed as a front-end to cat.Jif.

are currently only few applications written in Jif [6- 9].

However the most closely related work is SIF [19]. It was a

software framework for building high-assurance web

applications; it used language-based information-flow

control to enforce security. It was written in Jif 3.0 [2], an

extended version of the Jif programming language, to track

the flow of information within a web application, and

information sent to and returned from the client. SIF is an

extension to the Java Servlet framework, and requires the Jif

3.1 compiler to compile a web application in the SIF

framework. It achieves the same goals like ours, but it uses

different methodology for implementation.

Stephen Chong, Jed Liu Andrew C. Myers, Xin Qi ,K.

Vikram, Lantian Zheng and Xin Zheng introduced

Swift[20] principled approach to write web applications

that are secure by construction. Application code is written

as Java-like code annotated with information flow policies

that specify explicitly the confidentiality and integrity of

web application information. The compiler uses these

security annotations to decide where code and data in the

system can be placed securely. It automatically partitions the

program into

JavaScript code running in the browser, and Java code

running on the server. This technique permits a web

application to be split according to a policy into JavaScript

code that runs on the client and Java code on the server.

The presented research propose a solution for the problem of

how to enforce the information flow security policy during

the web application development phase and introduces the

development of a new security typed Java servlet based on

the Java language variant Jif. This servlet is developed by

embedding the Java code produced by compiling the Jif [2],

[3] language code into a Java servlet code format. The

presented servlet can run on the web server side and

prevents the security policy violation caused by

unauthorized access to system resources through dynamic

web application system that is built based on servlet

technology.

5. Conclusion and future work

In this paper we introduce the developing and application of

a security typed Java servlet that can run on the web server

side and enforce the access control policy for file system

based on access permission specified in the policy contained

168 Hassan, Kassas and Ziedan

in the Jif label. This servlet is developed by embedding the

Java code produced by compiling the Java information flow

language (Jif) into a servlet code format. The code produced

by compiling Jif language is security typed and support

servlet with means of flow control and access control. Hence

we can guarantee that when we develop a dynamic web

application system using this servlet, it will check the input

data through it for security policy violation and prevent

unauthorized access to system resources.

There are several interesting directions for our future

work. First we need to study the application of the

introduced secure Java servlet to access data base system

through dynamic web application system.

Second, the process of picking up the Java code produced

from compiling the Jif code and embedding it into servlet is

done manually and we are looking forward to do it

automatically. Finally, this introduced secure Java servlet

can be considered as an important stage in the development

of a secure dynamic web scripting language that acts as a

front-end to the information flow language (Jif).

Acknowledgments

We should thank Steve Chong at Cornell University for his

endless patience and prompt responses to our questions

about settings of Jif runtime environment and features of Jif

language. Also we should thank Mr. Ayman Abdo, a senior

web developer in Royal Scientific Society of Jordan for

helping us in deploying the java code produced by compiling

the Java information flow language (Jif) in java servlet content

and also Mr. Jack Fayez, a web developer in National

Telecommunication Institute for helping us in running the

proposed web application.

References

[1] Jeanne Murray."Building Java HTTP servlets". IBM

developerWorks,12 September 2000. Available via:

http://www.digilife.be/quickreferences/PT/Building%2

0Java%20HTTP%20servlets.pdf

[2] Stephen Chong, Andrew C. Myers, K. Vikram, and

Lantian Zheng. "Jif Reference Manual". June 2006.

Available via:

 http://www.cs.cornell.edu/jif/doc/jif-3.1.1/manual.html

[3] Andrew C. Myers. “Mostly-Static Decentralized

Information Flow Control”. Ph.D. Thesis, January

1999.

[4] Andrew C.Myers. "JFlow: Practical Mostly-Static

Information Flow Control". Proceedings of the 26th

ACM Symposium on Principales of Programming

Languages (POPL’99),San Antonio, Texas, USA,

January 1999.

[5] A. Sabelfeld and A. C. Myers.” Language-based

information- flow security”. IEEE Journal on Selected

Areas in Communications, 21(1):5–19, Jan. 2003.

[6] R. Heldal and F. Hultin. "UMLS Bridging Model-based

and Language-based Security". In E. Snekkenes and D.

Gollmann, editors, Computer Security-ESORICS2003,

volume 2808 of LNCS, pages 235-252. Springer, 2003.

[7] Boniface Hicks,Kiyan Ahmadizadeh and Patrick

McDaniel. “From Languages to Systems:

Understanding Practical Application Development in

Security-Typed Languages”. Proceedings of the 22nd

Annual Computer Security Applications Conference on

Annual Computer Security Applications Conference,

p.153-164, December 11-15, 2006.

[8] Aslan Askarov and Andrei Sabelfeld. "Security-typed

languages for implementation of cryptographic

protocols: A case study". In Proc.of ESORICS 2005,

Milan, Italy,Sept.12- 14,2005.LNCS.©Springer-Verlag

2005.

[9] Boniface Hicks, Sandra Rueda, Trent Jaeger and Patrick

McDaniel. "Integrating SELinux with Security-typed

Languages". NSRC Technical Report NAS-TR-0052-

2006.

[10]Vincent Simonet. "Flow Caml in a nutshell". In Graham

Hutton, editor, Proceedings of the first APPSEM-II

workshop, pages 152-165, Nottingham, United

Kingdom, March 2003.

[11] Martin Bond and Debbie Law. "Tomcat Kick Start”.

 June 2003.

[12]James Duncan Davidson with Suzanne Ahmed.

"Java™Servlet API Specification: Version2.1a". Sun

Microsystems, Inc. © 1998.

[13] Peng Li and Yun Mao. "Integrity Extension in Jif".

CIS-670 Course Project Report on Advanced Topics in

Programming Languages: Safety and security, Spring

2003.

[14] Andrew C.Myers and Barbara Liskov. "Protecting

Privacy using the Decentralized Label Model". ACM

Transactions on Software Engineering and

Methodology, 9(4):410–442, October 2000.

[15] Peng Li and Steve Zdancewic. " Practical Information

flow Control in Web-based Information Systems". In

Proceedings of the 18th IEEE Computer Security

Foundation Workshop (CSFW), June 2005.

[16] P. Li and S. Zdancewic. “Downgrading policies and

 relaxed noninterference”. In Proc. 32th ACM Symp.

On Principles of Programming Languages (POPL),

2005.

[17] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-

Hung Tsai, D. T. Lee, Sy-Yen Kuo. “Securing Web

applications code by static analysis and runtime

protection”. In Proceedings of WWW 2004, Manhattan,

New York, USA., May 17–22, 2004.

[18] Boniface Hicks, Sandra Rueda, Trent Jaeger, and

Patrick McDaniel. "From trusted to secure: Building

and executing applications that enforce system

security". In Proceedings of the USENIX Annual

Technical Conference, Santa Clara, CA, USA, June

2007.

[19] Stephen Chong, K. Vikram, Andrew C. Myers. “SIF:

Enforcing Confidentiality and Integrity in Web

Applications”. Proceedings of USENIX Security

Symposium 2007, pages 1–16, August 2007.

[20] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K.

Vikram, Lantian Zheng, Xin Zheng. ”Secure Web

pplications via Automatic Partitioning”. Proceedings

of the 1st ACM Symposium on Operating Systems

Principles SOSP'07), pages 31–44, October 2007.

Developing a Security Typed Java Servlet 169

 Author Biographies

Doaa Hassan She was born in Sharqiyah governorate in Egypt. She earned
her B.S in telecommunication and electronics from the faculty of engineering
in Zagazig University in Egypt. After that she earned her master degree in the
same field from the same university in September 2002. Currently she works
as assistant lecturer at the computers and systems department in National and
Telecommunication Institute in Cairo. Her research interest includes Security
policy, Information-flow policies, language-based security, network security
and Cryptography.

Sherif El Kassas He received his Ph.D. in computer science from the
Eindhoven University of technology in the Netherlands in 1994. He is
currently a faculty member at the department of computer Science, AUC and
associate Director of Academic Computing Services.

El-Kassas’ research interests are focused on Security Management, the
application of formal methods in Software engineering and Computer Security,
and open source technologies.
El-Kassas is also a consultant for various organizations; Member of the board
of trustees of the Information Technology Institute; Member of the board of the
Egyptian Open Source Business Consortium NGO; and Member of various
professional computing societies.

Ibrahim Ziedan He occupied the position of dean of the Faculty of
Engineering in Zagazig University in 1997. In addition he was serving as the
head of the deapartement of computers and systems departmentin in the same
faculty for several years since 1997. He is currently a professor at the
department of computer and systems, Faculty of Engineering Zagazig
University and he is the director of Cisco Academy in Zagazig university .
Ziedan’ research interests are focused on Computer organizations,Computer
network and programming languages.

